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Abstract
High-quality abundance data are expensive and time-consuming to collect and often 
highly limited in availability. Nonetheless, accurate, high-resolution abundance distri-
butions are essential for many ecological applications ranging from species conserva-
tion to epidemiology. Producing models that can predict abundance well, with good 
resolution over large areas, has therefore been an important aim in ecology, but poses 
considerable challenges. We present a two-stage approach to modeling abundance, 
combining two established techniques. First, we produce ensemble species distribu-
tion models (SDMs) of trees in Great Britain at a fine resolution, using much more 
common presence–absence data and key environmental variables. We then use ran-
dom forest regression to predict abundance by linking the results of the SDMs to a 
much smaller amount of abundance data. We show that this method performs well in 
predicting the abundance of 20 of 25 tested British tree species, a group that is gener-
ally considered challenging for modeling distributions due to the strong influence of 
human activities. Maps of predicted tree abundance for the whole of Great Britain are 
provided at 1 km2 resolution. Abundance maps have a far wider variety of applications 
than presence-only maps, and these maps should allow improvements to aspects of 
woodland management and conservation including analysis of habitats and ecosystem 
functioning, epidemiology, and disease management, providing a useful contribution 
to the protection of British trees. We also provide complete R scripts to facilitate ap-
plication of the approach to other scenarios.
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1  | INTRODUCTION

Robust information on the distribution and abundance of species is 
essential for many applications in ecology and conservation. Advances 
in species distribution modeling have driven an explosion in the use 

of these and similar techniques, which are now widespread (Araújo 
& Guisan, 2006). However, the most commonly desired output from 
these techniques, an estimate of the probability of species occurrence, 
is restricted in its uses. Furthermore, due to limitations in the quality of 
available data, the actual output of species distribution models (SDMs) 
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is often even less useful, producing only a relative, not absolute, likeli-
hood of presence, and sometimes worse (Guillera-Arroita et al., 2015; 
Pearce & Boyce, 2006). For many ecological questions, estimates of 
abundance would be far more valuable as they provide much more 
information about the state of populations and properties of eco-
systems (Hui et al., 2009; Pearce & Ferrier, 2001; Sagarin, Gaines, & 
Gaylord, 2006).

Predicting abundance distributions with accuracy is challenging. 
Even where presence–absence or presence-only data are easy to find, 
large amounts of abundance data are rarely available (Nielsen et al. 
2005; Van Couwenberghe, Collet, Pierrat, Verheyen, & Gégout, 2013). 
Therefore, finding effective ways to model abundance is an important 
area of research in ecology. A variety of different approaches, including 
looking for a fundamental relationship between the area of occupancy 
and abundance (Gaston et al., 2000) and looking at how occupancy pat-
terns change with different grain size (Hui et al., 2009) among others 
(Hwang & He, 2011; Wenger & Freeman, 2008), have been attempted. 
However, none of these has produced consistently satisfactory results 
and each has significant theoretical or practical limitations.

Another approach has been to investigate relationships between 
likelihood of occurrence and abundance. This approach assumes that 
species abundance and occurrence are controlled by the same or re-
lated environmental factors (Brown, 1984; Van Couwenberghe et al., 
2013). Various studies have attempted to correlate the results of 
SDMs or related models with abundance data to produce models pre-
dicting abundance in unknown areas (Johnson & Seip, 2008; Nielsen 
et al. 2005; Van Couwenberghe et al., 2013). However, wide varia-
tion in the relationships between species occurrence, and abundance 
has been reported, with various studies showing weak relationships 
(Gaston et al., 2000; Nielsen et al. 2005; Van Couwenberghe et al., 
2013). Another study by Pagel et al. (2014) used a hierarchical model 
to predict abundances in time and space using a combination of plen-
tiful occurrence data and restricted abundance data. Their method 
produced unbiased results, but with very low precision in predictions, 
perhaps due to inflexibility in their models or not using environmen-
tal covariates. These studies have all suggested promise for a tech-
nique combining the use of large amounts of occurrence data with 
small amounts of abundance data, but none have yet performed well 
enough to be of use for many real-world applications.

We present a two-stage modeling approach for predicting abun-
dance, where the results of SDMs produced using the R package 
biomod2 (Thuiller, Georges, Engler, & Breiner, 2016) are regressed 
against abundance data and additional predictors using random for-
est regression with the R packages caret and randomForest (Breiman, 
2001; Kuhn et al., 2016; Liaw & Wiener, 2002). This approach per-
forms well in almost all cases tested here and is flexible and simple 
to use. We argue that poor correlations between SDM results and 
abundance previously reported may be partly due to the use of less 
powerful or inappropriate modeling techniques in other studies. SDMs 
are first produced using, in our case, presence–absence data to pro-
duce a map of estimated probability of occupancy for the species of 
interest. Separate abundance data are then used to fit a random for-
est regression that predicts abundance from probability of occupancy. 

Additional predictors, which may be expected to influence abundance 
but not occupancy, can be included at this stage. We also include the 
SDM results of co-occurring species as covariates in the random forest 
regression, allowing biotic effects to be accounted for in the prediction 
of abundance and producing more realistic species responses.

We have used this approach to produce distribution maps showing 
the abundance of 20 common tree species in Great Britain. Available 
tree distribution data for Great Britain were surprisingly poor, present-
ing a knowledge gap for ecologists working on British woodlands, 
particularly in light of major threats such as emerging tree diseases 
(Boyd, Freer-Smith, Gilligan, & Godfray, 2013). Our distributions show 
total combined area covered by each species within each square ki-
lometer (hectares per square kilometer) across Great Britain and are 
a significant improvement on previously widely available distribution 
data. We envisage that such distribution maps could make an import-
ant contribution in a number of fields related to British forestry, from 
conservation planning to epidemiology.

2  | METHODS

We predicted abundance of tree species using a combination of two 
established techniques. First, we used the R package biomod2 (Thuiller 
et al., 2016) to produce ensemble species distribution models (SDMs) 
of trees in Great Britain at 1 km2 resolution. Then, we used random 
forest regression, with caret (Kuhn et al., 2016) and randomForest 
(Liaw & Wiener, 2002) packages in R, to link the results of these SDMs 
to a much smaller amount of abundance data, to predict abundance 
across Great Britain at the same resolution.

2.1 | Stage 1: Fitting species distribution models

From the Distribution Database of the Botanical Society of the British 
Isles (BSBI) (see Data Accessibility), we downloaded all records from 
Great Britain between 1950 and 2014 for 25 commonly found tree 
species: Acer campestre L., Acer platanoides L., Acer pseudoplatanus L., 
Alnus glutinosa (L.) Gaertner, Betula pendula Roth, Betula pubescens 
Ehrhart, Carpinus betulus L., Castanea sativa Miller, Corylus avellana L., 
Crataegus monogyna von Jacquin, Fagus sylvatica L., Fraxinus excelsior 
L., Populus tremula L., Prunus avium L., Prunus padus L., Pseudotsuga 
menziesii Franco, Quercus petraea Lieblein, Quercus robur L., Salix 
caprea L., Salix cinerea L., Sorbus aria Crantz, Taxus baccata L., Tilia 
cordata Miller, Ulmus glabra Hudson, and Ulmus procera Salisbury. We 
discarded records with location data less precise than tetrad level 
(2 × 2 km) and simplified data with more precise locations to tetrad 
level. We chose tetrad resolution as a suitable compromise between 
having a high number of records to use and a small spatial scale, as 
using coarse scales can be problematic when modeling species distri-
butions (Dengler, Löbel, & Dolnik, 2009; Guisan, Graham et al., 2007).

We then converted this presence-only data to presence– 
absence. We considered tetrads for which botanical surveys had been 
undertaken at least twice since 1950, and where at least 50 species 
of plants were recorded in each survey, to be “well-surveyed” (Groom, 
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2013) (a map is provided in Appendix 1). Any well-surveyed tetrads 
that did not have records for the species of interest were reclassified 
as “absence” points for that species (i.e., locations where the species 
was likely to be either truly absent or at very low abundance and there-
fore playing little role in defining the dominant ecological characteris-
tics of that tetrad). Accounting for the likelihood that common trees 
will have a higher detection probability than most species of plants, we 
kept this threshold low enough to prevent the exclusion of tetrads in 
species-poor areas, while being high enough to prevent the inclusion 
of too many poorly surveyed tetrads (Groom, 2013). This produced a 
total of 18,993 tetrads from across Great Britain that were considered 
well surveyed and subsequently used as presence or absence points. 
Data manipulation was carried out using custom-written scripts in 
Python (Python Software Foundation: Version 3.3.2).

We downloaded data on a variety of ecological variables across 
Great Britain from a variety of free sources (Table 1). See Data 
Accessibility for details. Preprocessing of layers was carried out in 
ArcGIS (ESRI 2014) to ensure identical extent, cell size, and coordinate 
system for use in species distribution modeling. All environmental co-
variates were used at 1 km resolution: vector datasets were rasterized 
to 1 km resolution.

We then fitted species distribution models (SDMs) to these data. 
For reviews of these methods, see Elith and Leathwick (2009) and 
Pearson and Dawson (2003). SDMs use species records and environ-
mental variables to fit models that describe the relationship of the 
species’ distribution to the environmental variables, which can then be 
used to predict the occupancy probability or related measures across a 
wider landscape (Elith & Leathwick, 2009; Thuiller, 2003). SDMs for all 
species were produced using the package biomod2 in R (R Core Team 
2015; Thuiller et al., 2016).

We selected 15 environmental variables as covariates from the 
original set of 33. We removed one of each pair of variables with a 
pairwise Pearson’s correlation coefficient higher than 0.7, while retain-
ing variables that are known to be important determinants of plant 
growth (Guisan, Zimmermann et al., 2007; Prentice et al., 1992). The 
final selection was altitude, aspect, slope, direct incoming solar radi-
ation, mean diurnal temperature range, temperature seasonality, an-
nual precipitation, ancient woodland locations, topsoil available water 
capacity, topsoil minerology, topsoil organic carbon content, topsoil 
texture class, soil category, National Forest Inventory (NFI) forest type, 
and land cover type(see Appendix 2 for pairwise Pearson’s correla-
tions between selected variables). We ran six algorithms (GLM, GAM, 
classification tree analysis (CTA), generalized boosting models (GBM), 
random forest (RF), and maximum entropy (MaxEnt)) 15 times for each 
species using the 15 environmental covariates, producing a total of (25 
species × 6 algorithms × 15 repeats) = 2,250 models.

Each model run was carried out using a randomly chosen 70% 
of the presence–absence data (Heikkinen, Marmion, & Luoto, 2012; 
Thuiller, 2003); the remaining 30% were used for cross-validation to 
assess the performance of each model using two model assessment 
criteria; area under the receiver operator curve (ROC) and the true 
skill statistic (TSS; Allouche, Tsoar, & Kadmon, 2006). For each spe-
cies, we selected the best-performing models (see Table 2) to build 

an ensemble distribution model (a mean of the raw model results, 
weighted by the model ROC scores), producing a single distribution 
map for each species that represents a robust estimate of a species’ 
British distribution at 1 km2 resolution (Thuiller et al., 2016). The 
model selection process was as follows. Firstly, we assessed ROC and 
TSS scores—for both metrics, a higher value indicates better model 
fit—and if there was a leading group of models whose ROC and TSS 
scores were a step higher than the remainder, this leading group was 
chosen. Often this leading group contained just the 15 random forest 
models. Otherwise, the top 20 models with the highest scores were 
selected. Secondly, we visually assessed the predicted responses of 
the species to each environmental covariate for each of these models. 
Any models that contained biologically implausible responses were re-
jected, as were models where the responses or predicted occurrence 
maps disagreed greatly from the overall consensus, as these can lead to 
development of inappropriate ensemble models (H. Hannemann, per-
sonal communication). See the walkthrough of R code in Supporting 
Information for an example of how models were chosen and example 
response curves. After rejection of implausible models, the final num-
ber of models used to produce each ensemble ranged between 11 and 
20. Ensemble models were therefore robust, biologically plausible, and 
had high predictive power for the majority of species (see Table 2).

Nonsignificant variables were not removed from the models be-
cause of the very large size of our datasets, and because the mod-
els were used to make predictions rather than to test hypotheses. 
Therefore, final models may include terms that were not important to 
the outcome, but this should not have had a detrimental impact on the 
model fit. The numbers and types of models selected for each species 
are displayed in Table 2.

2.2 | Stage 2: Modeling abundance using random 
forest regression

Abundance data for trees, in the form of hectares covered by a spe-
cies per square kilometer (or percent cover), were obtained from 
the Countryside Survey and myForest (see Data Accessibility). The 
Countryside Survey is a large-scale survey in Great Britain measuring 
many aspects of landscapes and the countryside, including diversity 
and abundance of plant species. It uses a random stratified sampling 
procedure to capture a representative sample of all land cover types. 
By contrast, myForest is a service set up to help woodland owners 
map and manage their forests, which currently holds data on over 
45,000 ha of woodlands across Great Britain, but does not contain 
any records outside of woodlands. For all tree species combined, 
9,800 randomly selected abundance data points from the Countryside 
Survey and 9,453 abundance data points from myForest were used, 
making an average of 770 abundance data points per species (see 
Appendix 5 for numbers of data points per species).

The two abundance datasets (Countryside Survey and myForest) 
were rescaled to express them as hectares covered per kilometer 
squared (percent cover), in order to make them comparable. For the 
myForest data, which was originally provided in the format percentage 
cover of each species within a woodland patch, this involved multiplying 
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each percentage cover record by the proportion of woodland cover 
in the relevant kilometer square. For this, we used a shapefile down-
loaded from the National Forest Inventory (NFI), containing outlines of 
all woodlands over 0.5 ha in Great Britain. For the Countryside Survey 
data, which was collected using a more complex methodology (details 
available in Barr et al., 1993) where linear features such as hedgerows 
were sampled separately from the rest of the landscape, more manip-
ulation was required. The data were weighted by the length of linear 

features in the kilometer squared, to account for the fact that linear 
features are more likely to contain trees and the lengths of them are 
not equal across the country. The weighting was done using (linear 
plot percentage cover × percent of kilometer square covered by linear 
features) + (nonlinear plot percentage cover × remaining area), with all 
required information taken from the Countryside Survey.

Tree cover data for England and Wales from Bluesky’s National 
Canopy Map were made available by the Woodland Trust, to be 

TABLE  1 Ecological variables downloaded and produced for species distribution modeling. Details of data sources can be found in Data 
Accessibility

Variable Description Unit Source

bio1 Annual mean temperature °C × 10 Worldclim

bio2 Mean diurnal temperature range: mean of monthly (max 
temp − min temp)

°C × 10 Worldclim

bio3 Isothermality (bio2/bio7 × 100) °C × 10 Worldclim

bio4 Temperature seasonality: standard deviation × 100 °C × 1000 Worldclim

bio5 Max temperature of warmest month °C × 10 Worldclim

bio6 Min temperature of warmest month °C × 10 Worldclim

bio7 Temperature annual range °C × 10 Worldclim

bio8 Mean temperature of wettest quarter °C × 10 Worldclim

bio9 Mean temperature of driest quarter °C × 10 Worldclim

bio10 Mean temperature of warmest quarter °C × 10 Worldclim

bio11 Mean temperature of coldest quarter °C × 10 Worldclim

bio12 Annual precipitation mm Worldclim

bio13 Precipitation of wettest month mm Worldclim

bio14 Precipitation of Driest Month mm Worldclim

bio15 Precipitation seasonality: coefficient of variation cm Worldclim

bio16 Precipitation of wettest quarter mm Worldclim

bio17 Precipitation of driest quarter mm Worldclim

bio18 Precipitation of warmest quarter mm Worldclim

bio19 Precipitation of coldest quarter mm Worldclim

altitude Altitude m × 10 Worldclim

slope Slope % Derived from Altitude using ArcGIS (Slope)

aspect Aspect Degrees Derived from Altitude using ArcGIS (Slope)

directradiat Direct radiation: incoming direct solar radiation Watt hr m−2 Derived from Altitude using ArcGIS (Solar 
Radiation Analysis)

directdurat Direct duration: duration of direct solar radiation Hours Derived from Altitude using ArcGIS (Solar 
Radiation Analysis)

diffuseradiat Diffuse radiation: incoming scattered solar radiation Watt hr m−2 Derived from Altitude using ArcGIS (Solar 
Radiation Analysis)

nfi National Forest Inventory Great Britain 2014, forested areas Nominal Forestry Commission

soil Soil type Nominal European Soil Database

soiltext Dominant soil surface textural class Nominal European Soil Database

octop Topsoil organic carbon content Nominal European Soil Database

awctop Topsoil available water capacity Nominal European Soil Database

mintop Topsoil minerology Nominal European Soil Database

ancient_es Ancient woodlands in England, Scotland and Wales Nominal Natural England, Forestry Commission Scotland 
and National Resources Wales

land cover 07 UK Land cover map 2007 (1 km2) Nominal Countryside Survey/CEH
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used as a modeling covariate. Three layers from this were used: the 
total tree cover, tree cover derived only from woodlands included in 
the NFI, and tree cover derived from trees outside woodlands. The 
National Canopy Map layers were used in England and Wales, while 
the more basic NFI layers were used in Scotland where complete tree 
cover data were not available. We also used the NFI dataset to calcu-
late the proportion of each square taken up by broadleaved woodland 
edge, which was defined as any woodland within 50 m of nonwood-
land (Aune, Gunnar, & Moen, 2005). All these layers were used as co-
variates in the random forest regression (below). We used R version 
3.2.3 for all modeling and data processing (R Core Team 2015).

We used random forest regression to model the relationships 
between abundance, the probability of occupancy predicted by the 
SDMs, and our tree cover covariates which we expected would be 
important for modeling tree abundance (Breiman, 2001). A separate 
random forest regression was implemented for each species. The SDM 
outputs for all species were included as variables for each species, so 
that the models would also capture interactions between species 
(such as competition). Potentially, this could also capture variation in 
other variables that are not included in that species’ SDM but which 
correlate with the distribution of other species. Models had the form: 

where P̂ is the predicted probability of occupancy from the relevant 
SDM, CA is cover from all trees, CW is cover from woodland trees only, 
CO is cover from trees outside woodland only, and CE is cover from 
woodland edge.

Models were run using the combined myForest and Countryside 
Survey data. We chose to use random forest regression because it is 
insensitive to data distribution and therefore copes well with our data 
which has a high percentage of zeros. It can also take a large number 
of potentially collinear variables, and is robust to overfitting, making it 
extremely useful for prediction (Prasad, Iverson, & Liaw, 2006; Segal, 
2004). We used these models to predict abundance of each species 
across the whole of Great Britain at 1 km2 resolution. We used root-
mean-square error (RMSE) and mean absolute error (MAE), produced 
by k-fold cross-validation with 10-fold, to evaluate our models. These 
two commonly used evaluation metrics give interpretations of a mod-
el’s average error when testing it against independent data, in this 
case, the 10% that was left out of each run (Chai & Draxler, 2014). 
A schematic overview of the whole two-stage method is shown in 
Figure 1.

Abundancefocalsp.∼
̂Pfocalsp.+

̂Psp.2 …
̂Psp.25+CA+CW+CO+CE

Species

Number of 
models used to 
build ensemble Algorithms included

Mean 
ROC score

Mean 
TSS score

Acer campestre 20 GAM, RF, GBM 0.92 0.71

Acer platanoides 20 GLM, GAM, RF, GBM 0.76 0.44

Acer pseudoplatanus 20 GAM, RF, GBM 0.85 0.55

Alnus glutinosa 15 RF 0.80 0.46

Betula pendula 15 RF 0.79 0.46

Betula pubescens 15 RF 0.80 0.46

Carpinus betulus 20 RF, GBM, MaxEnt 0.78 0.40

Castanea sativa 15 RF 0.81 0.47

Corylus avellana 16 RF, GBM 0.86 0.46

Crataegus monogyna 20 GLM, GBM, RF, GBM 0.96 0.82

Fagus sylvatica 20 GAM, RF, GBM 0.81 0.48

Fraxinus excelsior 20 GLM, GAM, RF, GBM 0.92 0.83

Populus tremula 17 RF, GBM 0.71 0.31

Prunus avium 11 RF 0.75 0.36

Prunus padus 20 RF, GBM 0.80 0.48

Pseudotsuga menziesii 19 GAM, RF, GBM, MaxEnt 0.76 0.39

Quercus petraea 15 RF 0.82 0.49

Quercus robur 16 RF, GBM 0.90 0.64

Salix caprea 16 RF, GBM 0.79 0.42

Salix cinerea 16 RF, GBM 0.78 0.42

Sorbus aria 20 RF, GBM 0.84 0.53

Taxus baccata 20 GAM, RF, GBM 0.80 0.44

Tilia cordata 15 RF, GBM 0.76 0.36

Ulmus glabra 15 RF 0.79 0.43

Ulmus procera 15 RF 0.89 0.61

TABLE  2 The number, type, and 
prediction accuracy of the individual 
models used to build ensemble distribution 
models for each tree species. Algorithms 
included were GAM (generalized additive 
model), GBM (generalized boosted 
regression), GLM (General Linear Model), 
RF (Random Forest), and MaxEnt 
(Maximum Entropy)
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3  | RESULTS

3.1 | Species distribution modeling

All selected models had useful prediction capability (AUC > 0.7) 
(Boyce, Vernier, Nielsen, & Schmiegelow, 2002). In general, predic-
tion accuracy of the selected models was good and they successfully 
predicted a large proportion of known presence or absence points. 
The selected models had ROC scores between 0.71 and 0.96 and 
TSS scores between 0.31 and 0.83 (Table 2). Ensemble models were 
built using 100% of the available data, so evaluations are not given 
for ensemble models as this would test the models on the same data 
they were generated with, resulting in unfair evaluation statistics. For 
the four species with the lowest predictive power (lowest TSS and 
ROC scores), (Populus tremula, Prunus avium, Pseudotsuga menziesii, 
and Tilia cordata) (Table 2), we investigated further to ensure that all 
ecological factors known to be important to them were included in 
the model runs. However, no further improvements to the model fit 
were found. These were species that tend to be either widespread 
but uncommon throughout their range (P. tremula, P. avium, T. cordata) 
or non-native trees whose distribution is largely controlled by human 
planting (P. menziesii), and as a result, it is unlikely to be possible to 
generate high-scoring distribution models for these species (Guisan, 
Zimmermann et al., 2007). For 21 of 25 species, however, SDMs  
produced high-quality ensemble models.

3.2 | Abundance modeling

In general, the random forest models were very successful in predicting 
the abundance of tree species. Figure 2 shows the predicted against 
observed abundance for four representative species; graphs for all 
other species are included in Appendix 3. For the majority of species, 
the predictions of the models are similar to the observed values.

We produced root-mean-square error (RMSE) and mean absolute 
error (MAE) scores using 10-fold cross-validation to evaluate our mod-
els’ performance. These two commonly used model evaluation metrics 
give interpretations of a model’s average error when testing it against 
independent data (Chai & Draxler, 2014). Table 3 shows RMSE and 
MAE scores for each species; the error scores are given in the same 
scale as the response variable, that is, hectares covered per square 
kilometer (percent cover). All the models have RMSE scores under 10, 
and most are under 5. All MAE scores are under 5. The average predic-
tion error for most of the models produced is therefore <5%.

For six species, Acer platanoides, Populus tremula, Prunus padus, 
Sorbus aria, Ulmus glabra, and Ulmus procera, there were too few non-
zero abundance data points to use 10-fold cross-validation. We chose 
50 positive data points as the cutoff for using 10-fold cross-validation, as 
this gives an average of five nonzero data points per fold. Acer platanoides 
had 42 positive abundance data points, so for this species, we used eight-
fold cross-validation to maintain an average of five nonzero data points 
per fold. However, for the remaining five species, we felt that there was 
not enough data available to produce reliable abundance models (see 
Table 3). These species were omitted, and maps of predicted abundance 
of the remaining 20 species across Great Britain were produced (Figure 3 
and downloadable from the Sylva Foundation website and Oxford 
University Research Archive (see Data Accessibility). Where adequate 
abundance data were available, however, random forest regression was 
able to improve the prediction of the species for which the SDMs had a 
poorer fit. We were able to successfully model the abundance of Prunus 
avium, Pseudotsuga menziesii, and Tilia cordata despite the SDM predic-
tion accuracy for these species being poorer than the other species.

We also calculated R2 scores for the models, and these are avail-
able in Appendix 5. However, we recommend caution when interpret-
ing these scores, as R2 is not the most appropriate metric to use in 
this situation. R2 is affected by the extent of the dependent variable 
(Gelman & Hill, 2007), and as the maximum abundance varied greatly 

F IGURE  1 Schematic showing the 
outline of the two-stage method for 
predicting abundance distributions. The 
first stage uses SDMs to produce maps of 
predicted probability of occupancy, while 
the second stage takes these maps as 
inputs and uses Random Forest regression 
to produce maps of predicted abundance. 
Distribution data inputs are shown in 
square boxes and model covariates 
in round boxes, and model outputs 
are shaded in solid gray and modeling 
processes in hashed gray
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between species, this confounds comparison between our models.  
The high percentage of zeros in our datasets also produces difficulty in 
the interpretation of R2. For instance, for Acer campestre, over 97% of 
the available abundance data points were zero. The model tended to 
predict very slightly higher than zero for these points (generally between 
zero and one percent cover), resulting in a low R2 (.523). However, the  
observed vs predicted graph (Figure 2) and the low RMSE and MAE 
scores (Table 3) for Acer campestre show that the model generally pre-
dicts very close to the true abundance, despite scatter in the data, and 
this is mirrored for most other species. For applications where the differ-
ence between zero and one or two percent cover is unimportant, these 
models can be used directly for predicting abundance; where it is more 
important, the predicted against observed graph can be used to select a 
cutoff below which predicted abundance will be coerced to zero.

4  | DISCUSSION

The two-stage modeling approach produced good or excellent predic-
tions of abundance for the majority of species across the whole of Great 
Britain, despite only being trained on a relatively small amount of abun-
dance data. This is in contrast to several previous studies looking for 
relationships between SDM results and abundance, which have shown 
little or no relationship (Gaston et al., 2000; Johnson & Seip, 2008; 
Nielsen, Johnson, Heard, & Boyce, 2005). However, to our knowledge, 
no previous studies have used random forest regression to model this 

relationship, and doing so has a number of advantages. Most impor-
tantly perhaps is that it does not make any assumptions about the shape 
of the relationship. Previous studies have attempted to use the negative 
binomial and other theoretical distributions, but we argue that this is 
likely to be an oversimplification that may mask true relationships. The 
shape of such a relationship, which is likely to have several different 
drivers, may not follow a simple mathematical function, and is known to 
vary between species (Gaston et al., 2000; Harris, 2015; Nielsen et al. 
2005). The use of random forest regression allows for such variation, 
making it a much more powerful technique for this application (De’ath & 
Fabricius, 2000; Evans & Cushman, 2009; Prasad et al., 2006).

Our two-stage modeling approach has a number of other advantages. 
It can incorporate biotic effects, and include covariates that are expected 
to influence abundance separately from those expected to influence oc-
cupancy. It makes use of the large amount of presence or presence–ab-
sence data that are often available, rather than discarding it. It will work 
with any measure of abundance (number of individuals, percentage cover, 
biomass, etc.) and has been shown to be effective over large spatial ex-
tents. It may be a particularly powerful approach where occurrence and 
abundance are not influenced by exactly the same factors (see Nielsen 
et al., 2005). Although not tested here, this method also has the potential 
to be effective when used with the results of more problematic SDMs, 
such as those made using presence-only data, which can only predict a 
relative likelihood of occupancy (Araújo & Peterson, 2012).

We can also make use of the covariate allocation of random for-
est to gain insights into underlying ecological processes within the 

F IGURE  2 Observed abundance 
against abundance predicted by Random 
Forest regression, as used to assess model 
performance, shown for four tree species. 
The line on each graph is the 1:1 line 
showing perfect model fit
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community. For each species for which we have modeled abundance, 
we can inspect which variables are having the strongest effects in the 
model (see Appendix 4) (Breiman, 2001). This means we can see which 
other species’ SDM results are most strongly associated with the abun-
dance of our species of interest, allowing us to identify possible biotic 
interactions such as competition. This does not allow us to distinguish 
causal relationships because of the possibility that hidden covariates 
could be at play; two species’ SDM results could be correlated with 
each other not because of a biotic interaction, but because they are 
both influenced by an underlying factor. However, it does provide a 
qualitative estimate of biotic effects that could be an interesting start-
ing point for further study. The inclusion of biotic effects may have 
the additional benefit of improving model performance for predicting 
abundance under new conditions, such as future climate scenarios 
(Anderson, 2013; Araújo & Guisan, 2006; Elith & Leathwick, 2009; 
Harris, 2015). Species distributions and abundances are predicted to 
be strongly influenced in future by both climatic changes and biotic 
effects, and to our knowledge, this is the first technique for predicting 
abundance which is able to make some account of these biotic effects. 
However, the approach will not be able to incorporate changes to  
biotic effects with novel species assemblages, or other factors such  
as dispersal limitation, without further modification.

Not all species were successfully modeled using this technique. 
Prunus padus, Populus tremula, Sorbus aria, Ulmus glabra, and Ulmus pro-
cera were all unsuccessful, in each case because very little abundance 
data were available for these species in our datasets. For example, our 
combined abundance dataset contained only four nonzero data points 
for Sorbus aria, demonstrating the difficulty in acquiring abundance data 
even for such a well-studied system. However, various tree species which 
are generally considered to be difficult to model—such as Pseudotsuga 
menziesii, a non-native species whose distribution is still largely con-
trolled by planting, and Tilia cordata, which is thought to be both rare and 
widespread in Britain due to an unusual ecological history (Pigott, 1991)—
were successfully modeled by random forest regression, despite showing 
relatively poor SDM performance. Overall, the method performed well 
for the majority of species and seems to be generally effective across a 
range of species, provided that sufficient abundance data are available.

British trees exist in highly human-modified landscapes where 
their distributions have without exception been altered by human 
land use and preferences (Hopkins & Kirby, 2007; Rackham, 2008). 
This is a challenging scenario for modeling abundance; other stud-
ies which have tried to model abundance of vascular plant species 
have avoided trees for this reason (Van Couwenberghe et al., 2013). 
However, despite this, the models performed well for the majority of 
species. This suggests that the models may be flexible enough to work 
in a variety of contexts and are likely to perform even better in less 
human-dominated landscapes. This flexibility is one of the major ad-
vantages of using random forest regression, and we expect it to offer 
broad application in modeling abundance of a wide range of species 
(Prasad et al., 2006). The next step for evaluating the method will be 
to compare its performance to other published methods for predicting 
abundance, which could be done by evaluating the relative perfor-
mance of this and other methods with a variety of published datasets.

The abundance maps that we have produced are the best quality 
abundance distributions currently available for these species in Great 
Britain; previously, the best widely available distribution maps for trees in 
Great Britain were presence-only maps on 10- or 2-km square scales (see 
Figure 4). Our maps are modeled, not directly observed, and as is the case 
for modeling any highly noisy system, will not accurately predict abun-
dance in every 1 km square; however, they are expected to capture over-
all patterns of distribution well. As more data, particularly abundance data 
and better quality environmental covariates, become available, our maps 
can continue to be improved. Abundance maps have a far wider variety 
of applications than presence-only maps, and these maps will allow signif-
icant improvements to these applications. British woods face a range of 
threats, including invasive diseases such as ash dieback, undermanage-
ment or overmanagement leading to poor woodland quality, pollution, 
and damage by deer (Rackham, 2008). These improved maps should allow 
better planning and management of woodlands, analysis of habitats and 
ecosystem functioning, and epidemiology and disease management, and 
will be a useful contribution to the protection of British trees.

TABLE  3 Root-mean-square error (RMSE) and mean absolute 
error (MAE) scores for the Random Forest regression model for each 
species. The number of nonzero data points available for each 
species is also shown

Species RMSE MAE

Number of 
nonzero 
data points

Acer campestre 1.44 0.35 315

Acer platanoides 1.27 0.19 42

Acer pseudoplatanus 4.01 1.40 634

Alnus glutinosa 2.40 0.66 195

Betula pendula 6.88 2.29 802

Betula pubescens 4.09 1.09 127

Carpinus betulus 3.79 1.05 320

Castanea sativa 9.56 3.58 501

Corylus avellana 4.47 1.47 935

Crataegus monogyna 1.10 0.23 339

Fagus sylvatica 8.45 2.91 918

Fraxinus excelsior 4.95 1.88 1629

Populus tremula NA NA 16

Prunus avium 1.98 0.56 401

Prunus padus NA NA 9

Pseudotsuga menziesii 7.66 1.96 193

Quercus petraea 5.99 1.84 209

Quercus robur 6.50 2.54 1867

Salix caprea 1.38 0.28 74

Salix cinerea 0.16 0.03 55

Sorbus aria NA NA 3

Taxus baccata 2.21 0.49 86

Tilia cordata 1.04 0.14 56

Ulmus glabra NA NA 22

Ulmus procera NA NA 27
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5  | CONCLUSION

The two-stage method to predict abundance, using random forest re-
gression to model the relationship between SDM outputs and abun-
dance, is robust and easy to use producing good results for the majority 
of British tree species. Images and raster files of our abundance maps 

for the 20 successfully modeled tree species are available to download 
from the Sylva Foundation website and Oxford University Research 
Archive (see Data Accessibility). Both SDMs and random forest regres-
sion are well-established techniques, and using them together in this 
combination is a user-friendly way to produce good-quality maps of 
predicted abundance. This opens the way for more abundance maps 
to be produced for a wider range of scenarios, which itself could drive 

F IGURE  3 Maps of predicted 
abundance for four species, in hectares 
per km2, or percent cover. Note the scale 
varies between species. Maps for all other 
successfully modeled species are available 
to download from Sylva Foundation 
website and Oxford University Research 
Archive (see Data Accessibility)
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improvements in a number of ecological research areas, from responses 
to climate change to epidemiology. To facilitate this, we provide anno-
tated R code in the Supporting Information for the entire process, to 
act as a guide for those wishing to use this method themselves.
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APPENDIX 1

Map of well-surveyed tetrads (black) that were used to convert 
presence-only data into presence–absence data. A total of 18,993 tet-
rads were found to have been surveyed at least twice since 1950, with 
at least 50 species of plants recorded in each survey. These tetrads 
were considered to be well surveyed enough that if a tree species had 
not been recorded in one, it was considered very likely to be either 
truly absent or present at very low abundance with low ecological im-
portance in the tetrad, and was therefore classified as an “absence”
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Model predicted abundance

Observed abundance against abundance predicted by Random Forest regression, as used to assess model performance. The line on each graph is 
the 1:1 line showing perfect model fit. From top left, species are Acer campestre, Acer platanoides, Acer pseudoplatanus, Alnus glutinosa, Betula 
pendula, Betula pubescens, Carpinus betulus, Castanea sativa, Corylus avellana, Crataegus monogyna, Fagus sylvatica, Fraxinus excelsior, Populus trem-
ula, Prunus avium, Prunus padus, Pseudotsuga menziesii, Quercus petraea, Quercus robur, Sorbus aria, Salix caprea, Salix cinerea, Taxus baccata, Tilia 
cordata, Ulmus glabra, and Ulmus procera

APPENDIX 4

The most important variables in the random forest regressions of abundance for each species. Full variance importance plots for each species 
are available from the authors on request

Species Most important variable in abundance model

Acer campestre Cover of trees in NFI

Acer platanoides Probability of occupancy of Crataegus monogyna

Acer pseudoplatanus Cover of trees in NFI

Alnus glutinosa Probability of occupancy of Crataegus monogyna

Betula pendula Cover of all trees

Betula pubescens Cover of trees outside of NFI

Carpinus betulus Cover of all trees

Castanea sativa Cover of trees in NFI

Corylus avellana Cover of trees in NFI

Crataegus monogyna Probability of occupancy of Betula pendula

Fagus sylvatica Cover of all trees

Fraxinus excelsior Cover of trees in NFI

APPENDIX 3

(Continues)
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Species Most important variable in abundance model

Prunus avium Probability of occupancy of Prunus avium

Pseudotsuga menziesii Cover of trees in NFI

Quercus petraea Cover of trees outside of NFI

Quercus robur Cover of trees in NFI

Salix caprea Probability of occupancy of Fagus sylvatica

Salix cinerea Probability of occupancy of Corylus avellana

Taxus baccata Cover of trees in NFI

Tilia cordata Probability of occupancy of Fagus sylvatica

APPENDIX 5

Additional information about abundance models. R2 scores are shown for each species, along with RMSE (root-mean-square error) and MAE 
(mean absolute error) scores. For information about interpreting R2 scores, see main text. Number of abundance data points per species and 
number of nonzero abundance data points per species are also shown

Species R2 RMSE MAE
Number of data 
points per species

Number of nonzero 
data points

Acer campestre .523 1.44 0.35 679 315

Acer platanoides .207 1.27 0.19 444 42

Acer pseudoplatanus .426 4.01 1.40 906 634

Alnus glutinosa .271 2.40 0.66 484 195

Betula pendula .450 6.88 2.29 1,261 802

Betula pubescens .596 4.09 1.09 501 127

Carpinus betulus .690 3.79 1.05 755 320

Castanea sativa .764 9.56 3.58 982 501

Corylus avellana .344 4.47 1.47 1,282 935

Crataegus monogyna .049 1.10 0.23 413 339

Fagus sylvatica .496 8.45 2.91 1,388 918

Fraxinus excelsior .397 4.95 1.88 1,986 1,629

Populus tremula .126 NA NA 400 16

Prunus avium .589 1.98 0.56 886 401

Prunus padus .004 NA NA 394 9

Pseudotsuga menziesii .596 7.66 1.96 600 193

Quercus petraea .841 5.99 1.84 584 209

Quercus robur .462 6.50 2.54 2,303 1,867

Salix caprea .644 1.38 0.28 445 74

Salix cinerea .081 0.16 0.03 392 55

Sorbus aria .055 NA NA 392 3

Taxus baccata .372 2.21 0.49 518 86

Tilia cordata .442 1.04 0.14 461 56

Ulmus glabra .037 NA NA 394 22

Ulmus procera .013 NA NA 393 27

APPENDIX  4  (Continued)


