
INVESTIGATION

Using Maize Chromosome Segment Substitution
Line Populations for the Identification of Loci
Associated with Multiple Disease Resistance
Luis O. Lopez-Zuniga,* Petra Wolters,† Scott Davis,† Teclemariam Weldekidan,‡ Judith M. Kolkman,§

Rebecca Nelson,§ K. S. Hooda,** Elizabeth Rucker,†† Wade Thomason,†† Randall Wisser,‡,1

and Peter Balint-Kurti‡‡,§§,1

*Dept. of Crop Science, North Carolina State University, Box 7620, Raleigh, NC 27695, †Dupont-Pioneer 7300 NW 62nd

Avenue P.O Box 1004 Johnston, IA, 50131-1004, ‡Dept. of Plant and Soil Sciences, University of Delaware, Newark, DE
19716, §Department of Plant Pathology and Plant-Microbe Biology Cornell University, Ithaca, NY 14853, **ICAR-Indian
Institute of Maize Research, Indian Council of Agricultural Research, Pusa Campus, New Delhi 110 012, India, ††School of
Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, ‡‡Dept. of Entomology and Plant Pathology,
North Carolina State University, Box 7616 Raleigh, NC 27695, and §§Plant Science Research Unit, USDA-ARS, Raleigh NC
27695-7616

ORCID IDs: 0000-0003-1075-0115 (R.W.); 0000-0002-3916-194X (P.B.-K.)

ABSTRACT Southern Leaf Blight (SLB), Northern Leaf Blight (NLB), and Gray Leaf Spot (GLS) caused by
Cochliobolus heterostrophus, Setosphaeria turcica, and Cercospora zeae-maydis respectively, are among
the most important diseases of corn worldwide. Previously, moderately high and significantly positive ge-
netic correlations between resistance levels to each of these diseases were identified in a panel of 253 di-
verse maize inbred lines. The goal of this study was to identify loci underlying disease resistance in some of
the most multiple disease resistant (MDR) lines by the creation of chromosome segment substitution line
(CSSL) populations in multiple disease susceptible (MDS) backgrounds. Four MDR lines (NC304, NC344,
Ki3, NC262) were used as donor parents and two MDS lines (Oh7B, H100) were used as recurrent parents to
produce eight BC3F4:5 CSSL populations comprising 1,611 lines in total. Each population was genotyped
and assessed for each disease in replicated trials in two environments. Moderate to high heritabilities on an
entry mean basis were observed (0.32 to 0.83). Several lines in each population were significantly more
resistant than the MDS parental lines for each disease. Multiple quantitative trait loci (QTL) for disease
resistance were detected for each disease in most of the populations. Seventeen QTL were associated with
variation in resistance to more than one disease (SLB/NLB: 2; SLB/GLS: 7; NLB/GLS: 2 and 6 to all three
diseases). For most populations and most disease combinations, significant correlations were observed
between disease scores and also between marker effects for each disease. The number of lines that were
resistant to more than one disease was significantly higher than would be expected by chance. Using the
results from individual QTL analyses, a composite statistic based on Mahalanobis distance (Md) was used to
identify joint marker associations with multiple diseases. Across all populations and diseases, 246 markers
had significant Md values. However further analysis revealed that most of these associations were due to
strong QTL effects on a single disease. Together, these findings reinforce our previous conclusions that loci
associated with resistance to different diseases are clustered in the genome more often than would be
expected by chance. Nevertheless true MDR loci which have significant effects on more than one disease
are still much rarer than loci with single disease effects.
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Genetic resistance is the most cost-effective and environment-friendly
method for reducing losses in yield and quality in agricultural crops
caused by plant disease. Disease resistance is often described in the

literature as being either qualitative or quantitative. Qualitative disease
resistance typically confers high levels of resistance and is generally
controlledbya single or a fewgeneswithmajor effects (Bent andMackey
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2007; Ross 1986; Van der Plank 1965). Quantitative disease resistance
(QDR) typically confers partial resistance, is usually based on the effect
of multiple genes and is generally believed to be much more durable in
the field than qualitative resistance (Poland et al. 2009, Niks et al. 2015).

Multiple disease resistance (MDR) can refer to a host plant with
resistance to more than one disease or to a gene or allele that confers
resistance tomore than one disease (Wiesner-Hanks andNelson 2016).
The MDR principle can be traced back at least to 1902 where a cowpea
cultivar was described to be resistant to wilt and root-knot, Neocosmo-
spora vasinfecta and Heterodera radicicola, respectively (Orto 1902).
Since then, many authors have reported on successful development of
lines with MDR in a great number of crops such as wheat, barley and
potato (Jansky and Rouse 2003; Mitchell-Olds et al., 1995; Risk et al.,
2013; Schnurbusch et al., 2004). Multiple-disease resistant lines may
contain several genes acting independently to confer resistance to mul-
tiple diseases, or single genes conferring multiple resistance to several
diseases. Several examples ofMDR genes are described in the literature.
For example,Mi-1 confers resistance to both aphids and nematodes in
tomato (Vos et al., 1998) and Lr34/Yr18 confers resistance to leaf rust,
stripe rust, steam rust, and powdery mildew in wheat (Spielmeyer et al.
2013). Other genes conferring MDR in wheat include Lr46/Yr29, Lr67,
and Yr30 (Bariana et al., 2007; Rosewarne et al., 2008; Spielmeyer et al.,
2013; William et al., 2007). In this study, the genetic basis of resistance
to three diseases ofmaizewas investigated: Gray leaf spot (GLS); North-
ern leaf blight (NLB); and Southern leaf blight (SLB). Each of these
diseases are caused by an ascomycete fungal pathogen that infects
leaves of maize.

SLB is caused by the necrotrophic fungus Cochliobolus heterostro-
phus (anamorph Bipolaris maydis) and often occurs where maize is
grown under hot and humid conditions. Irregularly shaped lesions
initially from the lower to upper canopy of the plant and expand until
they coalesce within leaves to cover large sections or entire leaves
(White 1999). In the early 1970s, C. heterostrophus race T, which pro-
duces the so-called T-toxin, caused an important epidemic in the U.S.,
causing overall losses of approximately 12% -15% (Ullstrup 1972).
After the epidemic, farmers in the U.S. reverted to growing lines that
were not susceptible to C. heterostrophus race T. Currently, the most
common race ofC. heterostrophus in the U.S. is raceO, which can cause
yield losses of greater than 40% in inoculated experimental fields
(Byrnes and Pataky, 1989, Fisher, Hooker, et al., 1976, Gregory, Ayers,
et al., 1979), although losses are normally much lower due to the use of
resistant hybrids. Resistance to C. heterostrophus race O is quantita-
tively inherited with primarily additive or partially dominant gene
action (Holley and Goodman 1989). Numerous QTL studies have been
conducted to map loci associated with SLB resistance (Balint-Kurti
et al., 2008b; Balint-Kurti et al., 2006; Balint-Kurti et al., 2007; Bian
et al., 2014; Carson et al., 2004; Kump et al., 2011; Negeri et al., 2011;
Zwonitzer et al., 2009; Zwonitzer et al., 2010).

NLB caused by the hemibiotrophic fungus Setosphaeria turcica
(anamorph Exserohilum turcicum) is found throughout the world in
humid areas withmoderate temperatures. Like SLB, the disease initially
develops on the lower canopy and spreads to leaves of the upper can-
opy, producing expansive cigar-shaped lesions. In some U.S. regions,
yield loses can be greater than 50% (Raymundo and Hooker 1981;
Tefferi et al., 1996). Both qualitative and quantitative forms of pheno-
typic variation in resistance to NLB have been characterized. The qual-
itative resistance genes Htl, Ht2, Ht3 confer resistance to specific races
of NLB (Bentolila et al., 1991; Hooker 1963; Simcox and Bennetzen
1993; Yin et al., 2003). One of these race-specific genes, Htnl, was
recently identified as a wall-associated receptor-like kinase (Hurni
et al., 2015). Because qualitative resistance is generally less durable in
the field, some research has focused on quantitative disease resistance,
revealing a polygenic architecture composed primarily of additive ef-
fects (Balint-Kurti et al., 2010; Poland et al., 2011; Chung et al., 2010,
2011, Jamann et al. 2016).

GLS is caused by the related species Cercospora zeae-maydis and C.
zeina (Meisel et al. 2009;Ward et al. 1999) which both have a necrotro-
phic lifestyle. Most reports of GLS describe its occurrence in the United
States (Ward et al., 1997, Tehon and Daniels 1925) and Africa (Dunkle
and Levy 2000), with some reports of GLS in China and Latin America
(Ward et al., 1999). Disease development is favored in temperate, hu-
mid conditions. Similar to SLB and NLB, symptoms are first observed
on the lower leaves as a mixture of small, irregularly shaped spots and
semi-rectangular lesions which spread up the plant while lesions ex-
pand parallel to the veins of the leaf (Ward et al., 1999). Losses due to
GLS can range from 10 to 25% annually, but in severe cases this value
can reach 50% (Freppon et al., 1996; Ward et al., 1999). Residues from
continuous cropping managed under conservation tillage also promote
the development of the disease (Ward et al., 1999). Phenotypic varia-
tion in resistance to GLS in maize is generally quantitative, with a
polygenic architecture primarily composed of additive allele effects
(Lyimo et al., 2011; Zhang et al., 2012 Balint-Kurti et al., 2008a;
Derera et al., 2008; Gordon et al., 2006; Juliatti et al., 2009; Lennon
2014; Zwonitzer et al., 2010, Benson et al. 2015).

While the infection processes of the pathogens causing SLB, NLB,
and GLS have several distinguishing features, they share some aspects
(Beckman and Payne 1982; Jennings and Ullstrup 1957). For instance,
they all penetrate the leaf and, in early stages, grow in living tissue, but
ultimately derive their nutrition from dead tissue. Gene(s) affecting
some of these shared pathogenesis processes might be expected to
confer MDR. Indeed, using multivariate statistical analysis of data on
SLB, NLB, and GLS resistance scored in a panel of maize inbred lines
developed for high-resolution association mapping (Flint-Garcia et al.
2005), Wisser et al. (2011) found moderately high positive genetic
correlations between resistances in all pairwise combinations. Because
linkage disequilibrium (LD) in that panel is low (Flint-Garcia et al.
2005), the authors inferred that a component of the variation in
MDR was attributable to alleles with pleiotropic effects. Single nucleo-
tide polymorphisms (SNPs) within a glutathione S-transferase gene on
chromosome 7 were associated with MDR.

The goal of the current study was to produce chromosome segment
substitution lines (CSSL) in which a whole genome tiling path of
introgressions from MDR lines is captured in MDS genomic back-
grounds and to use these populations to determine if loci underlying
MDR could be identified. The rationale for choosing this approach was
twofold; First we reasoned that the effects of some resistance loci might
be best observed in a susceptible background and second, we wanted to
identifyMDRNIL lines that could be useddirectly in subsequent studies
probing the mechanisms of resistance. Four top-ranking MDR lines
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(NC304, NC344, Ki3 andNC262) identified inWisser et al. (2011)were
used as donor parents and two low-ranking MDS lines (Oh7B, H100)
were used as recurrent parents to produce eight CSSL populations.

MATERIALS AND METHODS

Plant materials, populations
Six inbredmaize lines were used to produce eight different populations.
The parental materials were: inbred line H100 (developed by Indiana
Agricultural Experiment Station from N28 x H91; Dudley et al., 1991),
inbred line Ki3 (developed from Suwan-1(S) C4 (Thailand); Liu et al.,
2003), inbred line NC262 (developed by North Carolina State Univer-
sity from McNair 14 x McNair 18; Nelson et al., 2016), inbred line
NC304 (developed by North Carolina State University from (Pioneer
X105A x H5) x H101; Nelson et al., 2016), inbred line NC344 (de-
veloped by North Carolina State University from (McNair 14x18)^2 x
[(NC246 x NC248) x C103]; Nelson et al., 2016), and inbred line Oh7B
(developed in Ohio from (Oh07 · 38-11) x Oh07; Liu et al., 2003).

Eight chromosome segment substitution populations were created
by crossing four MDR donor lines, Ki3, NC262, NC304, and NC344 as
females, with twomultiple disease susceptible recurrent lines, H100 and
Oh7B as male. After the F1 was obtained, three generations of back-
crosses with H100 or Oh7B as males were performed, followed by four
generations of self-pollination via single-seed descent to obtain BC3F4:5
lines (Figure 1). The F4:5 lines were subsequently increased by sib-
mating within each line. An identification code was ascribed to each
line, starting with the prefix DRIL (for “Disease Resistance Introgres-
sion Line”) followed by a population code for each cross based on line
codes: (H100 = 2, Ki3 = 3, NC262 = 5, NC304 = 6, NC344 = 7, Oh7B =
8); where 32, 52, 62, and 72 correspond to Ki3/H100, NC262/H100,
NC304/H100, and NC344/H100, respectively, and 38, 58, 68, and
78 correspond to Ki3/OH7B, NC262/OH7B, NC304/OH7B, and
NC344/OH7B, respectively. In each case the code number for the
donor (female) parent is listed first and the number for the recurrent
(male) parent is listed second, followed by a numerical identifier for
each line (e.g., DRIL32-001, DRIL32-002, etc.).

Generation of genotypic data
Young leaf tips fromsix plants per linewere collected and lyophilized for
DNA extraction and genotyping. DNA extraction was performed using
the commercially available Gentra Puregene Tissue Kit. The final DRIL
populations were genotyped with the Pioneer Illumina publicplex
platform using 765 single nucleotide polymorphism (SNP) markers
(Jones et al., 2009). The genetic map locations used were based on the
IBM4 map (Fu et al., 2006). Files S1-S8 have details of all the markers
used in each population.

On average 3.1% of the marker data were missing. Missing data
imputation was performed using a set of simple algorithms in Microsoft
Excel based onflankingmarkers. For each line, if a data point wasmissing
foramarker(X),andif theparentalgenotypes for thetwoflankingmarkers
were identical, then themissingdatawere imputed tobe the sameparental
genotype as the flanking markers. This imputation criteria was also used
for up to two consecutivemissingmarker values (e.g., consecutivemarker
calls AA, XX, XX, AA becomes AA AA AAAA, where X is missing data
and A is a parental allele). If the flanking markers differed, then the
missing markers were imputed as the recurrent parental allele.

The BC3F4:5 lines are expected to carry 6.25% introgressed DNA
derived from the donor genome, and 78% of that introgressed DNA is
expected to be present as homozygous introgressions (Figure 1). The
genotypic data were systematically evaluated to identify and eliminate
lines that substantially deviated from these expectations. In these cases,

it was likely that the lines had been the product of one or more con-
taminant pollinations.

To eliminate lines that were not likely the product of the given
crossing scheme, DRILs were eliminated if they exceeded two standard
deviations from the median value of either: (i) the total percentage of
markers in a line that were heterozygous and the number of introgres-
sion segments in a line; (ii) the percentage of donor parent alleles
detected for each line; or (iii) any combination of (i) and (ii).

A similar process was performed to identifymarkers with anomalous
scores. For each DRIL population, any given marker locus would be
expected to carry donor parent alleles at approximately 6.25% of loci
assessedand78%of thesedonor alleleswouldbe expected tobepresent in
the homozygous state. Additionally, marker loci would be expected to
have similar genotypes at genetically linkedmarker locimost of the time.
After anomalous lines had been eliminated, two parameters were cal-
culated from the remaining lines in each population: the percentage of
lines thatwereheterozygous for aparticularmarker and thepercentage in
each population that amarkerwas different from itsflankingmarker (we
refer to this metric as percent unlinked marker). If a marker presented a
value in anyof these twoparameters thatwashigher than themedianplus
two standard deviations, it was eliminated. The exceptions to this were
when themarkerwas thefinalmarker onachromosomeandwhenahigh
percentageofunlinkedmarkerswascausedby theanomalousbehaviorof
the neighboringmarker. Todetermine this, themost anomalousmarkers
(top third) were eliminated first and then the analysis was performed
again to reevaluate the remaining markers each time.

Inoculum Preparation and Inoculation Procedure
Sorghum grains were soaked from 3 to 4 days in water, placed in 1 L
flasks, and autoclaved for one hour (120 PSI and 121�). Autoclaved grain
was inoculatedwith eitherC. heterostrophus, S. turcica, or C. zeae-maydis.
The fungus grew at room temperature (23-25�) for approximately 10,
14 or 21 days for C. heterostrophus, S. turcica, or C. zeae-maydis respec-
tively until the sorghumwas colonizedwith the fungus. The sorghumwas
air-dried and stored at 4�. Each isolate of each fungus was grown and
dried separately. The dried sorghum infested with isolates of the same
species was thoroughlymixed just prior to inoculation. The samemixture
was used to inoculate the entire trial. Twenty-five to thirty-day old maize
plants were inoculated by adding 6 to 10 infested sorghum kernels placed
into the whorl of each maize plant.

Disease evaluations
All trials used an augmented lattice design. Thenumber of entries varied
between each population and are shown in Table 1. Two environments
were used for every assessment and two replications were used in every
environment except for the case of NC262/H100 where only one rep-
lication was planted in one of the years in the GLS evaluation. The
number of blocks within each replication varied depending on the
number of lines in the population but was at least 10 in every case. A
recurrent parent check was included in each block and the resistant
donor parent was also planted several times in each replication.

Field evaluations for SLB disease were performed during the sum-
mers of 2012 and 2013 for the NC262/H100 and NC262/Oh7B pop-
ulations, and in 2014 and2015 for theKi3/H100,NC304/H100,NC344/
H100, Ki3/Oh7B, NC304/Oh7B, and NC344/Oh7B populations. All
SLB phenotypic evaluations were performed at Central Crops Research
Station (CCRS) in Clayton, NC. Experiments were planted in 1.8 m
single rowswitha0.9mrowwidthusing10seedsperplot.Toassurehigh
diseasepressure, SLB inoculationswere carriedout30daysafterplanting
using a mixture of three isolates ofC. heterostrophus including 2-16Bm,
Hm540 (Carson 1998), and an unnamed isolate provided by Syngenta.
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Visual scores of the disease were taken three or four times at intervals of
eight to ten days starting two weeks after anthesis (when 50% of the
plants in a row were shedding pollen) on a scale 1 to 9 where 1 = 100%
leaf area affected by the pathogen and 9 = no disease. For each plot, days
from planting to anthesis, plant height, and ear height were recorded.

Field evaluations forNLB diseasewere performedduring summer of
2013 for NC262/H100 and NC262/OH7B population at CCRS (envi-
ronment 1) and atAurora,NY, Cornell UniversityNY (environment 2).
Ki3/Oh7B, NC304/Oh7B, and NC344/Oh7B populations were evalu-
ated for NLB at CCRS in 2014 and 2015. Ki3/H100, NC304/H100, and
NC344/H100 were evaluated in 2014 at CCRS. At CCRS trials were

planted as described above. In Aurora NY, trials were planted in 2.4 m
single rowswith a 1m rowwidth using 10 seeds per plot. To assure high
disease pressure, NLB inoculations were performed using several S.
turica isolates (ET238A, ET471A-1, ET30A, ET3A, ET28A, ET257A,
Cairo05, 235A, race 0 from Syngenta, Race1 from Syngenta, ET252A,
ET28A, ET30A, ET222A) 30 to 45 days after planting in Clayton. In
New York, inoculations were performed using a local isolate NY001
(race 1). At Clayton, three to four visual scores of the disease were taken
at intervals of eight to ten days starting two weeks after anthesis. At NY,
scores were taken two times, at an interval of one week, starting two
weeks after anthesis. For each plot, days to anthesis was also recorded.

Figure 1 Scheme used to produce all chromosome
segment substitution lines populations in this study.
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At each location, the percentage of diseased leaf area was used to score
the disease. For the purpose of correlation analysis, NLB disease scores
(from 0 to 100%, where 0 is themost resistant) were converted to a scale
similar to the SLB and GLS phenotyping system. Field evaluations for
GLS disease were performed during the summers of 2012 and 2013 at
Andrews, NC for the NC262/H100 and NC262/OH7B populations,
and at Andrews, NC and at the Virginia Tech Kentland Farm, near
Blacksburg, VA, during the summer of 2014 for the Ki3/H100, NC304/
H100 and NC344/H100 populations. The Ki3/OH7B, NC304/OH7B,
and NC344/OH7B populations underwent GLS phenotypic evalua-
tions during summers of 2014 and 2015 at Andrews NC and Blacks-
burg VA respectively. Trials were planted in 4 m single rows with a 1 m
row width using 16 seeds per plot. The fields used in Andrews con-
tained infected plant debris from the previous season and therefore had
a very high inoculum disease pressure and artificial inoculation was not
required. In Virginia, inoculations were performed using a mixture of
10 field-derived C. zeae-maydis isolates 30 to 45 days after planting.
Visual scores of the disease were taken twice at an interval of 10 days
starting two weeks after anthesis. Ratings ranged from 1 to 9 where 1 =
100% leaf area affected by the pathogen and 9 = no disease. Days
toanthesis was also recorded in Andrews for the NC262/H100 and
NC262/OH7B populations.

The symptoms of SLB,NLB andGLS are distinct from eachother. In
every case in every experiment we observed almost exclusively the
symptoms expected of the targeted disease until late in the season (after
completion of data collection when the plants had started to senesce).

Statistical Analysis
Statistical analysis of phenotypic data were performed using R (R core
development team 2008). Q-Q, residual, and distribution plots were also
produced to determine normality and variance homogeneity. The

standardized area under disease progress curve (sAUDPC, a quantitative
summary of disease severity over time; Simko and Piepho 2012) was
calculated for each genotype and each disease based on a minimum of
two and maximum of four sequential ratings. Using lme4 (Bates et al.,
2015), a univariate linearmixedmodel was fit to the data for each disease:

sAUDPC ¼ BðRÞ þ BðR�EÞ þ Gþ E þ G�E þ e;

where, sAUDPC is the response variable as described above, genotype
(G) is a fixed effect, block ½BðRÞ�, replication ½BðR�EÞ�, environment
(E) and genotype-by-environment (G�E) is a random effect and e is a
random residual effect. Least square means (LSMeans) for each ge-
notype within each disease were obtained and the lines that had
LSMeans significantly different from the recurrent check H100 or
Oh7B were identified using a multiple comparison test, mulcomp/
glht in R, in which a multiple test correction due to heterogeneous or
unequal variances among groups was accounted.

Heritability was estimated on an entry mean basis (Holland et al.
2003). This was determined for each population-disease combination.
Variance components used to compute hertitability were estimated
from a model similar to the one described above, except that genotype
was fit as a random effect in order to also estimate the genotypic
variance.

Pairwise Pearson correlations between LSMeans for each disease
within each population were calculated. A Chi square test was used to
show test whether the number of multiple disease resistant lines
identified in each genetic background (H100 and Oh7B) was higher
than would be expected due to random chance. Fisher’s exact test was
used to test the same thing for individual populations as Chi square
does not deal properly with smaller numbers (,5) (Bearden et al.
1982).

n Table 1 Number of lines and markers and associated parameters for each population

Population Ki3/H100 Ki3/Oh7B NC262/H100 NC262/Oh7B

Lines 265 204 195 111
Markers 245 239 271 209
1Percent Recurrent Parent 93.5 92.7 91.3 85.2
2Percent Donor Parent 6.5 7.3 8.7 14.8
3Percent Heterozygous 0.8 1.2 1.6 3.1
4Percent Segregating Introgressions 12.2 16.7 19.2 19.8
5Number of Introgressions 6.3 6.9 7.8 10.5
6Percent Donor Genome 100 98 100 100

Population NC304/H100 NC304/Oh7B NC344/H100 NC304/Oh7B

Lines 252 108 258 218
Markers 270 254 270 241
Percent Homozygous Recurrent Parent 93.1 91 93.2 92.05
Percent Homozygous Donor Parent 6.9 9 6.8 7.5
Percent Heterozygous 1.6 1.2 1.3 1
Percent Segregating Introgressions 19.9 12.4 19.6 13.7
Number of Introgressions 6.7 7.6 6.4 5.9
Percent Donor Genome Represented 100 100 100 100
1
The total number of markers scored as homozygous for the recurrent parent allele plus half of the total number of markers scored as heterozygous, divided by the
total number of markers used for the population, multiplied by 100.

2
The total number of markers scored as homozygous for the donor parent allele plus half of the total number of markers scored as heterozygous, divided by the total
number of markers used for the population multiplied by 100.

3
Number of markers scored as heterozygous divided by the total number of markers multiplied by 100.

4
Number of markers scored as heterozygous divided by the total number of markers scored as homozygous or heterozygous for the donor parent allele multiplied by
100.

5
Number of segments that contain homozygous or heterozygous donor parental allele.

6
Number of markers scored as homozygous or heterozygous for the donor parental allele contained within the population, divided by the total number of markers
multiplied by 100. The population mean of these statistics are shown. For % of introgression the range is also shown.
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QTL analyses
For each DRIL population and disease, QTL analysis was performed
using the QTL IciMapping software (Meng, Li, et al., 2015), employing
the option for non-idealized CSSL QTL analysis (CSSL with more than
one introgression). For this analysis, all recurrent homozygous geno-
types, heterozygous genotypes and missing genotypes were coded as
0 and homozygous donor genotypes were coded as 2. The program
allows for marker multicollinearity control, and for this a “by condition
number” of 1000. A RSTEP-LRT method, which is a likelihood ratio
test based on stepwise regression, was used for QTL mapping. Stepwise
regression was used to select the most significant markers and a likeli-
hood ratio test was used to calculate the LOD scores for each marker.
The probability threshold used for stepwise regression was 0.01 while
LOD thresholds were determined by permutation testing (1000 itera-
tions) with a type I error of 0.05.

Outputs of QTL analysis included LOD values, percentage of
variance explained, and additive effects of the marker. Additive effects
ofNLBwere converted to the sameSLB/GLS scale. Pairwise correlations
between the marker additive effects were calculated. The IBM4 genetic
map was used as a guide for placing the markers on the maize genetic
map (Fu et al., 2006; Jones et al., 2009).

Composite Statistic
Following Rousseeuw and Zomeren (1990), Rousseeuw (1985) and
Lotterhous et al. (2017), a composite statistic based on Mahalanobis
distance (Md) was used to identify marker associations that represent
multivariate outliers in three-dimensional space (i.e., three traits). For
each trait, LOD scores were converted into p-values: PðLODÞ ¼
:5 · ðX2

1 . 2 ln 10· LODÞ (Nyholt 2000). Using the negative log10 of
the p-values for the three traits, minimum covariance determinant was
used to compute the trait-wise covariancematrix for robust detection of
outliers (Lotterhos et al. 2017). The analysis was performed using the
OutlierMahdist function of the rrcovHDpackage v. 1.4-4 (Todorov and
Filzmoser 2009).

Md
2 values follow a X2 distribution with degrees of freedom equal to

the number of dimensions (Rousseeuw and Zomeren 1990), so the
probability of Md

2 for each marker was computed. The “BH” method
(Benjamini and Hochberg 1995) of the p.adjust function in R was used
to adjust for multiple marker tests per population. Significant multi-
variate outliers were declared at a 1% false discovery rate. In addition,
because a number of significant outliers were identified despite having
sub-threshold LOD scores for all three traits, an additional higher
threshold for significance was set based on whether the Md

2 value
was significant and the marker LOD score from QTL mapping was
greater than the LOD threshold for at least one of the three traits. Note:
the LOD threshold varied, as it was computed by permutation for each
population-disease combination (see above). Custom R scripts were
used to make figures for the results from analyses using the composite
statistic.

Statement of data and reagent availability
All lines are available on request form the corresponding authors. The
populations are currently being deposited at the Maize Genetics Stock
Center (http://maizecoop.cropsci.uiuc.edu/). All genotypic and pheno-
typic information used in this work is included in the supplementary
files. Supplemental material available at Figshare: https://doi.org/
10.25387/g3.7265756.

RESULTS AND DISCUSSION
Eight different CSSLDRIL populationswere created (Figure 1) in which
four multiple disease resistant (MDR) donor parent maize lines

(Ki3, NC262, NC304, and NC344) were crossed as females with two
multiple disease susceptible (MDS) recurrent parent lines (H100 and
Oh7B) as males.

Eachpopulationwasassessed indisease-specificnurseries for resistance
to SLB, NLB, and GLS in two environments with two replications per
environment. The phenotypic distributions were, as expected, centered
around the recurrent parent phenotype in each case, with the distributions
skewed slightly toward resistance (Figure S1). Each DRIL was genotyped
using 765 SNP markers. After quality control to eliminate anomalous
DRILs, 1611 DRILs from all populations were maintained for further
analysis (Table 1). Following quality control of the marker data, 209 to
271 polymorphic markers were retained in each population (Table 1).
Based on imputed genotypes, the entire donor parent genome was cap-
tured by introgressions within each population except for the Ki3/Oh7B
population in which 98% of the Ki3 genome was represented (Table 1).

Exploratory visual data analysis of Q-Q plots, residual plots and
spatial field plots of phenotypic values did not reveal any obvious
deviations from normality in the data distribution or obvious spatial
field effects (not shown); a linearmixedmodelwithnormally distributed
random variables and without spatial effects was fit to the data. Plotting
LSMean estimates for each population-disease-environment combina-
tion indicated that donor parental lines were, as expected, highly
resistant for all diseases and that the recurrent parental lineswere always
close to themean of the entire population. In three out of 48 population-
disease-environment combinations assessed, namely the NC304/H100,
NC344/H100, and Ki3/H100 populations evaluated for NLB in Aurora
NY, the data were deemed unusable based on inconsistent phenotypes
for the repeated parental checks. In these cases, we relied on data from
just one environment with two replications.

Significant differences were always observed between the donor and
recurrent parents for each disease and for each population (Table 2). In
every population, some DRILs were significantly more resistant than
the recurrent parent for each disease (File S9). However, no significant
transgressive segregation was identified. In other words, we did not
identify any DRILs that were significantly more resistant than the re-
sistant parent or significantly more susceptible than the susceptible
parent (Figure S1, File S9).

n Table 2 LSMeans for donor and recurrent parents for each
population

1Population
Ki3/
H100

Ki3/
Oh7B

NC262/
H100

NC262/
Oh7B

SLB Don 8.0��� 8.0��� 7.8��� 6.9���

SLB Rec 4.6 7.8 4.4 5.7
NLB Don 12.1��� 12.8��� 9.9��� 15.5���

NLB Rec 53.4 52.4 68.4 58.9
GLS Don 8.1��� 8.2��� 7.7��� 6.9���

GLS Rec 6 5.9 4.3 4.6

Population
NC304/
H100

NC304/
Oh7B

NC344/
H100

NC344/
Oh7B

SLB Don 8.0��� 7.9��� 8.0��� 7.9���

SLB Rec 4.8 5.8 4.6 5.8
NLB Don 10.4��� 12.7��� 6.6��� 9.9���

NLB Rec 61.8 50.5 47.7 55.6
GLS Don 8.1��� 8.3��� 8.0��� 8.0���

GLS Rec 5.9 5.9 6 5.7
1
Don = donor, Rec = recurrent. Significant differences between donor and
recurrent parent are represented by ��� at a level of 0.001. In each population,
first line is the donor and the second is the recurrent parent. SLB and GLS
scored on a 1-9 scale with 9 being resistant. NLB scored on a 0–100% scale
with 0 being resistant.
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Pearson correlation coefficients between replications within envi-
ronments varied from 0.17 to 0.73 for SLB, 0.23 to 0.63 for NLB, and
0.25 to 0.62 for GLS (Table S1). Similarly, correlations between
environments were moderate but significant and varied between
0.35-0.74, 0.39-0.65, and 0.33-0.66 for all SLB, NLB, and GLS exper-
iments respectively (Table S1). It should be noted that CSSL popula-
tions display relatively low levels of line-to-line genetically-determined
phenotypic variationbydesign, since theDRILswereonaverage�94%
similar to each other. This lack of phenotypic variation leads to lower
levels of correlation and heritability than would be expected in other
similarly-sized types of bi-parental mapping populations (e.g.,
recombinant inbred lines). Nevertheless, heritability on an entry
mean basis was relatively high for most of the traits: among all pop-
ulations, heritability for SLB ranged between 0.65 and 0.85; heritabil-
ity for NLB ranged between 0.67 and 0.83; and heritability for GLS
ranged between 0.59 and 0.82 (Table 3).

Pairwise correlation coefficients between LSMeans for different
diseases measured in each population were significant in most of the
cases. Among the 24 comparisonsmade (three pairwise comparisons in
each of eight populations), 21 were significant at a P, 0.05 (Table 4).
Significant correlation coefficients between SLB and NLB ranged from
0.15 to 0.35 among eight populations. Significant correlations coeffi-
cients between SLB and GLS ranged from 0.17 to 0.53 among six
populations. Significant correlation coefficients between NLB and
GLS ranged from 0.18 to 0.47 among seven populations. These results
support the hypothesis that the same genes or linked genes contribute
to MDR.

Using a 253-line diverse association mapping population, Wisser
et al. (2011) reported significant pairwise correlation coefficients be-
tween these same three diseases that ranged from 0.55 to 0.67. Those
correlations are somewhat higher than those obtained in the present
study, probably due to the fact that the panel was much more pheno-
typically diverse than the populations used in this study. Lennon (2014)
used several CSSL populations derived from the commonly used maize
lines B73 and several teosinte accessions that were constructed in a
similar way to the populations used in the present study. Similar to
our findings using CSSL populations, correlations between LSMeans
for resistance to SLB and GLS ranged between 0.23 and 0.51, with all of
them being significant at level of 0.10.

Fisher’s exact test was performed to determine whether the number
of MDR lines (i.e., lines that were significantly more resistant than the
recurrent parent for more than one disease) in each population was
higher than would be expected by chance. In other words, we tested the
hypothesis that resistance to one disease is genetically independent of
resistance to another disease. In summary, among 24 tests for combi-
nations of two diseases, six were significant at P , 0.01, seven at P ,
0.1, and 11 were not significant (Table 5). Similarly, among eight tests
for MDR to three diseases, six were significant with P , 0.0001, and
two were not significant. Chi-square tests were conducted on the fre-
quencies of MDR lines within all the four DRIL populations derived
fromH100 and also from the four derived fromOh7B inbred lines. For
the H100 set, all tests were significant. For the Oh7B set, three out of
four tests were significant (Table 5). These results suggest that, in most
cases, a line that is resistant to one disease has an increased likelihood of
being resistant to another disease. Such multiple disease resistance
could be caused by shared genomic regions contributing to resistance
via coupling phase linkage of donor alleles conferring resistance to
different diseases or via the pleiotropic effects of the same sequence
variant.

The DRIL populations were used to map loci associated with each
disease, and a composite statistic was used to identify potential MDR
loci. Based on single trait analysis, a total of 56, 20, and 28QTL of small
to moderate effect were detected for SLB, NLB, and GLS respectively
over all the populations (Table S2, Figure 2). The number of QTL
observed among populations varied between 2 and 18. The maximum
number of QTL were detected in the NC344/H100 population
(18 QTL: 7, 4, and 7 for SLB, NLB, and GLS respectively), followed
by the NC304/H100 population (17: 11, 0, and 6); the lowest numbers
of QTL were detected in the NC262/Oh7B (2: 0, 2, and 0) population,
likely due in part to the relatively small number of lines in this
population.

For SLB, QTL were detected on all chromosomes, with additive
effects ranging between -0.32 and 0.46 (on our 1-9 scale, with a positive
value indicating that donor allele increases resistance and vice-versa).
For NLB, QTL were detected on all chromosomes except 6 and 7,
and additive effects were small to moderate and varied between -6.15
and 3.92 (on a scale from 0–100% where 0 is the most resistant with
a negative value indicating that donor allele increases resistance).

n Table 3 Heritabilities on an entry mean basis for each population and disease

Population/ Disease
Ki3/ Ki3/ NC262/ NC262/ NC304/ NC304/ NC344/ NC344/
H100 Oh7B H100 Oh7B H100 Oh7B H100 Oh7B

SLB 0.85 0.80 0.65 0.82 0.85 0.81 0.83 0.76
NLB 0.67 0.76 0.74 0.71 0.83 0.77 0.75 0.75
GLS 0.63 0.61 0.76 0.82 0.73 0.65 0.64 0.59

n Table 4 Pairwise correlations coefficients and p-values for combination of diseases LSMeans scores

Population 1Ki3/H100 (N = 265) Ki3/Oh7B (N = 207) NC262/H100 (N = 194) NC262/Oh7B (N = 111)

Disease NLB GLS NLB GLS NLB GLS NLB GLS
SLB 0.24��� 0.53��� 0.35��� 0.37��� 0.16� 0.40��� 0.21� 0.17�

NLB . 0.23��� . 0.47��� . 0.09 . 0.27��

Population NC304/H100 (N = 251) NC304/Oh7B (N = 108) NC344/H100 (N = 258) NC344/Oh7B (N = 216)

Disease NLB GLS NLB GLS NLB GLS NLB GLS
SLB 0.35��� 0.53��� 0.24� 0.35��� 0.15� 0.41��� 0.21�� 0.11
NLB . 0.18�� . 0.30�� . 0.18�� . 0.18��

1
Significant p-values are represented by ���, ��, �, and � at a level of 0.001, 0.01, 0.05, and 0.1 respectively.
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For GLS, QTL were detected on all chromosomes, with additive effects
ranging between -0.25 and 0.35 (on a scale from 1-9, the same as SLB).

Pearson correlations between marker additive effects for different
diseases were calculated. From 24 correlations (from 8 populations and
3 diseases), 13 were significant at a P, 0.05 (Table 6). These results are
again congruent with the hypothesis that there exists a shared compo-
nent of the genetic basis of resistance to these three diseases. Indeed,
four markers exceeded the corresponding LOD threshold for two dis-
eases in four different populations (Ki3/H100 [NLB-GLS]; Ki3/Oh7B
[NLB-GLS]; NC304/H100 [SLB-GLS]; NC344/H100 [SLB-GLS]), but
none exceeded the threshold for all three. In some cases, however, the
LOD score of a marker was above the significance threshold for one
disease, but just below the threshold for another disease. An example of
this can be observed in the Ki3/H100 population on chromosome 9 at

114.68 cMwhere themarker had a LOD score for SLB of 5.6, well above
the threshold (3.2), and not far below forNLB (threshold = 3.7,markers
LOD = 2.9) and GLS (threshold = 3.03, markers LOD = 2.3).

In order to identify additional markers potentially associated with
MDR, a composite statistic, Md (Rousseeuw 1985, Rousseeuw and
Zomeren, 1990; Lotterhous et al. 2017), which accounts for covariance
between the QTL test results for each trait was used (the Md statistic
was used because the IciMapping software does not include a multi-
variate QTL test statistic). Similar to a standard multivariate test, sig-
nificant multi-trait marker associations can occur when a marker for
any one trait or multiple traits deviate. Indeed, all of the significant
marker associations identified by single disease QTL analysis (Figure 2)
were also declared significant according to the Md statistic (1% FDR).
However, several additional markers with relatively low LOD scores for

n Table 5 Results for Fisher exact test and Chi square test to determine whether multiply disease resistant lines are present at higher
levels than would be predicted given the frequencies of lines resistant to each single disease

Population
Ki3/ Ki3/ NC262/ NC262/ NC304/ NC304/ NC344/ NC344/ H100_ Oh7B_
H100 Oh7B H100 Oh7B H100 Oh7B H100 Oh7B Pooled Pooled

1Pop Size 265 207 194 111 251 108 258 216 968 642
2SLB # Sig_lines 74 40 6 37 101 38 49 23 230 138
NLB # Sig_lines 17 27 2 2 9 16 12 6 40 51
GLS # Sig_lines 17 4 42 38 32 1 12 10 103 53
3SLB/NLB 49� 16��� 1� 2 7� 9� 3 0 20��� 27���

SLB/GLS 13��� 4�� 6��� 14 28��� 1 6� 1 53��� 20��

NLB/GLS 2 3�� 2� 2 4� 0 1 1 9� 6
SLB/NLB/GLS 2��� 3��� 1��� 2��� 4��� 0 1��� 0 8��� 5���

1
Number of lines in the population.

2
Number of lines that were statistically different than the recurrent parent for the indicated disease.

3
Number of lines that were statistically different than the recurrent parent for the indicated combination of diseases.

4
Significant p-values are represented by ���, ��, �, and � at a level of 0.001, 0.01, 0.05, and 0.1 respectively. For combinations of diseases, significance implies that
there were more lines significantly resistant to multiple diseases than was expected based on the proportions that were significantly resistant to each single disease.

Figure 2 QTL detected for single, pairwise or threewise disease resistance (chromosomes 1,2, and 3). Colored segments on chromosomes
represent regions associated with more than one disease though not necessarily in the same population (red = NLB/GLS, blue = SLB/NLB, green
= SLB/GLS, and fuchsia = threewise). Detailed parameters for these QTL are available in Table S4.
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individual traits had significantly large Md values (Figure 3). In total,
246 of the 1652 computedmarkerMd values were significant (File S10).
Across all populations, the additive effects of these markers were cor-
related as expected forMDR between SLB andGLS (0.18) andNLB and
GLS (0.15), but the correlation was essentially zero (-0.01) between SLB
and NLB (instead, specific populations were positively correlated and

others were negatively correlated). Therefore,Md helped highlight po-
tential MDR loci, but inspection of the individual test statistic results
andmore highly replicated validation studies are needed to confirm the
association of specific loci with MDR. Moreover, due to intricacies in
QTL detection that may result in neighboring markers being declared
significant despite the same variant being causal, or because MDR is

n Table 6 Pairwise correlations coefficients between marker additive effects for combination of diseases

Population Ki3/H100 1(N = 213) Ki3/Oh7B N = 212) NC262/H100 (N = 243) NC262/Oh7B (N = 192)

Disease NLB GLS NLB GLS NLB GLS NLB GLS
SLB 0.12� 0.37��� 0.00 0.06 0.14� 0.17� 20.09 0.14�

NLB . 0.19�� . 0.22�� . 0.18�� . 20.02

Population NC304/H100 (N = 239) NC304/Oh7B (N = 209) NC344/H100 (N = 246) NC344/Oh7B (N = 210)

Disease NLB GLS NLB GLS NLB GLS NLB GLS
SLB 0.05 0.23��� 0.19�� 0.15� 0.08 0.26��� 0.06 0
NLB . 0.06 . 0.17 . 0.14� . 0.28���

1
Number of markers segregating in each population (N). Correlations between marker effects were estimated using all the markers selected by the stepwise
regression procedure and used in the QTL analysis. Significant p-values are represented by ���, ��, �, and � at a level of 0.001, 0.01, 0.05, and 0.1 respectively.

Figure 3 Multivariate outlier markers detected
by the Md composite statistic. The dotted line
corresponds to a 1% FDR for the Md value.
Points are color coded according to whether
the marker LOD score exceeded the disease-
specific permutation threshold from QTL analysis
for one or more diseases. The dashed line marks
the Md value at which the minimum LOD thresh-
old for a single disease exceeds the lowest
threshold (thresholds were specific to each
disease).
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due to linkage and not pleiotropic effects, loci with closely linked
marker associations also represent good candidates for further investi-
gation. Therefore, the co-localization of QTL for different diseases
within and across populations was also examined.

QTL for each disease were identified at the same loci in different
populations (Table S3). For instance, fourteenQTL for SLB co-localized
in at least two populations, and two of themwere detected in four of ten
populations (onchromosome3,at 66.37-68.94cM,andonchromosome
9 at 59.01-60.93). ForNLB, sixQTLco-localized in twopopulations; and
for GLS, six QTL co-localized in at least two populations (Table S4).

When QTL were localized to maize bins (Davis et al. 1999, Table
S4), several genomic regions were associated with resistance to more
than one disease in the same population. QTL for SLB and GLS
co-localized in bins 1.05, 1.06, 3.04, 4.05, 6.01, and 10.04. For SLB
and NLB, three QTL co-localized in bins 1.05, 2.05, and 4.05. For NLB
and GLS, three QTL co-localized in bins 1.03, 2.05, and 8.03. One
QTL in bin 5.04 (chromosome 5 at 90.96-95.23 cM) was associated
with resistance to all three diseases in population NC344/H100; in
this case, the allele derived from the MDR resistant donor increased

susceptibility rather than resistance (Table S4). These results reinforce
prior findings (e.g., Tanksley et al., 1996, Balint-Kurti et al., 2008b,
Balint-Kurti, et al., 2007, Kump et al. 2011, Benson et al. 2015) that
favorable alleles can be found in lines with unfavorable phenotypes. In
addition, we noted numerous QTL associated with one disease in one
population and with a second or third disease in a different popula-
tion (Table S4).

Previous studies reported MDR QTL in bins 1.06, 9.02-9.03 for all
three diseases, inbins 1.08-1.09, 2.04, 3.04, and10.05 forSLBandGLS, in
1.04 and 2.02 for NLB and GLS and in 6.01and 8.05 for NLB and SLB
(Balint-Kurti et al., 2010; Belcher et al., 2012; Chung et al., 2011;
Zwonitzer et al., 2010). Also, a GST gene in bin 7.02 was associated
with variation in MDR (Wisser et al., 2011). In this study, some QTL
co-localized with those reported previously, but the association with all
three diseases was not observed. The one at bin 1.06, reported as MDR
for three diseases, was identified for SLB and GLS in this study. The
QTL at 9.03, also reported previously to confer resistance to three
diseases, was identified in this study for SLB and NLB. QTL previously
identified in bins 1.08-1.09 and 3.04 for SLB and GLS, were also

Figure 3 Continued
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identified in this study to confer resistance to SLB and GLS. Most of
MDR QTL (for three or two diseases) detected in this study are novel.

Insummary,usingeightpopulationscomprisingmore than1611lines,
we identified a large number of single disease resistance QTL, and several
genomic regionswith effects onmultiple diseases (Figures 2 and 3).Using
several approaches, we demonstrated that alleles associated with resis-
tances to these three diseases tend to co-localize in the genome and confer
MDR (allelic effects consistently increase resistance). It is likely that in
some cases these are due to the co-localization of alleles with disease
specific effects and in others to the pleiotropic effects of single alleles.
These populations will likely be of utility in mapping other traits includ-
ing disease resistance.One recent study used some of these populations to
map loci for resistance to Goss’s Wilt (Cooper et al. 2018). It will also be
helpful to develop higher density genotypic datasets for these popula-
tions. We are currently working on fine mapping some of these loci to
distinguish between these possibilities.
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