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Abstract 

Protein dynamics and related conformational changes are essential for their function but difficult to characterise and interpret. Amino acids in 
a protein beha v e according to their local energy landscape, which is determined by their local str uct ural context and environmental conditions. 
T he lo w est energy state f or a giv en residue can correspond to sharply defined conformations, e.g. in a stable helix, or can co v er a wide range 
of conformations, e.g. in intrinsically disordered regions. A good definition of such low energy states is therefore important to describe the 
behaviour of a residue and how it changes with its environment. We propose a data-driven probabilistic definition of six low energy conformational 
st ates t ypically accessible for amino acid residues in proteins. This definition is based on solution NMR information of 1322 proteins through a 
combined analysis of str uct ure ensembles with interpreted chemical shifts. We further introduce a conformational state variability parameter that 
captures, based on an ensemble of protein str uct ures from molecular dynamics or other methods, how often a residue mo v es betw een these 
conf ormational states. T he approach enables a different perspective on the local conf ormational beha viour of proteins that is complementary to 
their static interpretation from single str uct ure models. 
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he dynamics and related conformational changes of pro-
eins are often essential for their function, but are difficult
o characterise and interpret. A key challenge is that this be-
aviour is typically not encompassed by the available data
n protein conformation at atomic resolution, which mostly
erive from static representations of the most stable protein
onformations in crystalline state(s). The recent AlphaFold2
rotein fold predictions are trained on such data and there-
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fore essentially capture those static crystalline states. The dy-
namic and environmentally determined behaviour that pro-
teins can exhibit in solution is, on the other hand, exempli-
fied by intrinsically disordered regions (IDRs) and proteins
(IDPs). These do not have a stable conformation but still
perform essential functions in physiological conditions, often
by temporarily acquiring a fold, for example when interact-
ing with a binding partner ( 1 ). Changes in conformation are
also necessary for prevalent allosteric mechanisms in folded
, 2024. Accepted: June 26, 2024 
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proteins ( 2 ), with even entire fold changes observed for the
same protein ( 3 ). 

To study a protein’s conformational variability a variety
of techniques can be applied, each with their own advan-
tages and challenges. X-ray crystallography provides high-
resolution structures but its ability to capture conformational
changes is limited. Even though B-factors can be linked to
protein flexibility and rigidity ( 4 ), the non-native conditions
within crystals do not provide a realistic picture of dynamic
protein behaviour, even at room temperature ( 5 ). Single par-
ticle cryo-electron microscopy, in contrast, allows the char-
acterisation of proteins in near-native states. The resolution
of the resulting structures directly correlates to the confor-
mational diversity of the protein, with the possibility to clas-
sify heterogenous structural ensembles into different confor-
mations ( 6 ). Nuclear magnetic resonance (NMR) provides in-
solution information on dynamics of proteins at physiologi-
cal conditions, from S 2 order parameters determined by relax-
ation experiments, which capture fast ps-ns timescale move-
ments, to chemical shifts, which cover up to low ms timescale
movements ( 7 ). The observations in NMR are typically av-
eraged over all the protein molecules present in the sample,
however. Thus, if a protein adopts multiple conformations
between which it rapidly interchanges, the observed NMR
data will show the linear average of a given parameter over
the populations of these conformations. Hydrogen-deuterium
exchange mass spectrometry (HDX-MS) provides residue- to
peptide-resolution information on conformational changes in
the ms–s time scale. Similar to NMR, the outcomes are aver-
aged so that individual conformational populations cannot be
resolved. Still, the technology is powerful in its ability to iden-
tify dynamic regions in proteins ( 8 ). Single-molecule Förster
resonance energy transfer (smFRET) provides distance infor-
mation on individual conformations in dynamic mixtures. For
FRET experiments the proteins need to be dye labelled. These
dyes are typically linked by highly flexible linkers to pro-
teins, lowering the accuracy of the measurements ( 9 ). While
all of these techniques allow the observation of the conforma-
tional diversity of proteins, there is no computational frame-
work available to describe varying propensities towards dif-
ferent experimentally observed conformational states in vari-
able protein regions. 

A major challenge in describing the conformational vari-
ability of proteins is that their conformational space is ex-
tremely high-dimensional. Each amino acid residue in the pro-
tein backbone that is not fixed to a single conformation adds
to the overall conformational complexity of the protein. Con-
versely, this provides the opportunity to describe the confor-
mational diversity of a protein in terms of the local conforma-
tional freedom of the individual residues. A residue’s confor-
mational preferences are determined by its structural context,
interactions with other molecules and environmental condi-
tions such as pH or ionic strength, all of which shape its lo-
cal energy surface. The lowest energy state for a given residue
can then correspond to very sharply defined conformations,
for example when the residue is part of a stable helix, or can
cover a wide range of conformations, for example for residues
in intrinsically disordered regions. Amino acid residues that do
change conformation under native conditions can therefore,
by definition, not be assigned to a specific secondary structure.
They should rather be interpreted in probabilistic terms within
the secondary structure space where they transition. This re-
quires a definition of low energy conformational states that
residues typically adopt in proteins, as well as a description of 
the conformational variability within these low energy con- 
formational states. To derive such low energy states, ideally,
large scale experimental data should be employed to extract 
statistically relevant behaviours. 

Information about the behaviour of amino acids in pro- 
teins can be estimated from chemical shifts, the most readily 
publicly available NMR parameter from the Biological Mag- 
netic Resonance Data Bank (BMRB) ( 10 ). This has resulted 

in methods to estimate the backbone and side-chain dynam- 
ics of amino acids ( 11 ,12 ), secondary structure populations 
( 13 ), and a combined residue-independent metric based on 

unsupervised machine learning ( 14 ). Such parameters sum- 
marise the statistically averaged behaviour of residues of pro- 
teins in solution, so reflecting their lowest energy state in the 
employed experimental conditions. NMR structure ensem- 
bles are also calculated from NMR observables, notably inter- 
atomic distances from the nuclear Overhauser effect (NOE),
dihedral angle ranges from dipolar couplings and chemical 
shifts and bond orientations from residual dipolar couplings 
(RDCs). Typically, time-averaged NMR data are used to cal- 
culate a single NMR model at a time, so resulting in infor- 
mation clashes where mutually incompatible conformations 
are present in the protein ( 15 ). NMR structure ensembles are 
typically collections of such models, therefore residues that 
adopt a single well-defined conformation in solution, with 

all experimental data consistent, will tend to have the same 
consistent structural definition in all models of the NMR en- 
semble. For residues that adopt multiple distinct conforma- 
tions in large enough populations, on the other hand, the 
observed experimental data will be incompatible within the 
same structure, so resulting in variable structure definitions 
in the models of the NMR ensemble. The concept of us- 
ing such information from NMR ensembles was already suc- 
cessfully employed in for example the Espritz-NMR disorder 
predictor ( 16 ). 

However, capturing the inherently probabilistic informa- 
tion from protein structure models that encompass multiple 
conformations is difficult. To date, no method is available that 
can describe varying propensities towards different confor- 
mational states in highly variable regions. We here propose 
a data-driven probabilistic definition of six low energy con- 
formational states that are typically accessible for amino acid 

residues in proteins. This definition is based on solution NMR 

information for 1322 proteins, through a combined analy- 
sis of structure ensembles with interpreted chemical shifts.
Each conformational state corresponds to a specific region 

in the backbone dihedral space (Figure 1 ). Within these re- 
gions, residues have the freedom to adopt various conforma- 
tions without encountering significant energy barriers. We fur- 
ther introduce a conformational state variability parameter 
that captures how often a residue moves between these con- 
formational states. Such transitions would indicate changes in 

the local environment of the residues, so resulting in a change 
of their low energy state. The approach therefore enables a 
different perspective on the conformational behaviour of pro- 
teins that is complementary to their static interpretation from 

single structure models. To demonstrate the effectiveness of 
our method, we apply it to a set of molecular dynamics (MD) 
simulations consisting of 113 proteins that exhibit diverse be- 
haviours ranging from structurally rigid to highly dynamic 
disordered proteins. Additionally, we apply our method to 

large ensembles of selected intrinsically disordered proteins 
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Figure 1. Visual representation of the KDE training w orkflo w and the calculation of conformational state propensities and conformational state variability. 
The training of the models (grey background region) employs NMR ensembles from the PDBe and chemical shift information from the BMRB. The NMR 

ensembles are used to obtain secondary str uct ure assignments of each residue. The chemical shifts are emplo y ed to calculate the ShiftCrypt values. 
Both data sources are combined to assign the residues to a conformational state. Once the conformational state assignment of these residues is 
completed, their backbone dihedrals are extracted and used to fit six KDEs, one per conformational state. With these trained KDEs the conformational 
states probabilities as well as the conformational state variability can be calculated (dashed arrows). 
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(IDPs) to showcase its ability to identify regions of relative
order within otherwise disordered proteins. 

We implemented the approach as a python package, named
Constava, that is available on PyPI: https:// pypi.org/ project/
constava/. 

Materials and methods 

An overview of the connection between the Methods sec-
tions below is provided in Figure 1 . 

Generation of probabilistic model of 
conformational states 

Data collection 

Chemical shift data were collected from the Biological Mag-
netic Resonance Data Bank (BMRB) ( 10 ), using previously
described criteria ( 17 ). Summarised, only entries between re-
ported pH 5–7, temperature 293–313 K were selected for
which chemical shift data were available for 1 H, 13 C and
15 N for at least half the residues in the sequence. Entries
with samples containing agents that strongly influence pro-
tein behaviour (e.g. TFE, SDS, etc.; for complete list consult
Supplementary Table S1 in ( 17 )) were excluded, and chemical
shift re-referencing was performed with VASCO ( 18 ). Only
BMRB entries with corresponding NMR ensembles of at least
10 models were retained, resulting in 1414 entries totaling 147
116 residues. STRIDE was applied to all individual models of
the NMR ensemble ( 19 ,20 ). STRIDE uses structural informa-
tion to assign secondary structure labels to each residue and
thereby provides a categorical description of the conforma-
tion of that residue (for each model in the NMR ensemble).
ShiftCrypt ( 14 ) was applied to the chemical shifts to obtain a
single value per residue in the range 0 to 1 that relates to that
residue’s behaviour in relation to secondary structure propen-
sity and backbone dynamics. ShiftCrypt values near the ex-
tremes point towards residues that adopt rigid helix (near 0)
or sheet (near 1) conformations, while deviations towards the
center indicate increasingly dynamic residues with decreasing
degrees of helix / sheet propensity. The data are available in
Zenodo: https:// doi.org/ 10.5281/ zenodo.10371447 . 

Conformational state definition 

Based on the ShiftCrypt values and STRIDE ( 19 ,20 ) secondary
structure assignments of residues in NMR ensembles, we de-
fine six conformational states. We then annotated all residues
in the NMR ensembles according to these conformational
states, resulting in 62 125 annotated residues from 1322 pro-
tein ensembles. To obtain structural insights on conforma-
tional space that residues in each state cover, we extracted
the backbone dihedral angles φ and ψ for all residues in a
given category. To avoid the over- / underrepresentation of in-
dividual structures based on the number of models deposited
in their NMR ensembles, we randomly selected 5 models for
each structural ensemble assigned to a given BMRB ID. This
yielded a set of ( φ, ψ )-pairs for each of the conformational
states. 

• Core helix : Residues that exclusively adopt helical con-
formation in all models of their associated NMR ensem-
ble with shiftCrypt values ≤0.2; N = 93 957 residues 

• Surrounding helix : Residues that adopt helical confor-
mation in the majority of models of their associated
NMR ensemble with shiftCrypt values in the range (0.2,
0.4]; N = 8180 residues 

• Core sheet : Residues that exclusively adopt extended 

conformation in all models of their associated NMR en- 
semble with shiftCrypt values ≥0.8; N = 47 280 residues 

• Surrounding sheet : Residues that adopt extended con- 
formation in the majority of models of their associated 

NMR ensemble with shiftCrypt values in the range [0.6,
0.8); N = 11 280 residues 

• Turn : Residues that adopt turn conformation in the 
majority of models of their associated NMR ensemble 
with shiftCrypt values in the range (0.4, 0.6); N = 75 

377 residues 
• Other : Residues that adopt coil conformation in the 

majority of models of their associated NMR ensem- 
ble with shiftCrypt values in the range (0.4, 0.6); N = 

74 542 residues 

Gaussian kernel density estimators were then built for each 

conformational state using the scikit-learn python package 
with bandwidth for the Gaussians equal to 0.13 radians.
They represent how likely it is that a residue in a confor- 
mational state (as defined above) occupies a certain region in 

the backbone dihedral space as observed in the NMR ensem- 
ble. The robustness of these probabilistic models is assessed in 

Supplementary Figure S1 . 

Inference of conformational state propensities 

Given a conformational ensemble, the kernel density estimates 
can then be used to infer the conformational state propensities 
for each residue. To do so, ( φ, ψ )-angle pairs are extracted 

from the conformational ensemble and divided in M samples 
of N ( φ, ψ )-pairs. This can be done by bootstrapping N data 
points M times, or by using a sliding window of size N . For 
each of these samples the evidence is calculated by evaluating 
the probability density functions (PDF) at the given ( φ, ψ )- 
coordinates (equation ( 1 )). Then, the likelihood for any state 
is its evidence relative to all other evidence (equation ( 2 )). We 
generally report the average over all M samples obtained from 

the ensemble. 

Evidence m 

= 

n < N ∏ 

n =0 

PDF state (φn , ψ n ) (1) 

Likelihood m 

= 

Evidence m 

all states ∑ 

Evidence 

(2) 

Notably, the sample size N chosen to calculate the evi- 
dence strongly impacts the certainty with which conforma- 
tional states are inferred. For small sample sizes ( N ≤ 5), the 
method captures likelihoods that reflect the local backbone 
dynamics and conformational ambiguity, while for larger sam- 
ple sizes ( N > 20) the likelihoods result in a categorical assign- 
ment of a preferred conformational state for most residues 
(see Supplementary Figures S2 and S3 ). In general, we suggest 
a value of N = 3 to obtain information of the conformational 
state variability (see below), and a value of N = 25 to extract 
preferred conformational states. 

https://pypi.org/project/constava/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://doi.org/10.5281/zenodo.10371447
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
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efinition of conformational state variability 

n a conformational ensemble a residue may not only undergo
onformational changes (i.e. variation of its φ- and ψ -angles
aptured by the conformational state KDEs), but may change
ts conformational preference altogether. We label this as con-
ormational state variability, expressing the ability of a residue
o switch back and forth between conformational states. Note
hat this does not directly relate to changes of the φ- and ψ -
ngles but captures the ability of a residue to exist in multiple
onformational states, taking into account the structural vari-
tion that would be expected for any residue in that given
onformational state. 

To calculate the conformational state variability of a given
esidue in an ensemble we calculate the root mean square
istance from the average state across all M samples (equa-
ion ( 3 )). Here, L m 

is the likelihood of one sample to belong to
 conformational state as described in equation ( 2 ) and 〈 L m 

〉
s the average likelihood across all samples. 

Conf. State Var. = 

√ √ √ √ √ 

1 

M 

M ∑ 

m 

Conf. 
states ∑ 

i 

(L m,i − 〈 L m 

〉 ) 2 (3)

olecular dynamics simulations 

eference molecular dynamics (MD) simulations were per-
ormed for 113 proteins in order to validate the method pro-
osed in this work and to identify parameters that allow the
tudy of different aspects of conformational state variability.
he simulated proteins cover a wide range of proteins, from
isordered to partially ordered to fully ordered. The disor-
ered and partially ordered entries were selected from Mo-
iDB ( 21 ) based on their coil percentage, using as criteria
 90% coil (disordered) and approximately 50% coil (par-

ially ordered), respectively. Only entries with an annotation
overage higher than 90% were included. A diverse set of rigid
tructures was also defined by selecting proteins with different
rchitectures and topologies based on their CATH code ( 22 ).
ll the selected proteins had structures available that were ex-
erimentally determined by NMR and had an associated entry
n BMRB with extensive NMR chemical shift data available
 

13 C, 15 N and 

1 H). The full protein list with the selected PDB
odes that were used as starting conformations is available as
upplementary information (see Supplementary Data 1 ). 

The MD simulations were prepared and performed with
ROMACS ( 23 ) using the CHARMM36m force field ( 24 ).
ll 113 proteins were subjected to the same protocol to yield
n internally consistent data set. Starting from the PDB struc-
ure (1 

st model of an NMR ensemble), water molecules and
eteroatoms were removed. The systems were solvated using
IP3P water ( 25 ) in a rhombic dodecahedron simulation box
nd Na + or Cl - ions were added to neutralise the systems.
hen, the systems were minimised, followed by two equilibra-

ion steps. In the first step, the temperature was equilibrated
t 300 K over 1 ns of simulation under NVT ensemble. The
ussi thermostat was used with separate heat bath couplings

or solute and solvent ( 26 ). The second equilibration step was
erformed over 1 ns under NPT ensemble to keep the pressure
t 1 bar employing the Parrinello-Rahman barostat ( 27 ). 

We assessed the impact of sampling frequency and over-
ll simulation length on the sampling of protein backbone
onformations on five different proteins (PDB entries 1CLL,
1D3Z, 1QM3, 5PTI, and 2KUY, Supplementary Figure S4 ).
All simulations were performed for 1000 ns and coordinates
were recorded every 1 ns to limit the correlation between sub-
sequent sets of coordinates. To assess whether the sampling
time was sufficient to capture experimentally observed con-
formational states, we compared the conformational diver-
sity in the MD trajectories against structures annotated in the
CoDNaS database ( 28 ). For the 22 proteins represented in the
database, we found that the MD sampling either exceeds the
conformational variability recorded in CoDNaS or produces
similar results ( Supplementary Figure S5 ). 

To calculate the conformational state propensities and vari-
ability for each residue, the backbone ( φ, ψ )-angles were
extracted for all trajectories using GROMACS’ chi module.
Then, conformational state propensities and variability were
inferred as described above; samples of size 3 and 25 were
drawn by bootstrapping for 10 000 times from the trajectory.
Bootstrapping was chosen as with long sampling intervals in-
dependence of subsequent samples is assumed. Sampling size
3 was used to analyse local dynamics while sample size 25
informs on the conformational state propensity. 

For comparison with traditional secondary structure as-
signments, we applied DSSP ( 29 ,30 ) and STRIDE ( 19 ,20 ) to
all conformations extracted from the trajectories. For DSSP
we used GROMACS’ do_dssp module, while for STRIDE all
frames of the MD trajectories were extracted as individual
PDBs to be analysed. We further calculated DSSP and STRIDE
propensities as the fraction of frames per residue that are as-
signed to a given secondary structure category (H, E, ...). 

Analysis of α- and β-synuclein 

We obtained structural ensembles for both α-synuclein ( αSyn)
and β-synuclein ( βSyn) from the Protein Ensemble Database
( αSyn: PED00024, βSyn: PED00003) ( 31–33 ). The backbone
( φ, ψ )-angles were extracted from the conformational ensem-
bles. To calculate the conformational state propensities and
variability for each residue as described above, samples of size
25 were drawn by bootstrapping for 500 times. 

Results 

In this section, we discuss application cases for our proba-
bilistic approach to define protein conformation and dynam-
ics. We will describe the relation between the metrics and
established measures of conformation, and finally apply the
method to structural ensembles derived from MD simulations
and NMR experiments. 

Probabilistic definition of conformational states 

The definition of the conformational states is based on
the analysis of NMR ensembles, using the assumption that
residues with a consistent structural definition in all mod-
els of the NMR ensemble adopt a single well-defined con-
formation, whereas residues with variable structure defini-
tions adopt a wider range of conformations. This definition
is further refined based on a ShiftCrypt-based interpretation
of chemical shift information, which reflects the in-solution
behaviour of residues. In total 1322 NMR structural ensem-
bles (62 125 residues) were so analysed and their residues
subdivided into six conformational state categories (see Ta-
ble 1 ): Core helix , Surrounding helix , Core sheet , Surround-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
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Table 1. Description of conformational states and conformational state variability 

Parameter Abbreviation Definition Traditional interpretation 

Conformational 
state variability 

- The change in conformational states 
probability vectors based on the dihedral 
angles of models in a protein structure 
ensemble. Residues with changing 
conformational states propensities within the 
different structures of the ensembles feature 
higher values. 

The capability of a residue to adopt diverse 
conformational states. 

Core helix coreHelix Residues with minimal backbone dynamics 
that exclusively exhibit α-helical 
conformation. 

Residues in very stable rigid α-helices. 

Surrounding 
helix 

surrHelix Residues with significant backbone dynamics 
that mostly exhibit α-helical conformation, 
but undergo conformational changes. 

Residues found in kink regions of α-helices, 
but also encompassing transient helices, 
flexible helix termini, π-, and 3 10 -helices. 

Core sheet coreSheet Residues with minimal backbone dynamics 
that exclusively exhibit β-sheet conformation. 

Residues in stable rigid β-sheets but also in 
fully extended regions. 

Surrounding 
sheet 

surrSheet Residues with significant backbone dynamics 
that mostly exhibit β-sheet conformation, but 
undergo conformational changes. 

Residues found in kink regions and in the 
flexible termini of β-sheets as well as 
residues that preferably adopt the ppII state. 

Turn Turn Residues with high backbone dynamics 
labeled as mostly Turn conformation by 
STRIDE. 

Flexible residues found in turn-like 
conformations. 

Other Other Residues with high backbone dynamics 
labeled as mostly Coil conformation by 
STRIDE. 

Flexible residues that cannot be properly 
described by any of the other classes, 
typically found in disordered regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ing sheet , Turn and Other . To obtain probabilistic models of
these states in the backbone dihedral space, as extracted from
NMR ensembles, Gaussian kernel density estimators (KDE)
were trained. The conformational state propensities obtained
with the dihedrals and each of the KDEs are a quantitative
measure of the likelihood of a residue to assume this con-
formational state at any time of observation, given its back-
bone dihedral angles. These conformational states so reflect
typical experimentally observed low energy states of residues
(Figure 2 ). The corresponding backbone dihedral space dis-
tribution indicates the expected range of backbone dihedrals
that are available to a residue in that conformational state
without having to overcome significant energy barriers. In
particular the Core helix and Core sheet states exhibit deep
wells in their energy landscapes, that in turn reflect the re-
strained backbone dynamics of such residues. In contrast, en-
ergy wells in Turn and Other states are more shallow, al-
lowing for higher conformational freedom. A residue’s con-
formational state, thus, captures the preferential conforma-
tion of residues, as traditional secondary structure classifi-
cation does, as well as dynamical properties of the local
backbone. 

We further define the conformational state variability pa-
rameter as the ability of a residue to adopt multiple confor-
mational states in a given protein in a specific environment.
This variability does not reflect actual dynamics, but rather
indicates whether that residue is switching between different
low energy conformational states. For example, a residue in
states Turn or Other may exhibit high backbone dynamics
(its ( φ, ψ )-angles change constantly) while still having a low
conformational state variability (its overall behaviour is best
described by one conformational state). This would be a typ-
ical conformational state adopted by residues in disordered
regions of proteins. A residue in a well-defined stable helix,
on the other hand, will also have low conformational state
variability as well as very low backbone dynamics. 
Constava captures transient conformational states 

from MD ensembles 

The new metric was tested on a diverse set of conforma- 
tional ensembles extracted from MD simulations of 1000 ns 
length for 113 proteins exhibiting varying degrees of struc- 
tural order / disorder. From the trajectories ( φ, ψ )-angles were 
extracted at intervals of 1 ns, to minimise the correlation 

between subsequent snapshots. The conformational state 
propensities were then inferred from each individual ( φ, ψ )- 
angle pair, or using subsets of ( φ, ψ )-angle pairs of varying 
sizes (Figure 3 A and B). 

To investigate the impact of the number of ( φ, ψ )-angle 
pairs in the inference, a bootstrapping procedure was first 
employed to sample N ( φ, ψ )-angle pairs from random time 
points from the MD simulations. Increasing the number of 
N , where more angle pairs are considered at the same time,
leads to residues being assigned more preferentially to spe- 
cific conformational states. This is due to the conformational 
states sharing overlapping regions in the ( φ, ψ )-space, so 

that a single angle pair data point will correspond to mul- 
tiple regions (Figure 2 ). When increasing the sample size N ,
however, the information available to the model to assign a 
specific conformational state increases and results in more 
unique assignments of the conformational state. Further in- 
creases of N also then start to bias unique conformational 
states, with lower populated states that the protein might 
transition through disregarded. Thus, to assess a protein’s 
conformational state variability lower values of N are more 
informative, whilst higher values reflect the most preferred 

conformational state(s). Based on our analysis of the impact 
of the sample size N on the results, we propose two sam- 
pling sizes also used throughout our work: N = 3 to study 
conformational state variability, as it provides the best com- 
promise between a linear distribution values and a reason- 
able data range ( Supplementary Figures S2 and S3 ), while 
N = 25 is well suited to obtain preferred conformational 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
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A D

B

C F

E

Figure 2. Definition of the six conformational states in ( φ, ψ )-space. Each panel shows a conformational state represented by a continuous probability 
density function on the left, and the derived potential energy surfaces in the ( φ, ψ )-space on the right. The conformational states are shown for: ( A ) 
Core helix , ( B ) Surrounding helix , ( C ) Turn , ( D ) Core sheet , ( E ) Surrounding sheet and ( F ) Other . The potential energy surfaces illustrate how, e.g. a Core 
helix residue is conformationally restricted by high energy barriers, while Turn residues can adopt a wide range of backbone conformations without 
having to overcome such high energy barriers. This is further exemplified by the 2D projection in Supplementary Figure S12 . 
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tates without losing information on less populated states (see
upplementary Figure S6 ). 

The random sampling of the bootstrapping procedure,
owever, loses any information about connections between
odels, such as the timeline in an MD simulation. A sliding-
indow approach was therefore implemented, which instead
f randomly sampling from the whole population chooses
locks of adjacent (time-related) samples. This resulted in a
uch more sensitive detection of transient conformational

tates than regular bootstrapping (Figure 3 C and D). More-
ver, by gradually extending the window size of the slid-
ng window, information about the time intervals in which
hese states are transitioning between themselves can be ob-
ained. Small window sizes pick up more transient states of
horter duration, while longer window sizes only detect those
tates that are stable for a longer time (Figure 3 C and E).
upplementary Figure S15 shows an overview over the state
ransitions observed in our conformational dataset. Due to the
igher sensitivity, using a sliding window is the preferred sub-
ampling method for data obtained from time series (e.g. MD
rajectories). For ensembles where no relation between adja-
ent ensemble members can be assumed (e.g. NMR ensem-
bles), bootstrapping is the method of choice, as there is no
direct connection between the sampled models. 

Relation between NMR-defined conformational 
states and traditional secondary structures 

assignments 

DSSP ( 29 ,30 ) and STRIDE ( 19 ,20 ) are two of the most com-
mon tools to assign static secondary structure on protein
structures. By applying them on every structure of an ensem-
ble, conformational variable regions would receive changing
assignments. To compare how such serial secondary struc-
ture assignments differ from our probabilistic method, we ap-
plied Constava, DSSP and STRIDE to 113 MD ensembles. For
the narrowly defined Core helix and Core sheet conforma-
tional states, near linear relations to H ( α-helix) and E ( β-
sheet), respectively, emerged ( Supplementary Figure S7 A, C
and S8 A, C). This demonstrates that high propensities of Core
helix and Core sheet indicate rigid residues that adopt sta-
ble secondary structure conformations, which are equally cap-
tured by DSSP and STRIDE. For the more dynamic conforma-
tional states, relationships with traditional secondary struc-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
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A B

C D

E F

Figure 3. Analysis of MD simulation ensembles with Constava. The method was applied on the conformational ensemble derived from 100 ns of MD 

simulation on E. coli ribosomal protein L25 (PDB ID: 1b75). ( A ) Conformational state variability mapped on the str uct ure. Regions of high variability are 
the loop region as well as the C-terminal end of the helical region, which switches between helical and turn-like states. ( B ) Conformational states 
propensities mapped on the str uct ure. The rectangle highlights residues 5–29, where the largest conformational changes occur. ( C ) Conformational 
states as a time series along the simulation, using a sliding window with N = 3 (here 3 ns). Black boxes highlight transient conformational states 
apparent at this time-resolution. ( D ) Conformational states obtained from bootstrapping ( N = 3). Adjacent samples are not related. Transient states are 
sometimes detected, but are underrepresented in comparison to the sliding-window method. ( E ) Conformational states as a time series along the 
simulation, using a sliding window with N = 25 (here 25 ns). Black boxes highlight transient conformational states apparent at this time-resolution. 
Notably, fe w er transient states are detected compared to the smaller window size (panel C). ( F ) Conformational states obtained from bootstrapping ( N = 

25). With increasing sample size the likelihood to detect low populated transient conformational states further diminishes, and the detected 
conformational states increasingly converge on unique solutions. 

 

 

 

 

 

 

 

 

tures contributions are more complex, without clear correla-
tions ( Supplementary Figure S7 B, D–F and S8 B, D–F). 

However, the probabilistic nature of the conformational
states makes Constava more robust in detecting secondary
structure propensities from ensemble data than approaches
that only consider static protein structures like DSSP and
STRIDE. When analysing conformational ensembles from
e.g. MD simulations, Constava has the potential to detect
residues moving towards a secondary structure state, well 
before it is recognised by DSSP or STRIDE (Figure 4 and 

Supplementary Figure S9 ). In this example, Constava picks up 

on the propensities of multiple consecutive residues to form a 
helix long before the helix, as defined by DSSP and STRIDE,
emerges. In the study of IDPs that exhibit high conformational 
freedom, so that relevant transient conformations cannot be 
efficiently sampled, this ability of Constava could be extremely 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
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A

B

C

D

Figure 4. Comparison of conformational state propensities with traditional secondary str uct ure assignments. The plot shows residues 60–130 of 
Endonuclease V (PDB ID: 2end). ( A ) Assignments of Core helix propensities for the first 300 ns of the simulation. Notably, Consta v a continuously 
detects Core helix propensities ∼0.6 for residues 95–100. ( B ) DSSP assignment of H ( α-helix) for the first 300 ns of the simulation. As DSSP performs a 
classification, the propensities for H are 0 or 1. The transient helix for residues 95–100 only appears shortly after more than 200 ns of simulation. ( C ) 
STRIDE assignment of H ( α-helix) for the first 300 ns of the simulation. As STRIDE performs a classification, the propensities for H are 0 or 1. The 
transient helix for residues 95-100 only appears shortly after more than 200 ns of simulation. ( D ) Str uct ure of Endonuclease V with regions shown in 
panels A, B and C labeled. 
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seful in picking up pre-sampled conformations that are for
xample relevant for forming interactions, reducing the need
or unachievable exhaustive sampling. 

elation of conformational state variability to 

raditional dynamics metrics 

he MD simulations enable a comparison of the conforma-
ional state variability with established metrics. The root mean
quare fluctuations (RMSF) and circular variance (CV), as
alculated from the MD simulations, and the S 2 order pa-
ameter derived from the NMR chemical shifts using the
andom coil index ( S 2 RCI ) are shown in relation to the con-
ormational state variability, calculated with the bootstrap
ethod for 3 samples repeated 10 000 times, in Figure 5 and

upplementary Figure S10 . There is a very weak correlation
etween RMSF and conformational state variability (see Fig-
re 5 A), depicting a tendency for residues with low RMSF
o also show low conformational state variability (e.g. in rigid
table helix). Whereas RMSF quantifies all backbone displace-
ents, even if they do not affect the conformational state, the

onformational state variability only measures switches be-
ween conformational states at the residue level. 

There is a more pronounced correlation between CV and
onformational state variability (Figure 5 B). CV represents the
ariation in the backbone dihedral angle space, with no incor-
oration of their conformational meaning. In contrast, confor-
ational state variability represents transitions between con-

ormational states that do not directly correlate with changes
n the backbone dihedrals, as each conformational state ac-
counts for varying degrees of backbone dynamics. Therefore,
higher circular variance does not necessarily lead to high con-
formational state variability. For instance, a highly flexible
coil would consistently occupy the Other state (low confor-
mational state variability), while displaying high backbone
dynamics (high CV). For such a residue to show high con-
formational state variability as well, it would need to switch
conformational states, e.g. by partaking in the formation of a
transient helix. 

The S 2 RCI , a measure of backbone rigidity derived from
chemical shifts for the protein in solution, demonstrates a neg-
ative correlation to the conformational state variability (see
Figure 5 C). Yet, the relationship is not directly linear. The
cluster of residues with low conformational state variability
and high S 2 RCI values (bottom right cell) represents residues
with neither backbone movement nor changes in the confor-
mational state space, such as in rigid stable helix. The region
with S 2 RCI values below 0.69 predominantly features high con-
formational state variability values (top left cell), indicating
highly dynamic residues that do change their conformational
state. Note that there are also residues that have low confor-
mational state variability, indicating they adopt a unique state
( Other or Turn ). 

Finally, many residues have S 2 RCI higher than 0.69, indicat-
ing residues where the NMR chemical shift values point to
low backbone dynamics, but that still exhibit high conforma-
tional state variability. These represent residues that transi-
tion through the conformational state space but where these
changes are not captured by the NMR chemical shift values
(top middle and right cells). Since NMR chemical shift values

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
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Figure 5. Conformational state variability (bootstrap sample size 3, 10 0 0 0 samples) versus traditional metrics. ( A ) Root mean square fluctuations 
(RMSF) per residue calculated for all residues of proteins in the MD data set, P earson ’s r = 0.27 ( p = 0.00). ( B ) Circular variance (CV) calculated for all 
residues of proteins in the MD data set, P earson ’s r = 0.56 ( p < 0.001). ( C ) S 2 RCI from residues in 62 proteins from the MD data set for which S 2 RCI values 
w ere a v ailable ( Supplement ary Dat a 2 ), P earson ’s r = −0.41 ( p < 0.001). T he v ertical dotted lines indicate the border betw een lik ely disordered, 
context-dependent and ordered residues (left to right) as defined in ( 17 ). The horizontal dotted line is a visual guide to distinguish between residues with 
v ery lo w and higher conf ormational state v ariability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are averaged over all conformations adopted by the protein in
solution, this is possible when the chemical environment of the
atoms in the residue remains relatively constant (e.g. switches
between core and Surrounding helix ) or where a rigid stable
conformation dominates, but is not exclusive (e.g. a residue
that is Core sheet in 50% of the conformations but adopts
other conformational states the rest of the time). 

These findings indicate that conformational state variability
offers complementary insights that are not directly inferable
from existing dynamics metrics. 

Conformational state variability for amino acids per
order preference class 

Amino acids have intrinsic properties that predispose them
to facilitate the formation of ordered or disordered regions
in proteins. Based on a previously used classification ( 17 )
the conformational state variability was examined within
three classes: preferentially ordered (cysteine, phenylalanine,
isoleucine, leucine, valine, tryptophan, and tyrosine), neu-
tral (alanine, glutamic acid, lysine, methionine, glutamine,
arginine, threonine, and histidine) and preferentially disor-
dered (aspartic acid, glycine, asparagine, proline, and serine)
residues. As expected, amino acids with preference for order
exhibit lower conformational state variability than those with
preference for disorder (Figure 6 ). Notable exceptions in the
disordered category are glycine and proline. Both show low
conformational state variabilities, which in this case reflects
their tendency to exclusively adopt Turn or Other confor-
mational states, without switching to other conformational
states. Both these states represent mostly flat energy land-
scapes with low energy barriers, thus allowing for random
movement or disorder (Figure 2 ). Note that aspartic acid, as-
paragine, and serine have higher conformational state vari-
ability, indicating they are more capable of switching states.
This highlights an interesting feature of the conformational
state variability, residues that remain in the same low energy
conformational state, even if that conformational state is ef-
fectively dynamic, exhibit low conformational state variabil-
ity. This is also reflected in Other conformational states in
Supplementary Figure S13 . 
Conformational states capture regions of partial 
order in α- and β-synuclein 

To assess the ability of our method to obtain relevant features 
from structural ensembles, we applied the method to two the 
Protein Ensemble Database (PED) ensembles of two well stud- 
ied IDPs: α-synuclein ( αSyn) and β-synuclein ( βSyn). αSyn is 
an intrinsically disordered peptide whose aggregation plays a 
central role in the pathogenesis of Parkinson’s disease, while 
its βSyn family member is less prone to aggregation. 

Both proteins have been extensively studied by NMR,
which indicated that the N-terminal part of both proteins 
( αSyn: aa 1-98, βSyn: aa 1–76) adopts random coil confor- 
mation. In contrast, the C-terminal region of both proteins 
exhibited extended conformations, with αSyn primarily being 
in β-sheet conformation ( 32 ) and βSyn adopting a polypro- 
line II (ppII) state ( 33 ,34 ). Constava here illustrates its ability 
to extract these key features from a structural ensemble. While 
the N-terminal parts in both proteins primarily show Other 
with intermittent Turn corresponding to random coil state,
the C-terminal propensities are shifted towards extended con- 
formations, i.e. Surrounding sheet and Core sheet (Figure 7 ).
Notably, the Core sheet region, which is exclusively populated 

in αSyn is strictly limited to β-sheet conformations, while 
Surrounding sheet which is prevalent in βSyn covers all ex- 
tended states including the ppII region. Whilst these ensembles 
were generated using the NMR data and so should reflect ex- 
perimental observations, Constava here shows the ability to 

directly pick up these relevant structural determinants with 

straightforward visualisation and interpretation possible. 

Discussion 

The advent of AlphaFold2 has revolutionised the field of struc- 
tural bioinformatics by rapidly and accurately providing the 
structure of protein regions that adopt a stable well-defined 

fold. The focus is now shifting to predicting multiple confor- 
mational states for proteins, with as extreme case providing 
structure ensembles for intrinsically disordered regions or pro- 
teins. However, describing such conformational ensembles re- 
quires probabilistic metrics that capture (transient) features of 
such ensembles, as single models cannot represent the overall 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
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Figure 6. Conformational state variability values per amino acid type grouped according to their order preference. The 5 C- and N-terminal residues of 
each protein were excluded to remove end-of-chain bias towards disorder (e.g. methionine is often found as the first residue in a sequence). Amino 
acids which prefer order generally ha v e the lo w est conf ormational state v ariability. Gly cine and proline ha v e lo w er conf ormational state v ariability v alues 
as they tend to adopt respectively Turn and Other states. The raw data plot is available in Supplementary Figure S11 . The conformational state variability 
(Variability) displa y ed in this figure w as inferred with bootstrap sample siz e 3 (10 0 0 0 samples). Each violin represents the densit y of residues along the 
range conformational state variability values. Encased within each violin, a blue bar delineates the inter-quartile range (IQR), extending from the first 
quartile (Q1) to the third quartile (Q3), thus, encompassing the middle 50% of the data points, and it contains a white dot which marks the median. From 

the ends of this bar, thin lines stretch out to the extremes, capped at the minimum and maximum values observed in the data set. 
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ehaviour of a protein, for example even if the protein does
orm transient helix turns these will traditionally only be iden-
ified in the models if stable hydrogen bonds are present. This
ork introduces a probabilistic data-driven definition of likely

ow-energy conformational states of amino acid residues in
roteins based on the analysis of NMR ensembles and associ-
ted chemical shifts. We defined a total of six conformational
tates: Core helix , Surrounding helix , Core sheet , Surround-
ng sheet , Other , and T urn . W e further introduced the concept
f conformational state variability, a parameter that describes
ow often a residue switches between these conformational
tates. Both concepts are encompassed in the Constava soft-
are, which enables users to infer conformational states and

heir variability from an ensemble of structure models pro-
uced by molecular dynamics or other approaches. Constava
escribes the observed behaviour of each individual residue
n such a conformational ensemble in terms of the relative
ropensities of the conformational states it adopts. Previous
ork demonstrated how such probabilistic descriptions can
e used to efficiently sample realistic protein conformations
 35 ). 

When applied to molecular dynamics simulations, Con-
tava is able to capture preferred and transient conformational
tates adopted by residues. Small sample sizes detect low pop-
lated transient states and provide a description of the con-
ormational state dynamics of the residue. In contrast, larger
ample sizes will detect only preferential conformational states
nd disregard transient states. The method can therefore de-
ect different conformational features depending on the pa-
ameters used. When the subsampling directly uses a sliding
indow over the time series information in MD trajectories,

t is even more sensitive towards transient conformational
tates that residues adopt. Since the sample size in that case
irectly relates to time intervals in the simulation, the method
an be fine tuned to capture conformational states that per-
ist specific time intervals. This distinguishes Constava from
redictors of disordered regions or aggregation regions, such
s IUPred ( 36 ), DisoMine ( 37 ) or TANGO ( 38 ). It provides
alues representing the likelihood for the defined conforma-
tional states, which also capture the protein’s conformational
dynamics, while through the conformational state variability
it identifies the way residues change between conformational
states. Moreover, as these values are derived from statistical
potentials, the Constava conformational states in principle al-
low for a thermodynamical interpretation (Figure 2 ). 

The conformational state variability definition is non-linear
and is not necessarily directly related to absolute changes in
backbone dihedral angle space. The Other state, for example,
covers a wide range of dihedral space, so if a residue samples
this range in dihedral space it will be exclusively assigned the
Other state and have low conformational state variability -
it adopts the same low-energy conformational state. Further
motions within this same conformational state then also do
not lead to any changes in its conformational state. Residues
that exhibit high conformational state variability on the other
hand do switch between different typical low-energy states.
They therefore indicate regions that experience ‘conforma-
tional state switches’ in the protein. Such an interpretation dif-
fers significantly from metrics based purely on structural de-
scriptors like root mean square fluctuations (RMSF) or circu-
lar variance (CV), which non-discriminatively interpret vari-
ations in respectively inter-atomic cartesian distances or dihe-
dral angles. Consequently, it is not possible to infer the con-
formational state variability directly from these other metrics
(Figure 5 ). 

The conformational state variability does relate in differ-
ent ways to the NMR chemical shift derived RCI-derived S 2

order parameter ( S 2 RCI ). Three categories of residues can be dis-
cerned: Highly ordered residues with low potential for confor-
mational states changes, disordered residues which continu-
ously change between conformational states, and residues ca-
pable of adopting stable conformational states, but with the
capability of transitioning among different states. The entropy
of the conformational states in the ( φ, ψ )-space is a mea-
sure of how sensitive the conformational state variability is
to changes in the backbone dihedrals ( Supplementary Figure 
S14 ). Remarkably, the last category is comprised of residues
with relatively high S 2 RCI , indicating little backbone dynam-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae082#supplementary-data
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B

A

Figure 7. Results of Constava for α- and β-synuclein. For each protein the per-residue conformational state variability is shown (top) as well as the 
conformational state propensities for all the six conformational states (bottom) as calculated from the PED ensemble. ( A ) In α-synuclein the N-terminal 
region (aa 1-98) is mostly in Other with intermittent Turn and localised Surrounding sheet conformational states around residues 20 and 63. In the 
C-terminal part of the protein Surrounding sheet and Core sheet become more prominent, indicating an increased preference for extended str uct ures, 
with reduced conformational state variability. ( B ) In β-synuclein the N-terminal region (aa 1–76) is mostly in Other with again intermittent Turn 
conformational states and localised Surrounding sheet and one outlier Core sheet residue. The C-terminal part of the protein shows Surrounding sheet 
but no Core sheet , suggesting a pre v alence of ppII-like conformations rather than actual β-sheets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ics, that still transition between states. This showcases how
Constava can detect conformational state changes that are not
picked up by NMR chemical shift values. 

The conformational state variability also provides an inter-
esting perspective on amino acid behaviour. Although the gen-
eral categories of order-neutral-disorder inducing amino acids
are as expected represented by low to high conformational
variability, glycine and proline frequently feature lower values
than the other amino acids in the disordered category. This in-
dicates their preference to adopt exclusively the Turn or Other
conformations as their low-energy states, with wide and flat
energy landscapes for their dihedral space that allow them to
continuously adopt a wide range of backbone conformations
(Figure 2 ). Only rarely do they adopt multiple conformational
states, in contrast to serine for example, which easily switches
between them and can therefore accommodate multiple con-
formational states. Constava can, in this light, also identify
regions with higher degrees of order in structure ensembles of
intrinsically disordered proteins, represented by core and sur-
rounding states. In the PED ensembles of α-synuclein ( αSyn)
and β-synuclein ( βSyn), Constava directly identifies the β-
sheet prone regions in αSyn as well as the ppII prone regions
in the C-terminus of βSyn. 

These examples showcase how the probabilistic definitions
of conformational states allows for the reliable extraction of
high-level information about protein behaviour in the study
of (highly) dynamic proteins. Where large conformational en- 
sembles are available, Constava does offer a novel way to 

identify the conformational states of residues, as well as how 

likely residues are to switch between conformational states.
This is particularly useful in describing and classifying pro- 
teins with highly variable structures, such as IDPs ( 1 ) or fold- 
switching proteins ( 39 ), for which static definitions of confor- 
mation are not appropriate. We hope this approach will help 

in redefining our interpretation of proteins as dynamic, not 
static, entities with variable behaviour. The method is avail- 
able as a PyPI package and all data used in this is freely avail- 
able in the public domain. 

Data availability 

All data used in this work have been compiled in a sin- 
gle Zenodo repository ( https:// doi.org/ 10.5281/ zenodo. 
10371447 ). The Constava software is available as a 
PyPI package ( https:// pypi.org/ project/ constava/ ). The 
source code is accessible on GitHub ( https://github.com/ 
Bio2Byte/constava ) and may be used and redistributed 

under GPLv3 license; version 1.0.0 in preparation of 
this manuscript has been deposited in Zenodo ( https: 
// doi.org/ 10.5281/ zenodo.10649793 ). An interactive Colab 

notebook is available with examples of the execution of the 

https://doi.org/10.5281/zenodo.10371447
https://pypi.org/project/constava/
https://github.com/Bio2Byte/constava
https://doi.org/10.5281/zenodo.10649793
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oftware: https:// colab.research.google.com/ github/ Bio2Byte/
ublic _ notebooks/ blob/ main/ constava _ examples.ipynb . 

upplementary data 

upplementary Data are available at NARGAB Online. 
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