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Abstract

Microbial minimal generation times range from a few minutes to several weeks. They are evolutionarily determined by
variables such as environment stability, nutrient availability, and community diversity. Selection for fast growth adaptively
imprints genomes, resulting in gene amplification, adapted chromosomal organization, and biased codon usage. We found
that these growth-related traits in 214 species of bacteria and archaea are highly correlated, suggesting they all result from
growth optimization. While modeling their association with maximal growth rates in view of synthetic biology applications,
we observed that codon usage biases are better correlates of growth rates than any other trait, including rRNA copy
number. Systematic deviations to our model reveal two distinct evolutionary processes. First, genome organization shows
more evolutionary inertia than growth rates. This results in over-representation of growth-related traits in fast degrading
genomes. Second, selection for these traits depends on optimal growth temperature: for similar generation times purifying
selection is stronger in psychrophiles, intermediate in mesophiles, and lower in thermophiles. Using this information, we
created a predictor of maximal growth rate adapted to small genome fragments. We applied it to three metagenomic
environmental samples to show that a transiently rich environment, as the human gut, selects for fast-growers, that a toxic
environment, as the acid mine biofilm, selects for low growth rates, whereas a diverse environment, like the soil, shows all
ranges of growth rates. We also demonstrate that microbial colonizers of babies gut grow faster than stabilized human
adults gut communities. In conclusion, we show that one can predict maximal growth rates from sequence data alone, and
we propose that such information can be used to facilitate the manipulation of generation times. Our predictor allows
inferring growth rates in the vast majority of uncultivable prokaryotes and paves the way to the understanding of
community dynamics from metagenomic data.
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Introduction

Maximal growth rates are central to microbial life-history

strategies [1–9]. Among host-associated bacteria, competition

often results in increased virulence through selection for higher

growth rates as these have an outstanding role in the trade-off

between rapid horizontal dissemination and slow clearance from

the host [10,11]. Highly infectious bacteria are associated with

high maximal growth rates, e.g. enterobacteria, whereas bacteria

producing chronic infections, e.g. mycobacteria, typically grow

slowly under optimal conditions. The rapidity of spread of some

bacteria poses a problem of urgency in antibiotic treatment,

rendered more difficult by arising multiple resistances [12]. But

slow growing bacteria sometimes also pose a therapeutic problem,

as many antibiotics are ineffective in very slow growing cells [13].

Among free-living bacteria there is also a trade-off between fast

growth in copiotrophs and scavenging potential in slow-growing

oligotrophs [4,14,15]. Copiotrophic bacteria tend to have low

affinity transporters and abundant gene expression machinery

allowing fast growth in periods of feast, while enduring starvation

in periods of famine where much of the protein synthesizing

machinery is degraded [16]. Slow growing oligotrophs have high

affinity transporters allowing them to thrive even under very small

nutrient concentrations, but these become saturated or even toxic

at high nutrient concentrations leading to their selective exclusion

by fast growers in rich environments [17]. Because growth rates

are outcomes and constraints of microbial life-history strategies, it

is important to understand the mechanisms allowing fast growth

and how they are imprinted by natural selection in genomes.

Inversely, it would be extremely useful to predict maximal growth

rates from sequence alone. This would allow establishing

generation time predictions for the vast numbers of unknown or

uncultivated bacteria for which we lack such information.

Classical studies in E. coli physiology have uncovered the

physiological changes concomitant with fast growth (reviewed in

[18]). When E. coli’s generation time decreases from 100 to

24 min, cellular RNA polymerases (RNAP) are multiplied by 15

and ribosomes by 10. A large fraction of the additional

transcription capacity is used to produce stable RNA (rRNA and

tRNA). While the rate of synthesis also increases, it does so at

much more moderate rates, e.g. elongation is faster by 40% for

RNAP and 75% for ribosomes, which then attain maximal

translation capacity. Thus, high growth rates result more from the

increase in the production of the gene expression machinery than
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from its increasing productivity. At high growth rates, about 74%

of all E. coli transcription concerns the production of stable RNA.

To allow for such high levels of expression stable RNA genes tend

to be in multiple copies in fast growing bacteria [19]. This

multiplicity of rRNA operons constitutes a metabolic burden at

lower growth rates [20].

In fast growing E. coli B/r, a replication round starts every

20 minutes, corresponding to the cell’s minimal doubling time.

Yet, replication of the chromosome takes ,45 minutes [21]. This

is possible because multiple rounds of replication can occur

concurrently. The start of a new replication round before the

previous one has finished doubles the number of regions around

the replication origin in the cell. In cells with three simultaneous

rounds of replication, genes the near the origin are thus 8 times

more abundant in the cell than the genes near the terminus of

replication. In the absence of negative feedback regulatory control,

replication associated gene-dosage effects result in higher gene

expression levels near the origin of replication [22–24]. Since

genes coding for the translation and transcription machineries are

under particularly strong demand at times of fast growth, there is a

strong selection for their positioning near the origin of replication

in fast growing, but much less so in slow growing, bacteria [25].

Even if tRNA concentration in the cell increases with growth

rates, the tRNA/ribosome ratio decreases by 50% when

comparing slow and fast growing E. coli [26]. The tRNA pool

becomes limiting at very high growth rates. Thus, its quick

turnover at ribosomes is under strong selection. This can be

optimized if codons of highly expressed genes under fast growth

recruit the most abundant tRNA in the cell [27]. Such codon

usage bias, i.e. differential preference of some synonymous codons

over others, is therefore as strong as the gene is highly expressed

[28,29]. It is also stronger for fast growing bacteria because of the

above-mentioned decrease of tRNA/ribosome at higher growth

rates and because in these conditions the few percent most highly

expressed genes account for a larger fraction of all gene expression.

Codon usage bias is thus thought to result from selection for

accurate and fast translation by maximizing the recruitment of the

most abundant tRNAs into ribosomes [30]. The highly significant

role of translation and its machinery in the cell budget of fast

growing bacteria makes codon usage bias a good predictor of gene

expression levels under exponential growth [31,32].

There have been studies on the association between maximal

growth rates and rRNA operon [1,19,33,34] and tRNA [35,36]

multiplicity, replication-associated gene dosage [25,37] and codon

usage biases [35,38]. All these factors are thought to imprint

genomes in accordance with the microbe’s maximal growth rates.

Previous studies focused on only one of the traits in one or few

genomes and sometimes using coarsely binned growth data. To

understand the relative role and importance of each factor and be

able to manipulate growth rates more integrative studies are

required. Unfortunately, the paucity of physiological data for the

vast majority of microbes precludes the use of mechanistic models

that can only be parameterized in E. coli [39]. Hence, we decided

to use an empirical approach to answer the following questions:

What is the association of each growth-related trait with maximal

growth rates? How inter-correlated are they? What is their

predictive power? Can we use the growth-related genomic traits to

test ecological hypothesis with metagenomic data?

Results/Discussion

Genomic signatures of adaptation to fast growth
Following a previous work [35], we extracted from primary

literature 214 minimal generation times (d) of species of bacteria

and archaea (Table S1). We used this data to assess how genomic

traits correlate with minimal generation times. We started by

analyzing its correlation to genome size. Historically, microbial

genomes have been viewed as short and compact due to selection

for rapid replication and fast growth. In agreement with previous

work [40,41], we found no evidence for a positive correlation

between minimal generation time and genome size or genome

density (Spearman correlations r= 20.10 and 20.08, p-val-

ue = 0.13 and 0.24). The reasoning that smaller genomes allow for

quicker replication is belied by the observation that replication can

be initiated before the previous rounds have finished. There is thus

no necessity for a direct correlation between genome size and

minimal generation time, as observed.

As expected, we found an increase in copy number of rRNA

(Figure 1) and tRNA genes (Figure S1) with decreasing minimal

generation times (r= 20.59 and r= 20.51, all p-value,0.0001).

The multiplicity of the subset of nearly ubiquitous tRNAs (ubi-

tRNA, listed in Table S2), which in most species match the most

favored codons [35], is more correlated with d than the other

tRNA genes (ubi-tRNAs and non-ubi-tRNAs respectively,

r= 20.54 and r= 0.13, p-value,0.0001 and p-value = 0.06,

Figure S1). While many enterobacteria contain two copies of the

highly expressed elongation factor Tu [42], we found no

systematic trend for duplication of highly expressed protein coding

genes in fast growers. Since each mRNA is translated ,100 times

[18], multiple copies of ribosomal protein coding genes would only

be required to match the expression of rRNAs if the latter was

present in excess of 100 copies. However, in our dataset, and in the

rRNA Operon Copy Number Database [43], the maximal

number of rRNA operon copies is 15 for Photobacterium profundum.

As described above, gene dosage of highly expressed genes can

be increased transiently when these genes are located near the

origin of replication in fast growing cells. Indeed, a positive

correlation was found between minimum generation time and the

relative distance to the origin of replication of rRNA genes

(r= 0.36, Figure 1), RNA polymerase genes (r= 0.42), ribosomal

proteins coding genes (r= 0.42), tRNA (r= 0.35) and ubi-tRNA

(r= 0.41) genes (Figure S2) (all p-values,0.0001). Hence, our data

Author Summary

Microbial minimal generation times vary from a few
minutes to several weeks. The reasons for this disparity
have been thought to lie on different life-history strategies:
fast-growing microbes grow extremely fast in rich media,
but are less capable of dealing with stress and/or poor
nutrient conditions. Prokaryotes have evolved a set of
genomic traits to grow fast, including biased codon usage
and transient or permanent gene multiplication for dosage
effects. Here, we studied the relative role of these traits
and show they can be used to predict minimal generation
times from the genomic data of the vast majority of
microbes that cannot be cultivated. We show that this
inference can also be made with incomplete genomes and
thus be applied to metagenomic data to test hypotheses
about the biomass productivity of biotopes and the
evolution of microbiota in the human gut after birth. Our
results also allow a better understanding of the co-
evolution between growth rates and genomic traits and
how they can be manipulated in synthetic biology. Growth
rates have been a key variable in microbial physiology
studies in the last century, and we show how intimately
they are linked with genome organization and prokaryotic
ecology.

Genomic Imprint of Growth Rates
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supports previous work suggesting that high growth rates are

correlated with high transient or stable gene dosage in highly

expressed genes associated with translation and transcription [25].

The importance of gene multiplicity, based on gene deletion

studies, has been attributed to selection for quick start of

exponential growth, not for its maintenance [1,2,19,44]. These

two effects are tangled in genome organization because selection

for fast growth is usually associated with selection for quick start of

exponential growth in copiotrophic bacteria enduring feast and

famine regimes [1,16,45]. Once replication has started, the

replication-associated gene dosage effect ensures that rRNAs are

in much higher copy number in the cell than expected given their

gene multiplicity. This makes the 7 copies of rRNA genes in E. coli

to effectively increase in the cell by a factor of 5 under maximal

growth [18]. Thus, gene multiplicity and replication-associated

gene dosage can be seen as complementary, with the former being

essential for the start of exponential growth and affecting stable

RNA genes, and the latter ensuring high cellular concentration of

translation and transcription-associated highly expressed genes

under stable growth, thus affecting both RNA and protein coding

genes.

Finally, two previously proposed indices of codon usage bias in

highly expressed genes DENC9 [35] and S [46] correlate

negatively with d (respectively, r= 20.64 and r= 20.54, p-

value,0.0001, Figure 1). For the calculation of these indices we

used the ribosomal proteins as the set of highly expressed genes

under exponential growth (see Materials and Methods), as this is

frequently done [29,32,35]. The ubiquity and high conservation of

ribosomal proteins facilitate the identification of this set of genes in

the subsequent metagenomic analyses. We tested that the results

remained qualitatively similar when using other highly expressed

genes under exponential growth, such as elongation factors or

RNA polymerase genes (data not shown). Although DENC9

corrects for the influence of the G+C content of the genome on

codon usage bias, we verified that G+C content is not correlated

with minimal generation time (r= 0.06, p-value = 0.39) nor with

DENC9 (r= 0.09, p-value = 0.24). Incidentally, genomic G+C

content correlates with genome size (r= 0.61, p-value,0.0001)

[47,48]. The correlation between codon usage bias and minimum

generation time is attributable to the selective pressure acting on

highly expressed genes for the use of translationally optimal

codons in these genomes where few genes correspond to the vast

majority of gene expression. While experimental work has shown

the advantages of optimizing codon usage bias for expression of

heterologous proteins [49], our results suggest that optimization of

highly expressed genes should lead to higher growth rates.

Phylogenetic dependencies between species may introduce a

potentially important confounding factor in our analysis. If

doubling times have important phylogenetic inertia then closely

related genomes are bound to have similar growth rates and

similarly important growth-related traits because their last

common ancestor is too recent for these genomes to have diverged

significantly. Hence, similarity in growth-related traits would not

represent independent adaptive processes [50]. To test the effect of

phylogenetic dependences we made an independent contrast

analysis using a 16S-based phylogenetic tree (see Materials and

Methods). All but one variable remained highly significantly

correlated with minimal generation times after control for

Figure 1. Genomic signatures correlated to minimum generation time (d) for 214 prokaryotes. Correlation between d and (A) the
number of rRNA operons in the genome, (B) the relative distance from the origin of replication to rRNA genes (excluding species with no retrievable
origin), 0.5 corresponds to half the replicon, (C,D) codon usage bias indices DENC9 [35] and S [46]. Spearman correlations are given (r) with all p-
values,0.0001. Dashed lines represent the trend of the correlation.
doi:10.1371/journal.pgen.1000808.g001
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phylogenetic dependencies (Table 1). We have no explanation for

the only exception, corresponding to the distance to the origin of

replication of ubi-tRNA genes. We then analyzed how the

difference in minimal generation times between two genomes

increased with evolutionary distance (Figure 2A). This shows that

when genomes are distant more than 0.2 substitutions/nt in our

alignment there is no correlation between the two variables. Less

than 8% of all pairs of genomes are distant by less than this

threshold distance. This shows that evolutionary inertia on

minimal growth rates is indeed low, often limited to the genera.

We then performed the same analysis for all other variables

(Figure 2B). This shows that even at low evolutionary distances,

the minimal generation time has the lowest evolutionary inertia. It

is thus tempting to speculate that changes in minimal growth rates

tend to pre-date changes in growth-related traits, and not the other

way around.

In summary, low minimal generation times are associated with

the optimization of the translation machinery through: codon

usage bias, an increased number of rRNA and tRNA gene copies

by gene amplification, and the transient replication associated

gene dosage of highly expressed genes under exponential growth.

This information could be useful to reprogram growth rates in

prokaryotes by synthetic biology approaches because modification

of these traits should modify minimal generation times. Indeed,

lower growth rates result from deletion of rRNA operons and from

inversions decreasing gene dosage effects [19,51]. Similarly, lower

codon usage bias leads to lower growth rates in viruses [52].

Naturally, not all traits are equally easy to manipulate. While

insertions of extra rRNA operons, e.g. using plasmids, are

relatively straightforward, extensive changes in codon usage bias

are only viable if the whole sequence is synthesized in vitro. This is

now possible for viruses and even small bacterial genomes [53,54].

Codon usage bias is the best determinant of minimum
generation time

Having delimited a range of 10 variables that correlate

significantly with maximal growth rates (column Individual R2 in

Table 1), we estimated their predictive power using stepwise

forward regressions. This allows to iteratively introduce in the

model the most contributing variables while minimizing the

number of variables in the model by excluding the ones without

significant explanatory power [55]. For this analysis, we only used

the 188 species for which we could retrieve an origin of replication

(out of 214). To normalize the data we used a box-cox

transformation Wl(d), which in this case approximates to the

commonly used log-transformation (Figure S3). We focused on the

increase in explained variance given by the inclusion of each

variable (column Cumulative R2 in Table 1). The highest

contributing variables are DENC9, S and the relative distance of

the rRNA genes to the origin of replication (R2 contribution column

in Table 1). Prokaryotic genes often cluster in operons. We

therefore tested if there were changes in the results if we had used

operons instead of genes. We did this in the most significant

positional variable, rDNA, and found no differences in the

correlation with doubling time (r= 0.37 for genes and r= 0.36 for

operons, both p-values,0.0001). Although rRNA operon multi-

plicity has a high individual explanatory power, it doesn’t add new

information into the model when codon usage bias, which has

higher explanatory power, is already included. Hence, adaptation

to fast growth is very strongly correlated in terms of gene

multiplicity and codon usage bias, possibly because both are

essentially associated with the optimization of translation. Genome

organization around the origin of replication is less correlated with

codon usage bias, possibly because it reflects the impact of

replication rates on transcription: faster DNA polymerases lead to

lower gene dosage effects for a similar generation time.

We then tested if the phylogenetic information could be a good

predictor of minimal generation times. For this we made a

stepwise regression where we added one more variable: the

generation time of the most closely related genome. This variable

adds little additional information (R2 = 0.65 versus R2 = 0.61

without the variable). The first variable to enter in the stepwise

regression is still DENC9 (Table S3). This result is consistent with

the abovementioned low phylogenetic inertia of minimal gener-

Table 1. Most informative attributes for the prediction of minimum generation time.

Variable Individual r Individual R2 Cumulative R2 Order Ordered contribution R2

DENC9A 20.70++ 0.50++/** 0.50++ 1 0.50++

SA 20.60++ 0.39++/** 0.56++ 2 0.06++

rRNA positionB 0.36++ 0.15++/** 0.59+ 3 0.03+

ubi-tRNA positionB 0.41++ 0.21++/NS 0.60 4 NS

rRNA numberC 20.66++ 0.41++/** 0.61 5 NS

tRNA positionB 0.35++ 0.18++/* 0.61 6 NS

tRNA numberC 20.59++ 0.33++/** 0.61 7 NS

ubi-tRNA numberC 20.68++ 0.40++/** 0.61 8 NS

rpol positionB 0.42++ 0.18++/** 0.61 9 NS

rp positionB 0.42++ 0.17++/** 0.61 10 NS

Acodon usage bias effects.
Breplication-associated gene dosage effects.
Cgene multiplicity effects.
NS: non-significant p-value; ++ p-value,0.001; + p-value,0.05.
After phylogenetic dependency correction: ** p-value,0.001; * p-value,0.05; NS: non-significant p-value.
The results of a stepwise forward regression are given, where the most informative attributes enter first. Individual and cumulative coefficients of determination (R2) are
given for the 10 genomic attributes under study. Individual and cumulative R2 are, respectively, the fraction of the variance of minimum generation time explained by
the variable alone and by the variable combined with all the variables above in the table (N = 188). The p-values before and after phylogenetic dependency correction
are given for the individual R2. Species with unknown origins of replication were excluded.
doi:10.1371/journal.pgen.1000808.t001
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ation times. Since phylogenetic information is not as amenable to

mechanistic interpretation as the other variables we didn’t include

it in the final predictor.

DENC9 and S both measure the intensity of selection for

optimization of the translation of highly expressed genes.

However, because they do it differently they both carry significant

predictive power. These are the only genomic traits mentioned

above that can be calculated from partial genome sequences, an

undeniable advantage for the construction of a sequence-based

predictor of minimum generation time. Evaluation of the codon

usage bias does not require prior knowledge about the origin of

replication, we can thus build our predictor on the full dataset

(N = 214).

Since together DENC9 and S have larger explanatory power

than individually (R2
DENC9 = 0.44, R2

S = 0.33, R2
both = 0.49, p-

value,0.0001), we combined them using principal component

analysis. The first component, explaining 47% of the variance of

minimum generation times, was called F (r= 20.66, p-val-

ue,0.0001). A preliminary linear predictor of Wl(d) in function

of F was obtained by a least squares regression (N = 214,

R2 = 0.47):

Wl dð Þ~0:8741{0:6496:F ð1Þ

Fast growth while coping with extreme temperatures
The fit of the model showed that psychrophiles and thermo-

philes are systematically grouped above and below the prediction

line, respectively (Figure 3). This suggests that part of the deviation

from the model is biologically relevant and not a mere product of

poor modeling or measurement errors. The residuals of the

regression, representing the deviations to the model, are negatively

correlated with optimal growth temperature (r= 20.37, p-

value,0.0001, Figure 4). Naturally, we used minimal generation

times obtained at optimal growth temperatures, therefore this

result does not reflect slower growth at low temperatures of species

with higher optimal growth temperature. This is also not an

indication of higher growth rates at optimal growth temperatures

in thermophiles. In fact, there is no significant difference of

minimal generation times between thermophiles, mesophiles and

psychrophiles (p-value.0.05 for ANOVA and Wilcoxon tests).

This is also not caused by the over-representation of archaea

among thermophiles, since archaea and bacteria do not have

significantly different deviations to the model (p-value.0.1,

Wilcoxon test). The association between deviations to the model

and optimal growth temperature indicates that psychrophiles

(thermophiles) are slower (faster) growers than expected given their

genome growth-associated traits. While the above residuals are

from a regression where only codon usage bias was used, we found

similar patterns while analyzing the residuals of regressions using

only information on gene multiplicity or replication associated

gene dosage effects (data not shown). Hence, the association of

deviations of the growth-related traits with optimal growth

temperature is not exclusive to codon usage bias. Since there are

no differences in minimal generation times between the different

groups this suggests that for a given minimal generation time the

psychrophiles require more structured genomes than mesophiles

and these more than thermophiles.

Fast-growth associated traits are probably under weak selection,

therefore subject to mutation-selection-drift balance. These results

could then be interpreted as a sign of negative temperature

dependence of selection for growth-related traits. At high

temperature there would be less selection for optimization of

these traits than at lower temperatures. Accordingly, mutations

disrupting these traits are under strong purifying selection in

psychrophiles and relaxed selection in thermophiles. For example,

Desulfotalea psychrophila, Methylobacillus flagellatus and Pyrococcus

furiosus present very similar genomic trends of adaptation to a

minimum generation time of ,3 hours (F = 20.23, 20.20 and

20.25 respectively). However, their respective observed minimum

generation times are of 27, 2 and 0.6 hours for optimal growth

temperatures of 7, 36 and 100uC.

The temperature dependence of the deviations to the model

could also result from differences in effective population sizes in

the different groups, if effective population size decreases with

optimal growth temperature. We don’t have data allowing the test

Figure 2. Relative difference between the minimum generation
time, codon usage bias indices, and G+C content of pairs of
organisms and their phylogenetic distance for 214 prokary-
otes. Pairwise phylogenetic distances were computed from the matrix
of the phylogenetic tree reconstruction (see Materials and Methods:
phylogenetic analysis). Pairwise differences in doubling times (box-cox
transform of d), codon usage bias indices DENC9, S and F and G+C
content were normalized by the maximum observed difference in the
22791 pairs dataset (eq. 10). (A) The datapoints are represented in light
gray. The red line represents a flexible spline fit (l= 0.01). The black
horizontal line represents the average relative pairwise difference. (B)
The lines represent a flexible spline fit (l= 0.01). For short distances
(light gray area), the spearman correlations between phylogenetic
distance and the relative difference in minimal generation times, DENC9,
S and F and G+C content are respectively: 0.21, 0.28, 0.28, 0.29, 0.26 (all
p-values,0.0001).
doi:10.1371/journal.pgen.1000808.g002
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of such a hypothesis. Instead, it is tempting to associate the effect of

optimal growth temperature on the degree of genome optimization

for fast growth with the dependence of enzymatic activity on

temperature. At higher temperatures diffusion increases, water

viscosity and activation energy decrease, facilitating rapid reactions

[56] and could thus lead to lower requirements for growth-

associated traits. As a case in point, psychrophiles have the highest

multiplicity of rRNA and tRNA genes [57], whereas even fast-

growing thermophiles have few copies, with a maximum of 4 rRNA

operons in Thermoanaerobacter tengcongensis and Carboxydothermus

hydrogenoformans. High temperatures possibly increase the catalytic

rates of translation-associated reactions, and also the tRNA diffusion

into ribosomes, allowing quick start and maintenance of exponential

growth with fewer genes. This leads to weaker selection for gene

multiplicity, lower codon usage bias and lower replication associated

gene dosage effects. Hence, while we find no evidence that

psychrophiles grow slower than other prokaryotes, they do show a

tendency to strongly select for growth-related traits.

After derivation, our predictor of minimal generation times (d in

hours) (N = 214, R2 = 0.58) including optimal growth temperature

(OGT in uC) becomes:

d~ 1{0:1664: 1:743{0:7372: 1:184:Sz6:747:DENC’{1:438ð Þð Þ½

{0:0226:OGT�{1=0:1664
ð2Þ

See Materials and Methods for a detailed derivation of the

equations. For mesophilic organisms this simplifies to (N = 187,

R2 = 0.59, Figure 5):

d~ 1{0:1664: 0:9726{0:7471: 1:184:Sz6:747:DENC’ðð½

{1:438ÞÞ�{1=0:1664ð3Þ

We made a program to compute the expected minimal generation

time given sequences of highly expressed genes and other genes in

genomes. The program is publicly available at http://mobyle.

pasteur.fr/cgi-bin/portal.py?form = growthpred. The information

on ribosomal proteins for all the genomes and metagenomes used

in this work can be found at the same site.

Evolution of growth rate traits during genome reduction
We next investigated the genomes of mesophiles deviating most

from the model. The highest positive residuals, corresponding to

genomes with lower than expected maximal growth rates, are from

the genomes of Sodalis glossinidius morsitans and Mycobacterium leprae,

with observed generation times ,18 and 35 times slower than

expected. These genomes have the highest number of pseudo-

genes within our data set (respectively, 49% and 50% of non-

coding DNA), resulting from an ongoing process of genome

reduction [58,59]. It has been estimated that pseudogenes in M.

Figure 3. Minimum generation time (d) versus codon usage bias
for 214 prokaryotes. F (first principal component of DENC9 and S) and
Wl(d) (Box-Cox transform of d) are negatively correlated (r= 20.66). Line
fitted by least squares regression: Wl(d) = 0.874120.6496 F (R2 = 0.47,
p-value,0.0001).
doi:10.1371/journal.pgen.1000808.g003

Figure 4. Correlation between the residuals of the model (eq.
1) and optimal growth temperature (OGT). Sperman correlation
r= 20.37, p-value,0.0001. Residuals are positive for psychrophiles
(OGT,15uC) and negative for thermophiles (OGT.60uC), indicating
that for the former (latter) the observed minimal generation time is
lower (higher) than expected from the genomic signatures. Relevant
outliers: 1Sodalis glossinidius morsitans and 2Mycobacterium leprae.
doi:10.1371/journal.pgen.1000808.g004

Figure 5. Observed versus predicted minimum generation
time. The mesophilic predictor based on codon usage bias (eq. 3) was
applied to the 187 mesophilic prokaryotic genomes. The diagonal black
line corresponds to the identity.
doi:10.1371/journal.pgen.1000808.g005

(3)
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leprae have an average age of ,9 million years and have

accumulated ,15% of changes since then [60]. Naturally,

synonymous positions of functional genes should evolve at least

as slowly. Thus, even if selection for biased codon usage decreases,

the slow pace of accumulation of synonymous substitutions by drift

takes a long time to lower the bias down in highly expressed genes

to the new value expected by the mutation-selection equilibrium

for the new maximal growth rate. The lower phylogenetic inertia

of minimal generation times, compared with other traits, namely

codon usage bias (Figure 2B), justifies why the highest positive

residues are among the genomes that have higher pseudogene

density, in agreement with suggestions of a recent dramatic shift in

lifestyle. Indeed, S. glossinidius and M. leprae grow much slower than

the other closely related mycobacteria and free-living enterobac-

teria [61,62]. Genomes that have endured slow growth for a long

period of time such as Buchnera aphidicola, Rickettsia typhi or

Mycoplasma pneumoniae have now lost any putative ancient

organization related to high growth rates. These genomes thus

conform to the predictions of maximal growth rates based on

genome analysis.

Prediction of growth rates from partial data
We adapted the codon usage bias indices to make them

computable from partial genomic and metagenomic data (see

Materials and Methods). Measuring these variables on small sets of

genes inevitably introduces some uncertainty in the estimation of

the parameters. To evaluate the associated error, we sampled sets

of genes of varying cardinality from mesophilic genomes for which

we know the doubling time. We did this for non-highly expressed

genes comparing them with the whole dataset of highly expressed

genes (HEG), and inversely. The resulting DENC9 and S values

were then subject to principal components analysis, of which the

first component (Fa) was compared with the one obtained from the

whole genome. The results for 3 organisms (fast, slow and

intermediate growers) are represented in Figure 6 for the first set of

experiments and in Figure S4 for the latter. As expected, the

estimates of Fa are less accurate with decreasing sample size. We

then varied the sample size of both populations of genes and found

that the analysis still had a remarkable power even when

considering only 5 highly expressed and 5 non-highly expressed

genes. In this case, a discrete classification of the mesophilic species

(see Materials and Methods) into very fast, fast, intermediate and

slow resulted in 50% exact classifications (expected 25%) and 89%

approximate or exact classifications (prediction matching the same

observed class or the adjacent ones, expected 59%). Even in this

extremely small set of 10 genes, we only found 7% of slow growers

predicted as fast or very fast or vice-versa (expected 29%).

Therefore, a robust coarse qualitative assessment of minimal

generation times can be made even with as few as ten genes (see

Table S4 for a comparison of the results of discrete classification

with the total set of genes, 40 genes, 20 genes and 10 genes). Such

genome samples are easily accessible in metagenomic data from

low diversity environments. For the other environments, the

increase in coverage or the use of large-insert bacterial artificial

chromosome libraries will also produce sufficiently large contigs

[63].

Prediction of growth rates in prokaryotic communities
Given the possibility of inferring minimum generation times

from partial genomic data, we selected published metagenomic

datasets to test 2 hypotheses: First, that environmental factors such

as presence of toxic contaminants or resource availability

influences the growth rate strategies of the resident microbial

populations. Second, that fast growers are favored during the

colonization phase of a new niche.

Environmental samples can be interpreted either as collections

of pseudo-genomes or as metagenomes. In the former approach

sequences putatively assigned to one same species can be put

together in pseudo-genomes. In this approach, a large fraction of

the data is lost because most species genomes are not sequenced

and because genomes are so diverse in terms of gene repertoires

that some genes will not match a template genome of the same

species [64]. This approach has the advantage that if species are

well known we can make more informed interpretations and we

can control for phylogenetic dependencies. In the latter approach

the sequences are all put together and treated as a great single

Figure 6. Accuracy of the determination of composite codon usage bias (Fa.) with varying sample size. Fa was calculated on randomly
chosen samples (from 2 up to 450 genes) of all genes while using the full dataset of highly expressed genes. 100 iterations were effectuated for each
sample size. The results for 3 organisms (one fast, slow and intermediate grower) are represented. The full black lines correspond to the whole
genome value of F and the dashed lines to the standard deviations. Each data point is represented in gray.
doi:10.1371/journal.pgen.1000808.g006
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meta-genome. This has the advantage of using all the data,

including all the elusive non-cultivated prokaryotes, and accounts

for the different availability of different species by their different

quantitative contributions to the sample. However, it does not

allow controlling for phylogenetic dependencies. We have

preferred to use the second approach because we wanted to

account for uncultivated species and relative frequencies of each

species. We then confirm the results using the first approach.

Growth rate strategies in different environments. We

first used our partial genomic data predictor on 3 datasets

corresponding to very different environments for which simple

predictions of maximal growth rates could be made: the human

distal gut microbiome [65], the Waseca county farm soil

metagenome [66] and the acid mine drainage biofilm

metagenome [67] (for details of each dataset, see Tables S5 and

S6). The human gut is a very rich environment, with periodic high

nutrient inflow and with an important wash out rate to a poor

outside environment. As a result, bacteria proliferating in the gut

are subject to a feast-and-famine lifestyle, which has been

proposed to select for very high growth rates [16,68]. On the

other extreme, the acid mine drainage biofilm reflects adaptation

to a stable, nutrient poor and extremely toxic environment. In this

situation one expects to find organisms that grow slowly but have

great capacity to withstand stressful conditions [69]. The farm soil

is an intermediate environment, where all the array of growth rates

might be found, reflecting different life strategies (colonizers, stress

resistant, capable competitors, etc) [70]. We therefore expected to

find low average minimal generation times in the gut, intermediate

in the soil and high in the acid mine drainage biofilm.

Each metagenome was processed to obtain gene sequences large

enough to allow meaningful measures of codon usage bias (see

Materials and Methods). We then used the predictor for

mesophiles (equation 3) to obtain average minimum generation

times for each set. We found that the predicted average minimum

generation times were of 1.8h (human gut), 4.6h (farm soil) and

10.2h (acid drainage) (Figure 7). These differences are highly

significant as computed by bootstrap sampling on genes in the

datasets (p-value,0.001 for details see Materials and Methods:

Bootstrap on metagenomes). These samples were taken in

environments with different temperatures. Since we showed that

optimal growth temperature affects the predicted generation times,

we repeated the analysis controlling for this effect. For this we used

the average optimal growth temperature of the pseudo-genomes

found in the sample (see below; 40uC for the acid mine, 30uC for

the farm soil and 37uC for the human gut). The differences

between the datasets remain significant after this control (p-

value,0.001). This shows that our method gives results matching

our expectations in that the human gut selects for fast-growers

while toxic environments do not.

It is interesting to compare these growth rates with bacteria that

are known to be part of these communities. In the human gut,

clostridia, bacteroides and enterobacteria constitute a significant

fraction of the community and by far the best studied one.

Representative species such as E. coli, E. faecalis, L. johnsonii and C.

perfringens have doubling times smaller than the community

average of 1.8h (0.4h, 0.5h, 0.9h and 0.2h, respectively) and

whole genome prediction of doubling times in conformity (0.8h,

0.7h, 0.6h and 0.4h). However, the predominant species in healthy

adults, Bacteroides thetaiotaomicron, has an observed minimum

generation time (1.5h) smaller than what is expected by its

growth-associated genomic traits (3.4h). Again, typical soil

bacteria, such as the Streptomyces or the alpha-proteobacteria, tend

to have doubling times lower than the community average of 4.6h.

Yet, they have generation times higher than the above-mentioned

bacteria from the human gut, e.g. 2.2h for Streptomyces coelicolor,

2.4h for Mesorhizobium loti and 8h for Nitrobacter winogradskyi, with

predictions 2.1h, 3.0h and 6.0h, respectively. In the acid mine

drainage biofilm there are very few species, thus the scaffolds

available correspond to almost complete genomes. These include

two species for which generation times have been experimentally

evaluated: Ferroplasma acidarmanus Type I with d = 4h [71] and

Leptospirillum sp. Group II with d = 12h [72]. These observed

values are close to the obtained by our predictions 6h and 13h

respectively, using the scaffolds.

The lag between the growth rates of the best-studied bacteria of

the human gut and farm soil and our metagenomics results could

be due to a bias in our method. However, the analysis above shows

that while smaller sequences reduce the accuracy of the estimates

they do not seem to bias them in a given direction. It may thus be

that the gap underlies a biological cause, the heterogeneity of these

systems and the bias of cultivable organisms. Adhesion to the gut

wall in biofilms and persistence in the soil under intense

competition favors slower growth rates. Yet, cultivation methods

will favor the isolation of fast growers. In order to further detail the

metagenomic datasets in terms of the variance of its constituents,

we classified the metagenomic proteins into pseudo-genomes (see

Materials and Methods and details in Table S7). 11% of the

proteins of the human gut microbiome matched 15 sequenced

genomes, while 0.05% of the farm soil proteins matched 33

sequenced genomes. This shows that approaches based on

aggregating sequences around pseudo-genomes ignore the major-

ity of the data. Importantly, these results suggest a higher

biodiversity in the farm soil than in the human gut, as expected,

and it demonstrates that most of it is not represented in the

sequenced genomes available to date. We then computed the

predicted minimum doubling times for the matching sequenced

Figure 7. Average predicted minimum generation time for 3
environmental metagenomes. Crosses represent the average for
the whole metagenome approach while dots represent the average for
the pseudo-genome approach. All predictions were calculated with the
predictor for mesophilic organisms (eq. 3). The average minimum
generation time of the whole metagenome (crosses) and the respective
standard deviation (open circles) were generated with 1,000 bootstraps
on the dataset of all genes and highly expressed genes independently.
The 3 whole-metagenome datasets are all significantly different (p-
value,0.001). Minimum generation times were calculated using the
whole genome of the sequenced genomes matching proteins of the
metagenome (see Materials and Methods: classification of metagen-
omes into pseudo-genomes). The number of matching sequenced
genomes are given above the average (dots) and standard deviation
(bars) of the predictions. The 3 pseudo-genomes datasets are all
significantly different (Tukey-Kramer: p-value,0.05).
doi:10.1371/journal.pgen.1000808.g007
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genomes (using the whole genomes) and for the large scaffolds

available for the 5 species present in the acid mine biofilm. The

average minimal doubling times of the 3 environments are still

significantly different (Tukey-Kramer: p-value,0.05). The results

show that the human gut presents clearly the lowest variance in

minimal doubling times. This is in agreement with a high selection

pressure for fast growers in the human gut. On the other hand, the

farm soil environment presents the highest variance (Figure 7),

suggesting the coexistence of microorganisms with different life-

strategies. Furthermore, as a control for possible phylogenetic

dependencies, we repeated the analysis using one species per

genera in each environment. The results remain significant

(Tukey-Kramer: p-value,0.05). Hence, the pseudo-genome

approach allows the analysis of the environment diversity in terms

of growth rates and matches the expectation that highly toxic and

very nutrient rich environments are less diverse in this respect.

Ecological succession in the human gut. The gastro-

intestinal tract of a healthy fetus in utero is sterile. Microorganisms

from the mother and the surrounding environment are acquired

during the birth process and thereafter through breast-feeding and

social interaction. However, not all of them will succeed in colonizing

the gastrointestinal tract. The gut microbial community is initially

dominated by enterobacteria and streptococci, with subsequent

establishment of the anaerobic Bacteroides, Clostridium and

Bifidobacterium. The latter clearly dominating for the entire breast-

feeding period [73]. As solid diet is introduced, a more complex and

dense gut ecosystem will develop and eventually reach a dynamical

balance with its host. The first phase of this microbial succession,

corresponding to the colonization of the nutrient-rich gut, should be

dominated by faster growing organisms. This corresponds to the

classical prediction in evolutionary ecology that colonizers are in

general fast-growers [74]. To test it, we used our partial genomic

data predictor on the gut microbiome of several adults, weaned

children and unweaned babies [75]. The latter represent the niche

under colonization. Indeed the gut metagenome of unweaned

babies (prediction 1.4h) have significantly lower average minimum

generation time than those of children (2.4h) and adults (2.4h)

(ANOVA: R2 = 0.84, p-value,0.0001, Figure 8). The results are

identical for adults and young children (1.5 and 3 years old), which

suggests a rapid evolution of the gut microflora after diet alteration.

It is also interesting to notice the difference between the

Japanese and American gut metagenomes. No Bacteroides 16S

rRNA genes were found in the American dataset, although other

studies confirm that Bacteroides are predominant in the human

gut microbiota [76,77]. This discrepancy was identified by the

authors and attributed to possible complications in the DNA

extractions [65]. However, such complex protocols might induce

other sampling biases, harder to detect. Thus, one must be

cautious when comparing metagenomes from different projects/

laboratories. Nevertheless, the average minimum generation times

of the 4 Japanese babies remain significantly lower than those of

the two American adults (ANOVA: R2 = 0.70, p-value = 0.02).

We also classified the metagenomic proteins of the Japanese gut

microbiomes into pseudo-genomes and calculated predicted

minimum generation times based on the matching whole genome

sequences. 11% of the proteins of the gut microbiomes matched

sequenced genomes. The average number of species found in the

different age groups’ microbiota are not significantly different (26

for babies, 26 for children and 22 for adults, Wilcoxon: p-

value = 0.64). We analyzed the groups’ doubling times in 3

different ways, in order to compare them to the results of the

whole metagenome analysis (Table S8). First, there is no

significant difference in the arithmetic average of the predictions

for the babies, children and adults. However, if we weight the

contribution of the value of each pseudo-genome by the number of

proteins of the metagenome that matched it, then we recover a

result close to the one of the whole metagenome, where unweaned

babies have a significantly lower average minimal generation time

than children and adults (Tukey-Kramer: p-value,0.01). We find

similar results when keeping only one species per genera (Table

S8). Therefore, we find no evidence that the gut microbiota of

adults is composed of slower growing species than the one of

babies. Instead, the relative abundance of species in the gut

population accounts for faster growing communities in babies.

This highlights the interest of the whole metagenome approach,

which intrinsically takes into account this information.

Concluding remarks
Our results show that minimal generation times imprint genome

organization and sequence of Bacteria and Archaea. They also

show that such information allows the prediction of maximal

growth rates from sequence alone. Naturally, organisms rarely

grow at maximal growth rates because they rarely meet ideal

growth conditions. As a result, our data does not allow predicting

growth rates in specific environments. Yet, information on the

maximal growth rates coupled with biochemical modeling can

eventually lead to prediction of growth rates in particular media

[78]. The optimization of growth related traits allows the quick

start of exponential growth upon favorable environmental changes

and allows faster growth also under sub-optimal conditions. In this

sense, maximal growth rates are proxies of the capacity of the

species to rapidly produce biomass, to quickly change growth rates

and to take advantage of rich media. If such traits were not

important, then random mutations erasing codon usage bias,

genome organization and gene multiplicity would not be selected

against and none of these traits would be found. Instead, we have

shown that the majority of genomic traits that correlate

significantly with maximal growth rates are also strongly

correlated among themselves. This is a consequence of a shared

selective pressure leading to the adaptation of the cellular

machinery for high growth potential.

We found that some unexpected variables have strong influence

in genome optimization for growth, notably ongoing genome

reduction and optimal growth temperature. The slow pace of

Figure 8. Average predicted minimum generation time for the
gut metagenomes of humans of different age groups. Un-
weaned babies are 3, 4, 6, and 7 months old. Weaned children are 1.5
and 3 years old. Adults are between 24 and 45 years old. Groups not
connected by the same letter (A or B) are significantly different (Tukey-
Kramer: p-value,0.005). The full horizontal line represents the average
of the predictions for all individuals.
doi:10.1371/journal.pgen.1000808.g008
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substitutions is likely to explain the higher than expected codon

usage bias in reducing genomes. The association of optimal growth

temperature with deviations to expected growth rates might result

from the enzymatic rate dependence on temperature, but that

remains openly speculative until comparative data on the

translation biochemistry of psychrophiles and thermophiles

becomes available. Other variables may also influence maximal

growth rates and genome optimization. We detail three types.

First, while we made exhaustive searches in primary literature to

collect minimal generation times, there is substantial incertitude on

these. We may have missed some publications with lower

generation times, but more importantly, current growth conditions

are still far from optimal for many prokaryotes. This introduces a

bias in the analysis, since slow-growers are much less studied than

fast-growers. For example, a search in the PubMed database of the

number of articles citing each of the species we analyzed showed

that this number is highly correlated with the minimal generation

times (r= 20.45, p-value,0.0001). Hopefully, our data will be of

use to pinpoint the species for which a revision of growth times will

be most likely to be fruitful, since the largest residuals that are not

explained by temperature or ongoing genome reduction might

concern prokaryotes for which generation times are less accurate.

Secondly, other measures of within genome bias in gene

expression such as strength of ribosome binding sites, promoters,

operon organization and genome structure might improve our

predictor [79–82]. Yet, since our 10 growth-associated traits were

all highly correlated, increasing the number of growth-associated

traits in the analysis is unlikely to add much information. Thirdly,

environmental variables that can affect growth can have more

important, and for the moment unforeseeable roles, especially if

they affect enzymatic activity. As the database grows larger we will

be able to better pinpoint them by systematic analysis of deviations

from the predicted values, as we found for optimal growth

temperature.

Along the discussion of our results we have systematically

interpreted deviations from the model in a selective perspective.

This is based on the extensive literature showing the physiological

effects of selection for growth-related traits in exponentially

growing cells. Yet, most growth related traits, e.g. codon usage

bias, are expected to be under weak selection thus liable to genetic

drift depending on the effective population size (Ne). If Ne is

independent of maximal growth rates this will only result in

increased variance in our predictor. But if Ne is negatively

correlated with minimal generation times then fastest growing

organisms could have more growth-related traits than slow

growers because of higher selection coefficient for these traits

and/or because of more efficient selection, ie higher Ne. In this

case, our predictor for growth rates would also be a predictor of

effective population size. While selection for growth related traits is

not under dispute, systematic deviations from the model could be

strongly influenced by the effective population size. For example, if

Ne were negatively correlated with optimal growth temperature it

might explain the deviations we observe. Unfortunately, we have

no way of systematically computing Ne for our sample of

prokaryotes. Lynch [83] computed Ne.u, where u is the mutation

rate, for 11 bacteria, all mesophiles. Assuming similar mutation

rates the 3 slowest growing bacteria are in the 4 top positions. The

highest Ne is for Prochorococcus marinus, by far the slowest-growing

bacteria in the set and thought to be one of the most abundant

species on earth [84]. Also of relevance, the recent application of a

model for predicting trophic lifestyle to marine metagenomic data

has shown that copiotrophs dominate free-living microbial

populations [85]. These results suggest that among free-living

bacteria slow-growing species tend to outnumber fast-growing

ones. On the other hand, highly reduced symbiotic genomes,

supposedly with very low Ne, tend to have high minimal

generation times, with some exceptions among Mollicutes. These

contradictory trends suggest no obvious correlation between

growth rates and effective population size. There is also little

evidence for a correlation between maximal growth rates and

absolute population sizes. This is because population sizes result

from average, not maximal, growth rates and are moderated by

the rates of cell death. While most free-living slow-growers lack

growth-related traits because they do not endure selection for fast

growth, it is possible that bacteria with sudden contractions of

population sizes will endure a degradation of growth-related traits

leading to lower growth rates. The availability of population data

for a growing number of genomes will hopefully allow under-

standing the evolution of growth-related traits in a population

genetics framework.

Besides contributing to the understanding of genome evolution

at different maximal growth rates, our results open two important

avenues of further research. First, we find that a composite index

of codon usage bias allows for the accurate prediction of the type

of growth expected from a given prokaryote. Surprisingly, this can

be done even with very few genes paving the way for the

understanding of a key physiological parameter from partial

sequence data alone. This will be of use in the incoming surge of

metagenomic data that contains sequences of species about which

we ignore everything. Aggregation of metagenomic data into

phylotypes will also allow analyzing the diversity of communities in

terms of minimal generation times. Second, our data will also be

useful in the delineation of experiments aiming at increasing or

lowering growth rates in synthetic biology. The production of

many metabolites of industrial interest is in conflict with the cell

capacity to replicate. Our results point some ways in which

prokaryotes can be engineered to grow slower, e.g. by decrease in

codon usage in ribosomal proteins, deletion of rRNA operons or

ubi-tRNAs. If it is of interest to maximize the production rate of

biomass, then inverse interventions, conjugated with experimental

evolution, may significantly accelerate the pace at which a lineage

acquires the capacity to grow faster. It would be naı̈ve to think that

just changing rRNA expression will necessarily result in higher

growth rates. In fact, slow growing bacteria often show higher than

needed ribosome concentrations [86,87]. To change growth rates

one probably needs to use design growth-related traits optimized

genomes and then use experimental evolution to select for high

growth rates in environments more favorable to growth than the

natural one. Our work, by ranking the information provided by

the different traits, provides guidelines for the relevance of each

trait in such design. Third, the proposed predictor of minimum

generation times applied to metagenomic datasets allows testing

central theories in microbial ecology associated with growth rates.

Metagenomic datasets give a unique access to whole microbial

communities, regardless of their cultivability. As metagenomics

develops, longer scaffolds will be available, with enough

information to predict the growth rate of the corresponding

species. Also, key genomes for specific niches are being sequenced,

with example of the Human Microbiome Project sequencing 1000

microbial reference genomes. The emergence of all this new

material will open new avenues of research in microbial ecology

and evolution.

Materials and Methods

Whole genome data
We retrieved 214 genome sequences, 1 per species, from

GenBank Genomes (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/).
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Genes were extracted from annotation data and pseudo-genes

were ignored. Genes of the transcription/translation machinery

(RNA polymerase, rRNAs, ribosomal proteins) were identified by

the annotation fields, or, when not possible, by homology from the

genomes of closely related species. A pair of genes were regarded as

orthologous if they were reciprocal best hits with more than 40%

sequence similarity and less than 20% difference in protein length, as

measured by a end-gaps free sequence alignment. tRNAs were

searched with tRNAscanSE [88] using the default parameters for

bacteria or archaea. When the tRNA anticodon matched a

previously published list of nearly ubiquitous tRNAs [35] it was

included in the list of ubi-tRNAs. Optimal growth temperatures

(OGT) were retrieved for 204 of the 214 organisms from the DSMZ

database (http://www.dsmz.de/microorganisms/). Psychrophiles

and thermophiles were defined as organisms whose OGT is under

15uC and over 60uC, respectively. We extracted from primary

literature the minimal generation times (d) for the 214 species of

bacteria and archaea (Table S1).

Metagenomic data
The contigs from the 3 metagenomic datasets used in Figure 7

were retrieved from GenBank (http://www.ncbi.nlm.nih.gov/

books/bv.fcgi?rid = metagenomics), including the acid mine drain-

age biofilm (AADL01000001–AADL01002534), the Waseca Coun-

ty Farm Soil (AAFX01000001–AAFX01139340), and the human

distal gut microbiome (AAQK01000001–AAQK01010488,

AAQL01000001–AAQL01012020). The contigs from the 13

healthy humans gut microbiomes of the Human Metagenome

Consortium Japan (HMGJ; http://www.metagenome.jp/) were

also retrieved from GenBank under the following accession

numbers: subject F1-S (BAAU01000001–BAAU01028900), subject

F1-T (BAAV01000001–BAAV01036326), subject F1-U (BAAW-

01000001–BAAW01016539), subject F2-V (BAAX01000001–BA-

AX01036455), subject F2-W (BAAY01000001–BAAY01030198),

subject F2-X (BAAZ01000001–BAAZ01031237), subject F2-Y

(BABA01000001–BABA01035177), subject In-A (BABB01000001

–BABB01020226), subject In-B (BABC01000001–BABC0100-

9958), subject In-D (BABD01000001–BABD01037296), subject

In-E (BABE01000001–BABE01020532), subject In-M (BABF0100-

0001–BABF01016164) and subject In-R (BABG01000001–BABG-

01034797).

Distance to the origin of replication
Predicted origins of replication were retrieved from DoriC

database (http://tubic.tju.edu.cn/doric/) [89]. Archaea often

have multiple and difficult to assess origins of replication [90].

Therefore, archaea were excluded from the calculation of

distances to the origin of replication and subsequent correlations

to growth rate.

Relative distance to the origin of replication is calculated as the

smallest circular distance of the gene to the origin of replication

divided by half of the chromosome size. Hence, 0 corresponds to

the origin of replication, 0.5 to half the replicon and 1 to the

position opposite to the origin, typically the terminus.

Codon usage bias
We used two different measures to assess the difference in codon

usage biases between the average and the highly expressed genes:

the DENC9 and the S indices.

DENC9 is an empirical estimator of the strength of selection

acting on codon usage bias in highly expressed genes [35]. For

each genome, the ENC9 value [91] was calculated separately for

the concatenation of all the coding sequences (ENC9all) and for the

concatenation of the ribosomal protein genes (ENC9rib), using the

average coding nucleotide frequency. The DENC9 was then

calculated as:

DENC’~
ENC’all{ENC’rib

ENC’all
ð4Þ

S is also an estimator of the strength of selection acting on codon

usage bias, but based on the mutation-selection balance between

pairs of codons, where one is fitter. Following Sharp, we compute S

using the frequency of codons for four amino acids: Phe (C1 = UUC,

C2 = UUU), Ile (C1 = AUC, C2 = AUU), Tyr (C1 = UAC,

C2 = UAU), Asn (C1 = AAC, C2 = AAU). Codons C1 and C2 are

recognized by the same tRNA. By Watson-Crick rules, the codon-

anticodon interaction between C1 and the anticodon is better.

Hence, C1 should be favored in genes having translation-associated

codon usage bias. For each of the 4 amino acids mentioned above,

we calculated the frequency of the optimal codon P = C1/(C1+C2)

in all proteins (Pall) and in ribosomal proteins (Prib). The S

component for each amino acid is then given by:

Si~ln Prib,i
: 1{Pall,i

Pall,i

� ��
1{Prib,ið Þ

� �
ð5Þ

S is the weighted mean of the Si values [46].

As alternatives to DENC9 and S, we also tested the use of the

genome ENC9 and of ribosomal proteins ENC9. The former was a

very bad predictor of growth rates (R2 = 0.12), the latter was as

good predictor as DENC9 (respectively R2 = 0.53 and R2 = 0.54,

for the mesophiles), but correlated with the genome G+C content,

suggesting that while the genome ENC9 has little informative

power it calibrates for compositional biases when it’s included in

the computation of DENC9.

Codon usage bias adapted to metagenomic data
Both DENC9 and S calculations were adapted to use gene-level

information (DENC9a and Sa) instead of the genomic-level

information (concatenation of the genes as previously done).

When analyzing metagenomes, concatenating all of the sequences

would erroneously increase the mean effective number of codons

(ENC9) of the dataset, because each organism might have a

different codon usage bias (i.e. a different set of preferred codons).

This is not the case for the calculation of S [46], which only takes

into account the codon usage for 4 amino acids, for which the

optimal codon is the same in all species. The problem of analyzing

a mixture a sequences from different species can be circumvented

if ENC9 is calculated gene by gene.

Thus, we calculated for each gene separately, ENC9 and P

(P = C1/C1+C2, for the 4 amino acids indistinctly) (C1 and C2

codons are listed above in the ‘Codon usage bias’ section). Then,

we calculate the average ENC9 and P for the set of genes coding

for ribosomal proteins and for the all the genes separately (ENC’all

and ENC’rib, Pall and Prib). Afterwards, we compute DENC9a and

Sa using:

DENC’a~
ENC’all{ENC’rib

ENC’all

ð6Þ

Sa~ln Prib
: 1{Pall

Pall

� ��
1{Prib

� �� �
ð7Þ

AWK and R scripts and C source of the programs to compute
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ENC9 and P calculations for each gene are available from the

authors.

For the set of all genes, open reading frames (ORFs) with a

minimum size of 450bp were retrieved using EMBOSS function

getorf. For the set of highly expressed genes, ribosomal proteins

were retrieved by similarity with a database of ribosomal proteins

of all sequenced genomes available to date (e-value,1025).

Bootstrap on metagenomes
The error bars of average growth rates of environmental

metagenomes correspond to the standard deviation of the

predictions generated with 1000 bootstraps on the metagenome

dataset of all genes and highly expressed genes independently and

simultaneously. In order to compare the average predicted

minimal doubling time of different metagenomes, we computed

the difference between the predictions of pairs of environments, for

each bootstrap iteration. The significance (p-value) of the

comparison of averages of different metagenomes was calculated

as the proportion of the differences that didn’t match the

expectation. For example, for the acid mine (AM) and the farm

soil (FS), we calculated for each iteration dAM-dFS. The acid mine’s

average doubling time is larger than the farm soil. The significance

of this difference has a p-value p% if one finds p out of 1000

iterations where dAM-dFS,0 (e.g. 10 iterations,0 give a

p-value = 0.01). If no such iteration is found we mark

p,0.001.

Discrete classification
The observed minimum generation times (d) of the mesophilic

species were discretized into four classes: very fast (d,1h,

N = 46), fast (1h,d,2h, N = 26), intermediate (2h,d,5h,

N = 41) and slow (d$5h, N = 74). The predicted continuous

values for the 187 species were obtained with the mesophilic

predictor, using 5 highly expressed genes and 5 other genes (both

randomly chosen in the complete sets, 1000 random experi-

ments). These were discretized in the same way and compared to

the observed ones. The accuracy of the classification was

evaluated from the proportion of exact, approximate and wrong

classifications (%), respectively defined as the proportion of 1)

predictions matching the same observed class, 2) predictions

matching the same observed class or the adjacent ones (e.g.

predicted ‘fast’ when actually ‘very fast’) and 3) slow growers

predicted as fast or very fast and inversely.

Box-Cox transformations
The Box-Cox power transformation aims at ensuring that the

usual assumptions for linear models hold [55]. We used it to

linearize the relation between minimum generation time (d) and

the other variables. For example, in the association between d and

F, a Box-Cox transformation was applied to d:

Wl dð Þ~ dl{1

l
with l~{0:1664 ð8Þ

Principal component analysis
In order to retrieve the most relevant information of DENC9

and S combined, a PCA was performed and the first principal

component, which was highly correlated to growth rate, was

named F.

F~6:747:DENC’z1:184:S{1:438 ð9Þ

Derivation of the predictor
By linear regression, the following relation between the

transformation of minimum generation time (eq. 8) and the first

principal component (F) of codon usage bias indices DENC9 and S

(eq. 9):

Wl dð Þ~0:9726{0:7471:F

Replacing F (eq. 9), we obtain:

Wl dð Þ~0:9726{0:7471: 1:184:Sz6:747:DENC’{1:438ð Þ

Reversing the transformation of minimum generation time (eq. 8),

we obtain our predictor (eq. 3):

d~1{0:1664: 0:9726{0:7471: 1:184:Sz6:747:DENC’{1:438ð Þð Þ½ �{1=0:1664

Phylogenetic analysis
We build a phylogenetic tree using the 16S rDNA subunit for

each species. We made a multiple alignment of the 16S sequences

with MUSCLE [92], followed by manual correction with SEA-

VIEW [93]. The tree was computed by maximum likelihood with

PHYML [94] using the model HKY+C(4)+I. Pairwise phyloge-

netic distances were computed from the distance matrix.

Phylogenetic contrast analysis was done with the ape package in

R using generalized estimation equations (GEE) [95].

Pairwise relative differences
Pairwise differences of minimum doubling time Dd were

calculated for the 214 prokaryotes. The difference of the box-

cox transforms of doubling times for the pair of species were

normalized by the maximum observed difference in the 22791

pairs.

Dd species1,species2ð Þ~
W di~1ð Þ{W dj~2

� ��� ��
max W dið Þ{W dj

� ��� ��	 
 ð10Þ

The relative pairwise differences in codon usage bias indices

DENC9, S, F and G+C content were calculated the same way, for

the 188 prokaryotes with known origins of replication.

Classification of metagenomes into pseudo-genomes
We mapped each protein of a given metagenome dataset in a

given template genome. Template genomes were taken among

601 completely sequenced genomes. For each species we chose

one single strain to avoid statistical bias. By default we used the

first published strain. Mapping was done as follows: 1) for each

protein of the metagenome dataset we find highly similar

homologues within every proteome using quickhit, a companion

of swelfe [96], that allows to quickly find highly similar protein

sequences. 2) The hits were then aligned using exact end-gap free

Needleman-Wunsch alignments. 3) A given protein was added to

one, and only one, pseudo-genome if it matched the corresponding

template genome, if this was the best among all matches and if the

protein similarity was higher than 95%.

Supporting Information

Figure S1 Genomic signatures correlated to minimum genera-

tion time (d) for 214 prokaryotes. Negative correlation between d
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and the number of (A) rRNA operons, (B) tRNA genes, (C)

ubiquitous tRNA genes, in the genome. (D) Non-significant

correlation between d and the number of non-ubiquitous tRNA

genes in the genome. Spearman correlations are given (r) with p-

values,0.0001 for (A–C) and p-value = 0.06 for (D).

Found at: doi:10.1371/journal.pgen.1000808.s001 (0.11 MB TIF)

Figure S2 Genomic signatures correlated to minimum genera-

tion time (d) for 188 bacteria. Positive correlation between d and

the relative distance from the origin of replication to (A) RNA

polymerase genes, (B) tRNA genes, (C) ribosomal protein coding

genes, (D) ubiquitous tRNA genes. Spearman correlations are

given (r) with all p-values,0.0001. Species with unknown origins

of replication were excluded.

Found at: doi:10.1371/journal.pgen.1000808.s002 (0.11 MB TIF)

Figure S3 The box-cox transformation Wl(d) used to normalize

our data versus the decimal logarithm. The transformations were

plotted for a minimum generation time (d) of the range of our

dataset: 0.16h to 240h.

Found at: doi:10.1371/journal.pgen.1000808.s003 (0.01 MB TIF)

Figure S4 Accuracy in the determination of composite codon

usage bias (Fa) with varying sample size. Fa was calculated on a

randomly chosen sample (from 2 up to 36 genes) of highly

expressed genes while using the whole dataset of control genes.

100 iterations were effectuated for each sample size. The results for

3 organisms (fast, slow and intermediate growers) are represented.

The full black lines correspond to the whole genome value of F

and the dashed lines to the standard deviations. Each data point is

represented in gray.

Found at: doi:10.1371/journal.pgen.1000808.s004 (0.07 MB TIF)

Table S1 List of the 214 genomes composing our dataset and

their characteristics. Generation times were retrieved from the

literature. We defined the minimum generation time (Column

‘‘d’’) as the smallest value reported (Column ‘‘d reference’’) for one

species. For very few bacteria the generation times for closely

related species were used. The optimum growth temperature of

the species (Column ‘‘OGT’’) was retrieved from DSMZ database.

The predicted origin of replication (Column ‘‘Ori’’) was retrieved

from DoriC database.

Found at: doi:10.1371/journal.pgen.1000808.s005 (0.56 MB

DOC)

Table S2 List of ubiquitous tRNAs (ubi-tRNA) in 102 bacterial

species, previously published [35].

Found at: doi:10.1371/journal.pgen.1000808.s006 (0.04 MB

DOC)

Table S3 Most informative attributes for minimum generation

time prediction. The results of a stepwise forward regression are

given, where the most informative attributes enter first. Individual

and cumulative coefficients of determination (R2) are given for the

10 genomic attributes under study and one extra attribute: the

minimum generation time of the closest organism in our 16S

phylogenetic tree. Individual and cumulative R2 are, respectively,

the fraction of the variance of d explained by the variable alone

and by the variable combined with all the variables above in the

table (N = 188). The p-values before and after phylogenetic

dependency correction are given for the individual R2. Species

with unknown origins of replication were excluded.

Found at: doi:10.1371/journal.pgen.1000808.s007 (0.04 MB

DOC)

Table S4 Accuracy of a discrete classification of the 187

mesophilic species. Classification into 4 classes: very fast (d,1h,

N = 46), fast (1h,d,2h, N = 26), intermediate (2h,d,5h,

N = 41) and slow (d$5h, N = 74). Proportion of exact, approxi-

mate and wrong classifications (%), respectively defined as the

proportion of 1) predictions matching the same observed class, 2)

predictions matching the same observed class or the adjacent ones

(e.g. predicted ‘fast’ when actually ‘very fast’) and 3) slow growers

predicted as fast or very fast and inversely. Genes were chosen

randomly in the complete subsets (ribosomal proteins (HEG) or

other proteins (non-HEG)) for 1000 random experiments.

Found at: doi:10.1371/journal.pgen.1000808.s008 (0.03 MB

DOC)

Table S5 Description of the metagenomes of the 3 environ-

mental samples.

Found at: doi:10.1371/journal.pgen.1000808.s009 (0.03 MB

DOC)

Table S6 Description of the human gut metagenomes for 3 age

groups.

Found at: doi:10.1371/journal.pgen.1000808.s010 (0.03 MB

DOC)

Table S7 List of the sequenced complete genomes matching the

proteins of the environmental metagenomes.

Found at: doi:10.1371/journal.pgen.1000808.s011 (0.04 MB

DOC)

Table S8 Comparison of whole metagenome and pseudo-

genome analysis for the 3 age groups human gut metagenomes.

Found at: doi:10.1371/journal.pgen.1000808.s012 (0.03 MB

DOC)
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