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Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase expressed at early stages
of normal development and in various cancers including ALK-positive anaplastic large cell
lymphoma (ALK+ ALCL), in which it is the main therapeutic target. ALK tyrosine kinase
inhibitors (ALK TKIs) have greatly improved the prognosis of ALK+ALCL patients, but the
emergence of drug resistance is inevitable and limits the applicability of these drugs.
Although various mechanisms of resistance have been elucidated, the problem persists
and there have been relatively few relevant clinical studies. This review describes research
progress on ALK+ ALCL including the application and development of new therapies,
especially in relation to drug resistance. We also propose potential treatment strategies
based on current knowledge to inform the design of future clinical trials.
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1 INTRODUCTION

Anaplastic large cell lymphoma (ALCL) is an aggressive cluster of differentiation (CD)30+
peripheral T-cell lymphoma (PTCL) that accounts for approximately 10%–15% of pediatric and
1%–2% of adult non-Hodgkin lymphoma (NHL) cases (1). Over 90% of children and adolescents
with ALCL are ALK positive (ALK+) while the rate among adult patients is 40%–50% (2). The main
feature of ALK+ ALCL is the expression of ALK fusion proteins such as nucleophosmin (NPM)–
ALK, TNF receptor-associated factor (TRAF)1–ALK, 5-aminoimidazole-4-carboxamide
ribonucleotide formyltransferase/IMP cyclohydrolase ATIC–ALK, ring finger protein (RNF)213–
ALK, and tropomyosin (TPM)3–ALK (3–6). NPM–ALK is the most prevalent of these fusions and
is detected in 75%–80% of adults and 90% of children with ALK+ ALCL (7, 8). NPM–ALK arises
from the fusion of the ALK gene on chromosome 2p23 with the NPM gene on chromosome 5q35.
ALK is normally expressed in cells of the small intestine, testis, and colon but not in lymphocytes
(9). In ALK+ ALCL, NPM–ALK is highly expressed as a result of a high copy number of the NPM
promoter and constitutively activates NPM–ALK and downstream signaling including signal
transducer and activator of transcription (STAT)3, phospholipase (PLC)g, phosphatidylinositol
3-kinase (PI3K)–protein kinase B (AKT), and mitogen-activated protein kinase (MAPK)–
extracellular signal-regulated kinase (ERK) pathways that are important for cell survival and
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proliferation, metabolic transformation, and immune evasion
via the oligomerization of NPM (10). Therefore, NPM–ALK is a
target of therapeutic strategies in ALK+ ALCL. Alectinib was
approved in Japan for the treatment of children and adults with
relapsed/refractory (R/R) NPM–ALK+ ALCL, while crizotinib
has been approved for this indication by the US Food and Drug
Administration. However, a subset of patients responds poorly to
ALK TKIs due to mutation/amplification of the ALK gene, which
reduces sensitivity to these drugs. Tumors also survive by other
mechanisms such as autophagy, anti-apoptosis, and ALK bypass
substitution, among others.
2 SIGNALING PATHWAYS IN ALK+ ALCL

2.1 STAT3 Pathway
STAT3 is a downstream effector of ALK that plays an important
role in promoting cell survival, proliferation, and immune
evasion (11). STAT3 exerts anti-apoptotic effects in ALK+
ALCL mainly by upregulating the anti-apoptotic protein
B cell lymphoma extra-large (Bcl-xL) and antagonizing the
tumor suppressor P53 (12). STAT3-induced expression of
transforming growth factor (TGF)-b, interleukin (IL)-10, and
programmed death ligand (PD-L1,CD274, B7-H1) creates a
tumor-suppressive microenvironment (13–15). STAT3 directly
binds to the promoter of hypoxia-inducible factor (HIF)-1a to
promote gene expression; HIF-1 a in turn induces the expression
of vascular endothelial growth factor (VEGF) and promotes
tumor angiogenesis (16, 17). STAT3 also plays an important
role in epigenetic regulation of gene expression. Under normal
conditions, NPM–ALK phosphorylates the Y405 residue of
STAT3, which causes the dimerization of phosphorylated
STAT3 and its translocation into the nucleus where it
modulates gene transcription in a methylation-dependent
manner (18, 19). This leads to the silencing of oncogenes such
as STAT5A, IL-2 receptor gamma (IL-2Rg), Bcl-2-like protein 11
(BIM), protein tyrosine phosphatase non-receptor type 6
(SHP1), and CD48 (20–25) and suppresses the expression of
micro (mi)RNAs with oncogenic effects such as miR-150, miR-
497, miR-21, miR-29a, miR-939, miR-96, miR-155, and
miR-146a (26–31). The consequent silencing of T-cell
receptor-related genes including CD3ϵ, zeta-chain-associated
protein kinase (ZAP)70, linker for activation of T cells (LAT),
and SH2 domain-containing leukocyte protein of 76 kDa
(SLP76) results in the loss of T cell identity (32). It was
recently reported that NPM–ALK mediates STAT3 acetylation
to inhibit the expression of tumor suppressor genes; inhibiting
STAT3 acetylation resulted in their re-expression and ALCL cell
apoptosis (33) (Figure 1).

2.2 PLC-g Pathway
Activation of NPM–ALK leads to PLC-g tyrosine phosphorylation
(Y783, Y1254) and induction of its catalytic activity,
leading to the breakdown of phosphatidylinositol 4,5-
bisphosphate (PIP2) to inositol trisphosphate (IP3) and
activation of protein kinase (PK)C; this process plays an
Frontiers in Oncology | www.frontiersin.org 2
important role in NPM–ALK-mediated mitogenic signaling
(34–36) (Figure 1).

2.3 PI3K–AKT Pathway
NPM–ALK interacts with the SH2/SH3 domain of the PI3K
regulatory subunit (p85) (37). P85 binds to the catalytic subunit
(p110) and converts PIP2 to phosphatidylinositol (3,4,5)-
trisphosphate (PIP3), which binds to the pleckstrin homology
domain of AKT and facilitates its translocation from the
cytoplasm to the cell membrane. T308 and S473 phosphorylation
by phosphatidylinositol-dependent protein kinase (PDK)1 and
PDK2 activates AKT (38–40), mammalian target of rapamycin
(mTOR) is then phosphorylated and activated by AKT to
promote the survival and proliferation of ALK+ ALCL cells
(41) (Figure 1).

2.4 MAPK Kinase (MEK)–ERK Pathway
MEK–ERK1/2 signaling stimulates cell proliferation by
promoting cell cycle progression via the protein-dependent
kinase (CDK)4 and retinoblastoma protein (RB) pathways.
CDK4 binds to cyclin D1 to phosphorylate Rb and release the
transcription factor E2F, which induces the expression of CDK4
as well as cyclin D1, leading to the entry of cells into S phase; it
also promotes cell survival and proliferation via ERK1/2–mTOR
signaling (42, 43). ERK1/2 phosphorylates JUNB, a member of
the activator protein (AP)-1 family and an important
transcription factor in ALK+ ALCL. JUNB transcriptional
targets have been shown to be involved in cell proliferation,
anti-apoptosis, immune evasion, and immune phenotype
transition (44, 45) (Figure 1).
3 MECHANISMS OF ALK TKI RESISTANCE

ALK+ ALCL treated with the chemotherapy regimen consisting
o f cyc lophosphamide , doxorub ic in hydroch lor ide
(hydroxydaunorubicin), vincristine sulfate, and prednisone
(CHOP) has a favorable clinical outcome, although the rate of
recurrence is high. Patients who relapse after first-line
chemotherapy usually have a poor prognosis, while some
patients are inherently resistant to chemotherapy regimens
such as CHOP. ALK TKIs can improve the prognosis of
patients with R/R ALK+ ALCL. In a clinical trial of children
with R/R ALK+ ALCL treated with crizotinib (NCT00939770),
the objective response rate (ORR) was 90% and the complete
response (CR) rate was 80% (46). In a phase 2 clinical trial of
alectinib for the treatment of R/R ALK+ ALCL(Range, 6-70
years), the ORR after alectinib treatment was 80% and the CR
rate was 60%, while the 1-year PFS, event-free survival (EFS), and
overall survival (OS) rates were 58.3%, 70.0%, and 70.0%
respectively (47). But a new problem has arisen: Among
patients who have a high response to crizotinib monotherapy,
about 30-40% of patients have developed further resistance to the
drug (48). ALK mutation/amplification reduces sensitivity to
ALK TKIs, necessitating a switch to another drug. Furthermore,
tumors mitigate the cytotoxicity of ALK TKIs through a variety
February 2022 | Volume 12 | Article 815654
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of mechanisms (ALK bypass substitution, autophagy, anti-
apoptosis, etc), thereby reducing/eliminating their dependence
on ALK signaling and promoting tumor cell survival. In this
situation, even complete inhibition of ALK cannot prevent
tumor progression, and combination therapy or targeting of
proteins other than ALK (eg, CD30, B7-H3, heat shock protein
[HSP]90, etc) may be necessary (Figure 2).

3.1 ALK-Related Resistance
3.1.1 ALK Mutation
ALK mutations can lead to the development of ALK resistance
through a variety of mechanisms such as by blocking the binding
of ALK TKI to the ATP-binding site of ALK (L1196M, I1171T/
N/S, G1269A, G1202R/del, G1202N, S1206Y/C, etc) (47, 49–54).
Several point mutations in the structural domain of NPM–ALK
kinase have been identified in ALK+ ALCL (L1122V, L1196M,
F1174V, L1198F, P1139S, and G1202R) that have been
Frontiers in Oncology | www.frontiersin.org 3
implicated in the development of resistance to ALK TKIs (55).
For example, the F1174V/L1198F and L1196M/D1203N double
mutations were shown to confer higher resistance to the
inhibitors (56).

3.1.2 ALK Amplification
ALK+ ALCL tumor cells also develop ALK TKI resistance
through amplification of NPM–ALK, which was shown to be
overexpressed in ALK+ALCL-resistant cell lines (48, 55, 57, 58).

3.2 ALK-Independent Drug Resistance
3.2.1 Activation of Bypass Signaling Pathways
IL-10 signaling bypass leads to crizotinib resistance (59). In ALK+
ALCL, IL-10 promotes the proliferation of ALK+ ALCL and
reduces the sensitivity of ALCL cells to ALK TKI. A screen of
tumors from ALK+ ALCL patients who progressed within 3
months of crizotinib treatment found that IL-10RA was
FIGURE 1 | Pathogenesis of ALK+ALCL.
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overexpressed in tumor cells, leading to ALK TKI resistance.
In resistant ALK+ ALCL cell lines, autocrine IL-10/IL-
10RA signaling activated tyrosine kinase (TYK)2/Janus kinase
(JAK)1 signaling instead of the ALK–STAT3 pathway to activate
STAT3, which stimulated the expression of IL-10, IL-10RA,
and IL-10RB. Thus, the strength of IL-10RA signaling in ALK+
ALCL affects tumor sensitivity to crizotinib. IL-10 is a known
immunosuppressive factor that directly inhibits effector T cells,
promotes T cell exhaustion, and inhibits T cell activation through
myeloid-derived suppressor cells and induction of regulatory T
cells (60, 61). This could allow ALK+ ALCL to achieve immune
evasion and may result in the development of drug resistance,
although there have been no studies investigating this possibility.

Activation of insulin-like growth factor 1 receptor (IGF-1R)
signaling is another mechanism of ALK resistance. Type 1 IGF-
1R is commonly expressed in ALK+ ALCL. In a crizotinib
resistance model, IGF-1R signaling was shown to be increase
with drug concentration and reduced the cytotoxicity of
Frontiers in Oncology | www.frontiersin.org 4
crizotinib; conversely, crizotinib combined with IGF-1R
inhibitors partly restored the sensitivity of resistant cells (62).
ALK phosphorylates IGF-1R at the C-terminal Y338 residue; in
turn, IGF-1R increases the phosphorylation of ALK and its
downstream effectors and promotes the survival of ALK+
ALCL cells by increasing the expression of anti-apoptotic
proteins (myeloid cell leukemia [Mcl]-1, Bcl-2, Bcl-xl, etc) (63).
The combined use of IGF-1R inhibitors and ALK TKIs can
suppress ALK and downstream signaling, thereby enhancing the
sensitivity of ALK+ ALCL to ALK TKIs and reducing crizotinib
resistance caused by activation of the IGF-1R pathway, making
combination therapy a potential treatment regimen. (64).

PDGFR expression and activation is a key driver of ALCL
proliferation, survival and spread. NPM-ALK promoted the
expression of PDGFRB through NPM-ALK/AP-1 (JUN/JUNB)
(65). High expression of PDGFRB could also be seen in most
ALK+ALCL. PDGFR promoted cell survival via JAK1/STAT3
and AKT(PKB)/mTOR pathways (66, 67). The level of PDGFR-
FIGURE 2 | Mechanisms of resistance to ALK-TKI.
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mRNA decreased after application of PDGFR inhibitors,
indicating that PDGFR is promoting its own expression, ALK-
TKI in combination with PDGFR inhibitors reduces lymphoma
growth and decreases relapse rates, and is a potential treatment
option for patients with drug-resistant lymphoma. (65).

Activation of the MEK pathway also contributes to ALK TKI
resistance, mainly through deficiency/low expression of
Wiskott–Aldrich syndrome protein (WASP) (68), a tumor
suppressor whose loss leads to tumor development and
invasion (69). NPM–ALK negatively regulates the expression
of WASP by directly phosphorylating Y102, leading to
proteasome-mediated protein degradation and preventing
protein binding to WASP-interacting protein (WIP) (70).
NPM–ALK was also shown to repress WASP protein expression
via STAT3–CCAAT/enhancer-binding protein (C/EBP)-b
signaling. Downregulation of WASP was shown to enhance
MEK pathway activation in ALK+ALCL. NPM–ALK can form
a complex with the guanine exchange factor VAV1 to enhance
the activity of cell division cycle (CDC)42, which promotes the
progression of ALK+ ALCL; meanwhile, WASP inhibits the
binding of CDC42 to GTP (71). Protein tyrosine phosphatase
(PTPN)1/2 expression was found to be downregulated in ALK+
ALCL, leading to the overactivation of MEK, SHP2, and Janus
kinase (JAK)/STAT and resistance to ALK TKIs (72).

Although ALK inhibition undermines the survival and
proliferation of ALCL cells, not all cellular changes caused by
ALK expression are reversed. For example, IL-10R, WASP, and
MEK signaling was not downregulated by application of
crizotinib; instead, tumor cells developed resistance to the drug
through autocrine IL-10 secretion by ALK+ ALCL cells and
activation of IL-10R signaling, which replaced the role of ALK in
promoting IL-10R expression, suggesting that cytologic changes
caused by ALK led to the emergence of ALK-independent
mechanisms of tumor cell survival (59, 68). Some oncogenes
that were downregulated via epigenetic modifications were not
upregulated by crizotinib, but were instead involved in crizotinib
resistance, suggesting that the decrease in their expression was
not reversed (68, 72) (Figure 2).

3.2.2 Autophagy and Apoptosis
Autophagy activation and inhibition play different roles
according to the tumor type. In ALK+ ALCL, inhibition of
autophagy facilitated tumor survival in the presence of ALK
TKIs (73). Crizotinib was shown to decrease autophagic flux in
ALK+ ALCL, which was important for tumor survival of NPM–
ALK+ ALCL; this cytoprotective response reduced the
cytotoxicity of crizotinib (56, 74). Rapamycin, an mTOR
inhibitor that activates autophagy, reduces the survival of ALCL
cells (75). The expression level of miR-7-5P was found to be
downregulated in ALK+ ALCL by the application of crizotinib; it
was later shown that miR-7-5P directly targets the 3′ untranslated
region of RAF1 transcript, thereby negatively regulating RAF1
expression and reducing the inhibitory phosphorylation of Unc-
51–like autophagy-activating kinase (ULK)1 (S757) to promote
autophagy. Conversely, downregulation of miR-7-5P following
crizotinib application inhibited autophagy. Potentiating the effect
Frontiers in Oncology | www.frontiersin.org 5
of miR-7-5P using an miRNA mimic enhanced crizotinib-
induced autophagic flux and cytotoxicity (76). Interestingly, in
ALK+ ALCL stem cells, crizotinib more potently induced
autophagy and enhanced tumor cell resistance to the drug, an
effect mediated by MYC (77).

Elevated levels of Bcl-2 have been observed upon treatment
with crizotinib. Bcl2 is anti-apoptotic protein that inhibits
autophagy, which can lead to drug resistance in tumors.
Inhibition of Bcl-2 significantly increased crizotinib-induced
autophagy (78, 79).

Decreased autophagic flux in ALK+ ALCL plays a role in drug
resistance, and tumor cells are regulated in various ways that lead
to inhibition of autophagy and crizotinib resistance including
regulation of miRNAs and Bcl-2 expression. Autophagy
inhibition can reverse the crizotinib-induced decrease in cell
viability, thus limiting the cytotoxicity of crizotinib (Figure 2).
4 STRATEGIES TO OVERCOME ALK
TKI RESISTANCE

4.1 ALK Sequencing Analysis
For patients with ALK TKI resistance, tissue biopsy and
pathologic examination can reveal the mechanism of resistance
and inform clinical decisions, especially drug selection. For
example, ALK TKIs can be selected that target specific ALK
mutations. On the other hand, the absence of ALK mutation can
indicate the development of resistance by the tumor, requiring
ALK TKI combination therapy. For highly resistant (especially
compound) mutations, ALK amplification may not be detected
or the cause of resistance may not be clear, in which case
switching ALK TKIs or using combination therapy may not be
effective and therapeutic targets other than ALK should be
considered. The development of ALK sequencing has aided
the precision treatment of ALK+ ALCL and has revealed
novel drug resistance mutations; the elucidation of ALK TKI
resistance mechanisms will facilitate the development of new
treatment strategies.

4.2 Intermittent Treatment
For drug resistance caused by NPM–ALK overexpression,
crizotinib discontinuation can lead to overactivation of ALK
oncogenic signaling and enhanced mitochondrial activity,
reactive oxygen species (ROS) production, and activation of
the MEK–ERK1/2 pathway, causing DNA damage. This may
result in apoptosis of ALK TKI-resistant cells and the
resensitization of tumor cells to crizotinib (56, 57, 80–83).
NPM–ALK overexpression promotes STAT1 phosphorylation,
and high levels of phosphorylated (p)STAT1 antagonize
STAT3 and activate tumor suppressor genes, promoting cell
death. Enhanced NPM–ALK expression following withdrawal of
ALK TKI leads to the upregulation of pSTAT1, which
antagonizes STAT3 and induces apoptosis (84, 85). Given the
damaging effects of excessive tumorigenic signals on DNA,
agents that Enhance DNA damage and inhibit DNA repair can
February 2022 | Volume 12 | Article 815654
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be used during drug withdrawal to enhance the effects NPM–
ALK (Figure 3).
4.3 Novel Drugs Targeting Resistant
ALK+ ALCL
4.3.1 Novel ALK TKIs
Second-generation ALK TKIs such as alactinib, ceritinib,
brigatinib, lorlatinib, and ZX-29 have more potent activity in
the central nervous system than crizotinib and can overcome the
effects of most crizotinib resistance mutations (86) (Table 1).
Alectinib is an orally administered drug with greater potency
than crizotinib that was shown to be effective in crizotinib-
resistant tumors (100). including ALK+ non-small cell lung
cancer (NSCLC), with neutropenia and elevated levels of
creatine kinase as the most serious adverse effects (101, 102).
Ceritinib is a small molecule ALK TKI that has demonstrated
efficacy in ALK-positive tumors including ALCL, inflammatory
myofibroblastic tumor, neuroblastoma, and rhabdomyosarcoma;
in ALK+ ALCL, the most commonly reported complication was
elevated transaminases (103). Brigatinib is an ALK/ROS1
inhibitor with higher selectivity than alectinib or ceritinib that
can overcome most crozotinib resistance mutations including
G1202R, with an ORR of 74%, median PFS of 14.5 months, and
1-year OS rate of 83% in crizotinib-resistant patients (96, 104).
Brigatinib has shown superior efficacy to crizotinib in the first-
line setting, and an ongoing study is investigating brigatinib in
Frontiers in Oncology | www.frontiersin.org 6
ALCL (105). However, second-generation ALK TKIs are more
likely to lead to the development of resistance than crizotinib
(54). The third-generation ALK TKI loratinib overcomes nearly
all single resistance mutations to second-generation inhibitors
and is more potent than brigatinib against the G1202R mutation.
However, G1202R was shown to reduce the sensitivity of tumor
cells to brigatinib and loratinib, and tumor cells harboring
double mutations (D1203N+E1210K and F1174C+D1203N)
had lower sensitivity to loratinib, whereas none of the second-
generation ALK TKIs were effective (54). ZX-29 is a novel ALK
TKI that induces apoptosis by stimulating the production of
ROS, overcoming the drug resistance conferred by the ALK
G1202R mutation and exhibiting greater cytotoxicity than
ceritinib (106, 107). The Fms-related receptor tyrosine kinase
(FLT)3/AXL inhibitor gilteritinib is currently mainly used for R/
R acute myeloid leukemia (108). Gilteritinib inhibits not only
wild-type and mutant ALK but also overcomes highly resistant
double mutations (I1171N+F1174I, I1171N+L1198H, and others
containing I1171N) as well as single mutations by forming
hydrogen bonds with the ALK E1197, M1199, and E1210
residues (99, 109). Mutations such as L1196M, I1171T/N/S,
G1269A, G1202R/del, G1202N, and S1206Y/C that sterically
hinder the binding of ALK TKIs to ALK are a common resistance
mechanism (47, 49–54). Gilteritinib inserts into the ATP-
binding site of ALK and therefore has an advantage over the
first 3 generations of ALK TKI in terms of drug resistance,
providing an additional treatment option for patients.
FIGURE 3 | Mechanisms of intermittent treatment.
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Gilteritinib has also demonstrated efficacy against ALK+ ALCL
in preclinical studies (110).

ALK kinase structural domain mutations common to NSCLC
and ALCL have been identified. Table 1 summarizes mutations
known to confer resistance/sensitivity to ALK TKIs that have
potential application in the treatment of ALK+ ALCL (Table 1).

4.3.2 Proteolysis-Targeting Chimera (PROTAC)
PROTACs are used to promote proteasome-mediated protein
degradation (111). PROTAC is composed of 2 ligands that
connect the target protein and E3 ubiquitin ligase, forming a
ternary complex. The ubiquitin-binding enzyme E2 binds to the
E2 binding site on E3 ligase and transfers ubiquitin to the target
protein, leading to its degradation (111–113). ALK TKIs
(alectinib, brigatinib, ceritinib, etc.) are often used as PROTAC
ligands to promote the degradation of ALK protein and thereby
inhibit tumor growth driven by ALK (114). This allows a small
dose of PROTAC to achieve a strong inhibitory effect, which is
especially advantageous for overcoming drug resistance due to
ALK amplification. PROTAC directly targets and degrades
proteins and is unaffected by ALK point mutations; this
explains how PROTAC designed with alectinib/brigatinib can
degrade the ALK G1202R mutant, which is resistant to the drugs
themselves. PROTAC designed with alectinib as the ligand was
more effective than alectinib in ALK+ ALCL patients and
enhanced ALK degradation (115–117). ARV-110, the first
PROTAC drug targeting the androgen receptor, has been used
in patients with metastatic debulking-resistant prostate cancer
with promising results (118). A second PROTAC drug, ARV-471
(targeting the estrogen receptor [ER]), is being evaluated in
clinical trials for the treatment of patients with locally
advanced or metastatic ER+/human epidermal growth factor
Frontiers in Oncology | www.frontiersin.org 7
receptor (HER)2− breast cancer. Interim results have shown that
ARV-471 reduced ER expression levels by 62% and up to 90%
and was effective against both wild-type and mutant ER (119).
PROTACs targeting ALK are not yet in clinical use but several
ALK-RROTACs are being developed such as SIAIS001,
SIAIS117, and SIAIS164018 that can potentially overcome
resistance to ALK TKIs (115, 116, 120) (Figure 4A).

4.4 Targets for Combination Therapy
ALK-independent drug resistance is normally treated by a
combination of drugs that inhibit ALK along with other
pathways involved in cell survival, thereby enhancing the
cytotoxicity of ALK TKIs. The use of ALK TKI combinations
can delay the development of ALK resistance. Crizotinib combined
with everolimus, CHOP, decitabine, and trametinib prolonged the
emergence of resistance, possibly because of a reduction in the dose
of individual drugs and the effects of dual targeting (48).

Elevated expression of IL-10RA not only confers resistance to
crizotinib but also to second- or third-generation inhibitors.
Accordingly, ALK TKI combined with IL-10 pathway inhibitors
(e.g., STAT3/pan-JAK/TYK2 inhibitors) may be effective (48) in
patients who are resistant to ALK TKIs and have high IL-10RA
expression. TYK2 acts upstream of STAT3; it was reported that
the survival of ALK+ ALCL cells depended on TYK2/STAT1/
MCL1. Regardless of the presence of ALK fusion protein, TYK2
inhibitors can induce tumor cell apoptosis. Inhibiting TY2 blocks
the activation of STAT3 by IL-10 and other pathways via T2,
suppressing tumor cell survival via a bypass mechanism (121).
The combination of IGF-1R and NPM–ALK inhibited tumor
growth in a mouse model of ALCL cell lymphoma. Inhibition of
IGF-1R promoted cell apoptosis and blocked phosphorylation of
NPM–ALK and its downstream effectors (122). Thus, IGF-1R
TABLE 1 | Resistant and sensitive mutations of ALK-TKIs.

ALK-TKI Crizotinib Ceritinib Alectinib Brigatinib Lorlatinib Gilteritinib

Sensitive
mutations

L1198F
C1196Y+L1198F
C1156Y+L1198F

G1269A/S
I1171T/N
L1196M
S1206C/Y
I1171S+G1269A

C1156Y/T
F1174C/L/V
G1269A/S
I1151Tins
L1196M
L1256F
L1152P/R
S1206C/Y
I1171N+L1256F

C1156Y/T
E1210K
F1174C/L/V
F1245A
G1202R(-)
G1269A/S
I1151tins
L1152P/R
L1196M
I1171S + G1269A

C1156Y/T
E1210K
F1174C/L/V
G1269A/S
G1202R
I1151Tins
L1152P/R
L1196M
S1206C/Y

I1171N
I1171N+F1174I
I1171N+L1198H

Resistance
mutations

C1156Y/T
E1210K
F1245V
G1269A/S
G1202R
I1151Tins
I1171N/S/T
L1196M
L1152P/R
S1206Y/C
V1180L
E1210K +D1203N
L1196M+G1202R

C1156Y/T
F1174C/L/V
I1151Tins
G1202R
V1180L
I1171N+F1174I
I1171N+L1198H
L1196M+G1202R

G1202R
I1171T/N/S
V1180L
L1196M+G1202R

D1203N
G1202R(-)
I1171T/N/S
V1180L
L1196M+G1202R

C1156F/Y
L1198F
L1256F
G1202R+L1196M
C1196Y+L1198F
G1202R+T1151M
G1202R+F1174C
I1171N+F1174I
I1171N+L1198H
L1196M/D1203N
F1174L/G1202R
C1156Y/G1269A

References (54, 87–89) (54, 88–91) (54, 88, 89, 92, 93) (87–89, 94–96) (56, 87–89, 91, 97, 98) (99)
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inhibition combined with crizotinib can have a synergistic effect,
allowing dose reduction of crizotinib and delaying the emergence
of drug resistance (123). The expression level of platelet-derived
growth factor receptor (PDGFR)B in ALK+ALCL was found to be
positively correlated with the cytotoxicity of PDGFR inhibitors,
which may be effective in the treatment of PDGFRB+ ALK+
ALCL. Findings from in vitro experiments and mouse models
have demonstrated that imatinib treatment suppresses the
proliferation of tumor cells and promotes apoptosis. Notably, a
rapid and durable antitumor response was achieved with imatinib
in a patient with advanced refractory ALCL (65). Activation of the
MEK pathway was observed in WASP− ALK+ ALCL and was
associated with reduced efficacy of ALK TKIs. The combination of
the MEK inhibitor trametinib with crizotinib has achieved better
clinical outcomes than crizotinib by delaying the emergence of
drug resistance (65); thus, targeting MEK can reduce the survival
of lymphoma with low or absent WASP expression via the MAPK
pathway (68). Additionally, g-secretase inhibitors suppressed the
proliferation of ALK+ ALCL cells with crizotinib resistance,
suggesting NOTCH1 as a therapeutic target in crizotinib-
resistant ALK+ ALCL (124, 125).

Crizotinib combined with everolimus more potently induced
cell cycle arrest, DNA damage, and apoptosis than monotherapy
in the Karpas299 transplantation model (126, 127). Although
everolimus can inhibit mTOR, it can cause the activation of AKT
and RAS–ERK, an effect that is blocked by the addition of
crizotinib. The combination treatment also prevented the
occurrence of selective drug resistance after long-term use of
monotherapy (126). In neuroblastoma, crizotinib combined with
mTOR inhibitor was shown to overcome crizotinib resistance and
Frontiers in Oncology | www.frontiersin.org 8
promote tumor cell apoptosis (128). In ALK+ ALCL cells, the
mTOR inhibitor rapamycin combined with crizotinib increased
autophagic flux and promoted cell death (75) (Figure 2).

Given the reversibility and importance of epigenetic regulation
of gene expression in the development of ALK+ ALCL, drugs
targeting epigenetic modifications and allowing “re-expression of
tumor suppressor proteins” or “reduced expression of oncogenic
proteins”, such as DNA methylation, HDAC and SIN3A
inhibitors, are a promising therapeutic approach. (20, 22, 23, 30,
31, 33). In a multicenter clinical study of cidapenem in R/R PTCL,
patients with ALK+ ALCL treated with cidapenem had a higher
ORR (66.67%) and disease control rate (83.33%) and better
prognosis compared to those with other PTCL subtypes (129).
The use of decitabine (a DNA methyltransferase inhibitor) not
only enhanced the efficacy of ALK TKIs but also prolonged the
time to emergence of drug resistance by more than 3 fold
compared to monotherapy (48) (Figure 4B).

ALK promotes cell cycle progression through a variety of
mechanisms (eg, activation of MEK/ERK and STAT3 signaling,
induction of cell cycle-related gene expression, and
downregulation of P27 and P53) (12, 42, 130, 131). NPM–ALK
also promotes cell cycle progression via regulation of miRNAs.
In ALK+ ALCL, the combination therapy of cell cycle inhibitors
has shown the potential of resistance to ALK (132). In a mouse
xenograft model of neuroblastoma with ALK F1174L and
F1245C mutations, the CDK4/6 inhibitor ribociclib blocks the
binding of CDK4/6 to CyclinD1, thereby inhibiting the operation
of the cell cycle. In combination with Ceritinib exerts synergistic
cytotoxicity, inhibits tumor growth, enhances cycle arrest, and
promotes cell death (133) (Figure 4C).
A B

C D

FIGURE 4 | (A) Mechanism of action of PROTAC. (B) ALK signaling-mediated cycle operation. (C) Epigenetic alterations promote the development of ALK-positive
ALCL. (D) Mechanism of ALK inhibition by HSP90.
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4.5 Targets Other Than ALK
ALK+ ALCL expresses CD30, PD-L1, and B7-H3, which are
potential therapeutic targets for promoting tumor cell death
through pathways independent of ALK, thereby overcoming
ALK TKI resistance.

4.5.1 CD30
ALK promotes CD30 expression through the MEK–ERK–AP1–
JUNB pathway (134, 135). Brentuximab vedotin (BV) is an
antibody–drug conjugate (ADC) that targets CD30 in which
anti-CD30 antibody is linked to the microtubule destroyer
monomethyl auristatin E (MMAE) via a protease-cleavable
linker. After binding to CD30, BV forms phagosomes through
receptor-mediated endocytosis before it is hydrolyzed by
lysosomal proteases; this releases MMAE, leading to cell cycle
arrest and cell apoptosis (136–139). At the 5-year follow-up of a
clinical trial of BV in R/R ALCL, 66% of patients continued to
show a CR (140). In another study of BV in the treatment of R/R
ALCL, 86% of patients achieved ORR including 57% with CR
and 29% with partial remission; the duration of response was
12.6 months and the duration of CR was 13.2 months (141). In a
clinical trial of BV combined with chemotherapy in the
treatment of pediatric patients with first-onset ALK+ ALCL
(NCT01979536), the 2-year EFS rate was 79.1% and 2-year OS
rate was 97.0% (142). Only one patient (1.5%) relapsed during
treatment. These results demonstrate that BV is superior to
conventional chemotherapy in preventing recurrence.

In a clinical trial of chimeric antigen receptor (CAR) T-cell
(CAR-T) therapy targeting CD30 in ALCL patients
(NCT01316146), the duration of CR was up to 9 months after
4 infusions. Importantly, CD30 CAR-T was still detectable after 6
weeks of treatment, indicating that CAR-T had sustained
antitumor effects. ADCs targeting CD30 are associated with a
number of adverse effects including gastrointestinal reactions
that reduce the tolerability of these drugs and can lead to
treatment discontinuation. CD30 CAR-T therapy circumvents
this problem and under standardized care and execution, is a safe
and effective treatment for CD30+ lymphoma (143).

4.5.2 HSP90
HSP90 is highly expressed in tumors including ALK+ ALCL.
HSP90 inhibitors not only block the binding of HSP90 to ATP
but also promote proteasome-mediated degradation of HSP90
target proteins (144). Inhibition of HSP90 resulted in the
downregulation of NPM–ALK. The combined use of the
HSP90 inhibitor onalespib and ALK TKI in ALK+ NSCLC
delayed the emergence of ALK resistance and preserved
sensitivity to onalespib (145). A dual-target inhibitor designed
based on the active structure of HSP90 and ALK TKIs (resorcinol
and 2,4-diaminopyrimidine motifs) has been proposed that is
expected to overcome ALK TKI resistance (146) (Figure 4D).

4.5.3 Immune Checkpoint
In ALK+ ALCL, whether NPM-ALK promotes PD-L1
expression through downstream signals or in view of the role
of PD-1/PD-L1 in TME, PD1/PD-L1 is expected to become a
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potential therapeutic target for ALK+ ALCL. Recently, studies
have found that the expression of PD-L1 and the number of
tumor-infiltrating T cells are related to the prognosis of ALK+
ALCL (147). Geptanolimab (GB226) is a PD-1 monoclonal
antibody. In an open study (NCT03502629), it was found that
the higher the level of PD-L1 in R/R PTCL, the effect of PD-1
blockers is better. In R/R PTCL, the ORR was 40.4% and the 12-
month Duration of Response (DOR) was 48.5%. In PTCL with
PD-L1 expression>50%, the ORR (53.3%) and median PFS (6.2
months) were higher, especially in ENKTL, ALK-ALCL,
ALK+ALCL, Geptanolimab has a better curative effect (148).
Similar to this, in an ALK-resistant ALK+ ALCL patient whose
tumor tissue highly expresses PD-L1, the tumor tissue
completely disappeared after 5 months of Navumab treatment
and the complete remission was maintained for up to 18 months
(149). In addition, when B7-H3 CAR-T is used to treat ALK+
ALCL, it shows strong cytokine secretion and cytotoxicity both
in in vivo and in vitro experiments. It has obvious proliferative
activity and memory phenotype after receiving B7-H3
stimulation. Under the premise of strict control of CRS, B7-H3
CAR-T is expected to become another important therapeutic
target for ALK+ ALCL after ALK and CD30 (150).
5 DISCUSSION

ALK TKI resistance is a major challenge in the treatment of
ALK+ ALCL; therefore, therapeutic strategies to overcome this
resistance are a key research direction for this malignancy.
Many aspects of the resistance mechanisms remain to be
elucidated including the upregulation of Bcl-2, ALK
amplification after the application of crizotinib, bypass
signaling, autophagy, and apoptosis. There have been few
studies of single drugs/combination therapies that can
improve/reverse ALK resistance, which may be related to the
low prevalence of ALK+ ALCL and do not provide sufficient
impetus for clinical trials. There are also considerable
disparities in the treatment of ALK TKI resistance, especially
in terms of therapeutic options for patients. Strategies that
target resistance mutations are expected to greatly improve the
clinical outcome of ALK+ ALCL.

Selection of appropriate ALK TKIs by sequencing ALK
mutation sites can alleviate ALK TKI resistance, although
highly resistant mutants and multiple mutations are
problematic. The mechanisms by which mutations lead to ALK
resistance have been systematically investigated in studies of
ALK protein structure and binding to TKI and ATP, and they
have served as the basis for the evaluation of candidate drugs
such as ZX-29 and ginitinib. The latter in particular—whose
binding to ALK is largely unaffected by ALK mutations—can
overcome the effects of most ALK single mutations as well as
double mutations conferring loratanib resistance (99, 106, 107).

ALK amplification also underlies resistance to ALK TKIs (57)
although it may not benefit tumor cells as it can trigger
oncogenic stress and induce DNA damage especially upon
discontinuation of an ALK TKI, resulting in tumor cell
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apoptosis and restoration of sensitivity to the inhibitor (85).
PROTAC technology is a new treatment strategy that targets
ALK amplification and is effective against drug resistance
mutations as it induces mutant ALK proteins to undergo
ubiquitin-mediated degradation (114).

ALK-independent drug resistance usually necessitates
treatment with a combination of drugs, and many studies have
shown that although ALK inhibition decreases tumor cell
survival and proliferation, many cellular changes caused by
ALK overexpression are not reversed such as IL-10RA and
IGF-1R dysregulation (59, 62–64, 68). When the inhibition of
ALK fusion proteins is alleviated, these changes allow tumor cells
to survive and proliferate, leading to the development of ALK
TKI resistance. Pro-survival pathways other than ALK can be
blocked by a combination of drugs that synergistically enhance
the cytotoxicity of ALK TKIs. Additionally, drug combinations
can also delay the emergence of resistance through dose
reduction of single agents and dual targeting. Although there
have been only a few clinical studies examining ALK TKI
combinations in ALK+ ALCL, clinical trials are currently
underway (Table 2). ALK TKIs also cause adaptive changes in
tumor cells that favor their survival such as the upregulation of
Bcl-2 and inhibition of autophagy; therapeutic strategies that
target these changes may be effective in the treatment of ALK+
ALCL (56, 77, 79).

In addition to ALK fusion proteins and their associated
signaling pathways, activation of ALK and its downstream
effectors in ALK+ ALCL results in the expression of CD30,
PD-L1, and B7-H3, which are potential drug targets in patients
who are highly resistant to ALK TKIs. However, it is unclear
whether such targeted therapies can restore tumor cell sensitivity
to the inhibitors.
6 CONCLUSION

In this review, we summarized research progress on ALK
resistance to provide a reference for the design of clinical
studies and development of new drugs for the treatment of
Frontiers in Oncology | www.frontiersin.org 10
ALK+ ALCL. ALK is an important therapeutic target in ALK+
ALCL. ALK TKIs have broadened the therapeutic options for
ALK+ALCL patients who are resistant to or relapse on
chemotherapy, but the emergence of drug resistance is an
outstanding problem. Considerable progress has been made in
the elucidation of ALK resistance mechanisms including those
associated with and independent of ALK, and novel TKIs are
being developed that can bring lasting remission to ALK TKI-
resistant patients.
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TABLE 2 | Recruiting ALCL clinical trials.

Study Title Recruiting clinical trials Phase Note

Lorlatinib NCT03505554 2 ALK+ALCL
Nivolumab NCT03703050 2 R/R ALK+ ALCL
CD30 Targeted CAR-T NCT03383965 1 HL、ALCL

NCT04526834 1 ALCL、PTCL
DLBCL 、ENKTL
PMBCL

NCT04008394 1 HL、ALCL
PTCL、NKTCL

BV+Chemotherapy NCT03113500 2 CD30+PTCL
Lenalidomide+CHOP NCT04423926 1/2 Untreated PTCL
Venetoclax+Romidepsin NCT03534180 2 R/R Mature T-Cell Lymphoma
Crizotinib+ Etoposide Capsule NCT03707847 4 R/R ALK+ ALCL
Pembrolizumab+Pralatrexate NCT03598998 1/2 R/R PTCL
Pembrolizumab+Romidepsin NCT03278782 1/2 R/R PTCL
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