
Lrig1 expression identifies airway basal cells with high
proliferative capacity and restricts lung squamous cell
carcinoma growth

Laura Succony1,5, Sandra Gómez-López 1,5, Adam Pennycuick1, Ahmed S.N. Alhendi 1, Derek Davies2,
Sarah E. Clarke1, Kate H.C. Gowers1, Nicholas A. Wright3, Kim B. Jensen4 and Sam M. Janes 1

1Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK. 2Flow Cytometry Facility, Francis Crick
Institute, London, UK. 3Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK. 4Biotech
Research and Innovation Centre, University of Copenhagen; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem,
University of Copenhagen, Copenhagen, Denmark. 5These authors contributed equally to this work.

Corresponding author: Sam Janes (s.janes@ucl.ac.uk)

Shareable abstract (@ERSpublications)
LRIG1 is lost in development of squamous cell lung cancers. This study shows that LRIG1 marks
basal airway progenitor cells with high proliferative potential and regulates progression of pre-
invasive squamous cell lung cancer. https://bit.ly/3AbPtY3

Cite this article as: Succony L, Gómez-López S, Pennycuick A, et al. Lrig1 expression identifies airway
basal cells with high proliferative capacity and restricts lung squamous cell carcinoma growth. Eur
Respir J 2022; 59: 2000816 [DOI: 10.1183/13993003.00816-2020].

Abstract
Background Lung squamous cell carcinoma (LUSC) accounts for a significant proportion of cancer deaths
worldwide, and is preceded by the appearance of progressively disorganised pre-invasive lesions in the
airway epithelium. Yet the biological mechanisms underlying progression of pre-invasive lesions into
invasive LUSC are not fully understood. LRIG1 (leucine-rich repeats and immunoglobulin-like domains 1)
is downregulated in pre-invasive airway lesions and invasive LUSC tumours and this correlates with
decreased lung cancer patient survival.
Methods and results Using an Lrig1 knock-in reporter mouse and human airway epithelial cells collected
at bronchoscopy, we show that during homeostasis LRIG1 is heterogeneously expressed in the airway
epithelium. In basal airway epithelial cells, the suspected cell of origin of LUSC, LRIG1 identifies a
subpopulation of progenitor cells with higher in vitro proliferative and self-renewal potential in both the
mouse and human. Using the N-nitroso-tris-chloroethylurea (NTCU)-induced murine model of LUSC, we
find that Lrig1 loss-of-function leads to abnormally high cell proliferation during the earliest stages of pre-
invasive disease and to the formation of significantly larger invasive tumours, suggesting accelerated
disease progression.
Conclusion Together, our findings identify LRIG1 as a marker of basal airway progenitor cells with high
proliferative potential and as a regulator of pre-invasive lung cancer progression. This work highlights the
clinical relevance of LRIG1 and the potential of the NTCU-induced LUSC model for functional
assessment of candidate tumour suppressors and oncogenes.

Introduction
Lung cancer is the main cause of cancer-related deaths worldwide with 2.1 million new cases diagnosed
each year [1]. The majority of patients present with late-stage incurable disease [2], therefore, devising
strategies for early detection and treatment is key to improving lung cancer outcomes.

85% of lung cancer cases are nonsmall cell lung cancer (NSCLC), of which a third are lung squamous cell
carcinoma (LUSC) [3, 4]. LUSC arises in the bronchial epithelium, preceded by the development of
progressively disordered pre-invasive lesions, ranging from metaplasia to increasing grades of dysplasia
and carcinoma in situ (CIS) [5, 6]. Pre-invasive squamous airway lesions are associated with tobacco
cigarette smoking, the predominant lung cancer risk factor [5, 7, 8]. Molecular studies have identified
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genetic, epigenetic and transcriptional changes in pre-invasive lesions [9–13]. However, the biological
relevance of these changes in lung cancer development is not understood.

Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a transmembrane protein that acts as
a negative regulator of epidermal growth factor receptor (EGFR) signalling [14, 15]. LRIG1 is located in
chromosome 3p14, a region that is frequently affected by copy number alterations in pre-invasive lung
lesions and NSCLC [16, 17]. Loss of heterozygosity of LRIG1 is seen in 75% of human lung cancer cell
lines and low levels of LRIG1 expression have been correlated with decreased overall survival in patients
with NSCLC [18–20]. We have shown previously that both transcript and protein levels of LRIG1 are
lower in pre-invasive CIS lung lesions compared to donor-matched healthy epithelial tissue [18],
suggesting an early role for LRIG1 during lung carcinogenesis. Here, we investigate the expression of
LRIG1 in the normal airway epithelium and examine consequences of its loss-of-function during LUSC
development.

Materials and methods
Mouse husbandry and experimentation
Animal work was approved by the University College London biological services review committee and
carried out in compliance with the UK Home Office procedural and ethical guidelines. The C57BL/6
Lrig1::eGFP-IRES-CreERT2 murine line [21] was backcrossed twice to FVB/N. Mice were maintained in
a mixed C57BL/6 and FVB/N background in individually ventilated cages, on a 12-h day/night cycle with
access to food and water ad libitum. Littermates were distributed in the appropriate experimental or control
groups.

Human tissue samples
Ethical approval was obtained through the National Research Ethics Committee (REC reference 06/Q0505/
12). Bronchial samples were taken during autofluorescence bronchoscopy from areas of normal bronchial
epithelium. Bronchial brushes were used directly for flow cytometry and tissue biopsies frozen in optimal
cutting temperature (OCT) compound (Tissue-Tek 4583).

Flow cytometry
Flow cytometry was performed on a Fortessa cell analyser (BD Biosciences) and cell sorting on a
FACSaria (BD Biosciences). For cell-cycle analysis, live cells were incubated with 1 μg·mL−1 Hoechst
33342 for 30 min at 37°C prior to antibody staining. Reagents used are indicated in supplementary table S1.
Data was analysed using FlowJo 10.0.6 (Tree Star).

NTCU-induced LUSC model
The dorsal fur of 6-week-old female mice was shaved and 75 μL of 0.013 M N-nitroso-tris-chloroethylurea
(NTCU) (Santa Cruz sc-212265) diluted in acetone applied twice weekly for 12 weeks. Controls received
only acetone. Mice were monitored for a further 11 weeks and weighed twice weekly. On sacrifice, lungs
were insuflatted with 4% paraformaldehyde/PBS and fixed overnight at 4°C before paraffin embedding.

Histology and immunofluorescence
Haematoxylin and eosin staining was performed on an automated staining system (Tissue-Tek).
Immunofluorescence and immunohistochemical staining were performed using standard protocols. Antigen
retrieval methods, antibodies, reagents and equipment are detailed in the supplementary methods.

Bioinformatic analyses
Analyses of the Human Lung Cell Atlas single-cell RNA sequencing (scRNAseq) dataset [22] were
conducted as detailed in the supplementary methods. We assessed LRIG1 expression in two datasets of
human pre-invasive squamous cell lung cancer lesions obtained at bronchoscopy downloaded from the
Gene Expression Omnibus. The first dataset, GSE33479, contained 122 samples of pre-invasive lesions,
from normal epithelium to invasive cancer, profiled using Agilent microarrays [10]. The second,
GSE94611 and GSE108082, contained laser-captured epithelial samples from 51 CIS lesions (progressive
and regressive) [11]. Data were analysed in the R statistical environment (version 3.5.0; www.r-project.org)
using Bioconductor version 3.7.

Statistical analyses
Statistical analysis was performed on Prism 7 (GraphPad). Tests and sample sizes are indicated in figure
legends; p<0.05 was considered to be statistically significant.
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Results
LRIG1 is heterogeneously expressed in the airway epithelium
Using immunofluorescence, we have shown previously that LRIG1 is expressed in the murine upper
airways [18]. To characterise its expression within the different cell subpopulations of the airway
epithelium we used an Lrig1 knock-in reporter mouse. In this model, a cassette encoding
eGFP-IRES-CreERT2 is inserted downstream of the Lrig1 start codon (figure 1a) [23]. Enhanced green
fluorescent protein (eGFP) expression occurs from the endogenous Lrig1 promoter and results in a
loss-of-function allele. As shown previously for the skin and intestine [23], antibody staining confirmed
expression of eGFP recapitulates endogenous LRIG1 in the upper airways (figure 1b).

In both murine skin and intestinal epithelia, LRIG1 localises to defined stem cell compartments where it
regulates stem cell activity [24, 25]. In contrast, Lrig1::eGFP expression was evident throughout the upper
airway epithelium. eGFP was detected in basal (KRT5+), ciliated (acetylated-tubulin (ACT+)) and, to a
lesser extent, in club (SCGB1A1+) epithelial cells (figure 1b). There was no obvious enrichment of eGFP
within the KRT5+ cell subpopulation of the submucosal glands, where a reservoir of stem cells that
contribute to the regeneration of the surface epithelium after severe injury reside [26, 27] (figure 1b).
Whole-mount immunostaining in the adult murine lung demonstrated Lrig1::eGFP expression extended
throughout the bronchial tree, including the bronchi and bronchioles (figure 1c).

To determine the contribution of basal, ciliated and secretory cells to the cellular population expressing
Lrig1::eGFP in upper airway epithelium we used flow cytometry. Tracheal epithelial cells were isolated
from mice carrying one copy of the Lrig1::eGFP reporter allele. The immune and endothelial populations
were eliminated through negative selection for CD45 and CD31, respectively. Lrig1+ epithelial cells were
identified by dual expression of epithelial cell adhesion molecule (EPCAM) and eGFP. Griffonia
simplicifolia isolectin B4 (GSI-B4), which selectively binds to a cell surface carbohydrate found on airway
basal cells [28, 29], was used to identify the basal cell population. CD24 and SSEA1 expression were used
to separate ciliated and secretory cells, respectively [30] (figure 1d). Basal cells constituted mean±SEM 32.2±
3.4% of the Lrig1::eGFP+ population, whereas ciliated and secretory cells made up the 63.9±2.7% and
1.3±0.3%, respectively (figure 1e). The distribution of cell types did not change significantly with
selection of the brightest eGFP+ cells (supplementary figure S1), indicating that Lrig1 expression is not
enriched within the basal cell compartment. Only 50.8±4.1% of the total airway basal cell population was
Lrig1::eGFP+.

Murine and human basal airway epithelial cells expressing Lrig1 have increased in vitro self-renewal
capacity
As only a subpopulation of airway basal epithelial cells expressed Lrig1, we investigated whether the
properties of the Lrig1-expressing basal cells differ from the Lrig1-negative subpopulation.
EPCAM+GSI-B4+ airway basal epithelial cells were isolated from murine tracheas heterozygous for the
Lrig1::eGFP allele. Cell-cycle analysis revealed the Lrig1::eGFP+ basal cell subpopulation contained a
higher proportion of cells in G2/M compared to the Lrig1::eGFP– fraction (t-test p=0.0019) (figure 2a and
b). This agrees with previous skin and stomach findings where Lrig1 expression identifies more
proliferative stem/progenitor cell populations [21, 23, 24].

To determine whether Lrig1-expressing basal cells display increased self-renewal potential, we assessed
their clonogenic potential in two-dimensional culture. Freshly isolated single Lrig1::eGFP+ and Lrig1::
eGFP– basal cells from mice heterozygous for the reporter allele were sorted into 96-well plates and
assessed for colony-forming ability at day 10. Basal cells expressing Lrig1::eGFP formed significantly
more clones than those not expressing Lrig1 (t-test p=0.013) (figure 2c). When seeded into Matrigel, basal
airway epithelial cells give rise to three-dimensional organoids called “tracheospheres” [31]. Under these
conditions, Lrig1::eGFP+ basal cells generated significantly more tracheospheres than Lrig1::eGFP– cells
(t-test p=0.002) (figure 2d and e), indicating that Lrig1-expressing murine basal epithelial cells have higher
in vitro propagation potential.

Next, we investigated whether LRIG1 expression identifies a more proliferative basal cell population
within the human airway epithelium. Examination of publicly available single-cell transcriptomic data of
the human airway epithelium (www.lungcellatlas.org) [32] showed that similarly to the mouse, LRIG1 is
heterogeneously expressed by basal, ciliated and club cells (supplementary figure S2). Using the
scRNAseq dataset from the Human Lung Cell Atlas [22], we assessed LRIG1 expression within the
different clusters of basal cells present in the human bronchial epithelium. This revealed that LRIG1
expression enriches for “proliferating basal cells”. The “basal cell” cluster, which is quiescent, was
enriched in the LRIG1-negative fraction. Cells with a “proximal basal” signature were present in both
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FIGURE 1 Expression of leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) in the murine airways. a) Schematic representation of
wild-type and knock-in reporter Lrig1 alleles. An enhanced green fluorescent protein (eGFP)-internal ribosome entry site (IRES)-CreERT2 cassette
was targeted to the start codon of Lrig1, shifting the endogenous gene out of frame. b) Immunofluorescence images of tracheal sections from mice
heterozygous for the knock-in reporter Lrig1 allele demonstrate that expression of eGFP (green) recapitulates endogenous LRIG1 protein (magenta).
Expression of eGFP is detected in different cell compartments of the airway epithelium, including KRT5+ basal cells, acetylated-tubulin (ACT+)
ciliated cells and SCGB1A1+ secretory cells. Scale bars=50 μm. c) Whole-mount preparation of an adult mouse lung showing expression of eGFP in
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fractions, but appeared more abundant in the LRIG1+ one (figure 3a and b and supplementary figure S3).
Within the proliferating basal cell cluster, LRIG1 levels correlated with those of MKI67, which codes for
the proliferation marker Ki67 (Pearson correlation R=0.32, p=0.05) (figure 3c).

Expression of LRIG1 within the KRT5+ basal cell compartment of the normal human bronchial epithelium
was confirmed by double immunofluorescence (figure 3d). Normal human basal cells were isolated by
flow cytometry from endobronchial brushings obtained during autofluorescence bronchoscopy. Following
elimination of CD45+, CD31+ and dead cells, co-expression of the cell-surface proteins integrin α-6
(ITGA6) and nerve growth factor receptor (NGFR), which are enriched in airway basal cells [31]
(supplementary figure S4), was used to identify this cell population. Basal cells were then separated based
on LRIG1 immunoreactivity (figure 3e). Live-cell cell-cycle analysis demonstrated an increased proportion
of cells in G2/M in human basal cells expressing LRIG1 compared to the LRIG1-negative fraction (paired
t-test p=0.015) (figure 3f). When colony-forming ability was assessed, LRIG1+ cells gave rise to colonies
with a higher efficiency than their LRIG1– counterparts (paired t-test p=0.0067) (figure 3g). Together, our
results show that expression of LRIG1 within the basal cell compartment identifies a more proliferative

the lung airways. Antibody staining for SCGB1A1 and ACT was used for identification of club and ciliated cells, respectively. d) Immunophenotypic
characterisation of tracheal epithelial cells expressing Lrig1::eGFP by flow cytometry. Live tracheal epithelial cells (P1) were identified by negative
selection of cells expressing CD31, CD45 (endothelial cells and lymphocytes) and 4′,6-diamidino-2-phenylindole (DAPI), followed by positive
selection of epithelial cell adhesion molecule (EPCAM)+eGFP+ cells (P2). Griffonia simplicifolia isolectin B4 (GSI-B4) labelling was used to distinguish
basal cells (P3) within the EPCAM+eGFP+ population. Ciliated and secretory cells were selected within the GSI-B4-negative fraction by expression of
CD24 (P5) and SSEA1 (P6), respectively. e) Distribution of cell types in the eGFP+ tracheal epithelium (mean±SEM, n=7).
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FIGURE 2 Mouse basal airway epithelial cells expressing leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) have increased in vitro
self-renewal potential. a) epithelial cell adhesion molecule (EPCAM)+ Griffonia simplicifolia isolectin B4 (GSI-B4)+ basal murine airway epithelial cells
from Lrig1::eGFP heterozygous mice were purified by flow cytometry from freshly dissociated tissue following depletion of the CD31+ and CD45+

populations. Hoechst 33342 staining was used to compare DNA content in the enhanced green fluorescent protein (eGFP)-positive and -negative
fractions. b) The proportion of cells in G2/M phase is higher in eGFP+ basal cells compared to eGFP– basal cells (mean±SEM, t-test, n=7 biological
replicates). c) Single eGFP+ or eGFP– basal cells were sorted by flow-cytometry into individual wells of 96-well plates containing mitotically
inactivated feeder cells. The number of cells giving rise to colonies containing >10 cells was assessed 10 days after plating (paired t-test, n=4 mice).
d) and e) The ability of eGFP+ and eGFP– basal cells to form spheroids was assessed following 14 days of culture in Matrigel (mean±SEM, paired
t-test, n=10 mice).
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FIGURE 3 Expression of leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) in human basal airway epithelial cells is associated with
increased proliferation. The single-cell RNA sequencing dataset from the Human Lung Cell Atlas was used to examine differences between
bronchial basal cells with or without LRIG1 expression. a) t-distributed stochastic neighbor embedding (t-SNE) dimensional reductions displaying
the major basal cell clusters present in bronchial regions. b) Count of cells with (Pos) or without (Neg) LRIG1 expression in each basal cell
subpopulation. c) Scatter plot displaying the correlation between LRIG1 and MKI67 expression in proliferating basal cells from the Human Lung Cell
Atlas. d) Immunofluorescence staining for LRIG1 and the basal cell marker KRT5 in the human airway epithelium. Scale bar=50 μm. e) Integrin α-6
(ITGA6)+ nerve growth factor receptor (NGFR)+ human basal cells (P2) were isolated from endobronchial brushings by flow cytometry and separated
into LRIG1+ (P3) and LRIG1– (P4) subpopulations. Fluorescence minus one (FMO) control is shown. f ) Cell-cycle analysis on live cells using Hoechst
33342 indicates that the LRIG1+ human basal cell fraction contains an increased proportion of cells in G2/M (mean±SEM, paired t-test, n=4 patients).
g) The proportion of individual LRIG1+ and LRIG1– human basal cells giving rise to colonies after 10 days of culture on mitotically inactivated feeder
cells is shown (mean±SEM, paired t-test, n=6 patients).
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cellular subpopulation with increased in vitro propagating potential in both murine and human airway
epithelium.

LRIG1 functions as a negative regulator of EGFR signalling and thus LRIG1+ cells showing a greater
proliferation seems paradoxical. Therefore, we hypothesised that LRIG1 expression is a checkpoint for
proliferation employed by progenitor basal cells, but not needed in a low-proliferating population
(LRIG1-negative). To test this, we knocked-down LRIG1 in human basal cells and indeed noted enhanced
cell population expansion (supplementary figure S5). Hence, LRIG1 marks a progenitor population of
basal cells and functions as a checkpoint to proliferation.

Progression of pre-invasive lung cancer lesions to invasive LUSC is associated with decreased LRIG1
expression
To better understand the role of LRIG1 in LUSC formation, we examined expression of LRIG1 at different
stages of human LUSC development. We analysed a published dataset including patient biopsies from
normal bronchial tissue, six morphologically distinct grades of pre-invasive disease, ranging from
hyperplasia to CIS, and LUSC [10]. This revealed decreased LRIG1 expression in pre-invasive samples
that varied from metaplasia to severe dysplasia, relative to normal tissue (p<0.05) (figure 4a). Further
decline in LRIG1 levels was observed in LUSC samples when compared to normal and hyperplastic tissue
(p=2×10−5 and p=0.0026, respectively) (figure 4a). Additionally, assessment of LRIG1 expression in a
longitudinally characterised cohort of CIS lesions that either progressed to invasive LUSC or regressed [11]
showed significantly lower LRIG1 levels in the progressive group (p=0.0086) (figure 4b). Together, these
data indicate that a decrease of LRIG1 expression is associated with progressive severity of pre-invasive
disease through to invasive lung cancer.

Establishment of a lung squamous cell carcinoma murine model
To investigate the consequences of decreased LRIG1 levels during LUSC development, we used a
chemically induced murine model of LUSC [33]. Topical application of NTCU to young-adult mice twice
weekly for 12 weeks resulted in LUSC formation over the next 11 weeks (figure 5a). Histological analysis
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revealed that NTCU-induced lesions recapitulated the various stages of the human disease, from
pre-invasive lesions to invasive LUSC (figure 5b). Pre-invasive lesions and tumours expressed the LUSC
markers KRT5 and P63 and lacked expression of the lung adenocarcinoma (LUAD) marker surfactant
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FIGURE 5 N-nitroso-tris-chloroethylurea (NTCU)-induced murine lung squamous cell carcinoma. a) NTCU administration protocol for the induction
of murine lung squamous cell carcinoma. b) Representative images of NTCU-induced lung lesions stained with haematoxylin and eosin. Flat atypia
with enlarged, flattened nuclei and increased nuclear-cytoplasmic ratio. Low-grade dysplasia with presence of multiple, ordered layers of epithelial
cells and clear organisation from the basement membrane to the luminal surface. Note flattened nuclei adjacent to the lumen. High-grade
dysplasia showing disordered layers of epithelial cells and multiple enlarged nuclei. Invasive squamous cell carcinoma lesion, beginning to fill the
alveolar spaces. Keratin pearl, a characteristic feature of squamous cell carcinoma. c) Immunofluorescence staining showing expression of the lung
squamous cell carcinoma markers P63 and KRT5, and the proliferation marker Ki67, in NTCU-induced lesions. d) Antibody staining demonstrates
lack of immunoreactivity for the lung adenocarcinoma marker surfactant protein C within NTCU-induced lesions. Basement membrane (dashed
lines) and airway lumen (AL) are indicated. Scale bars=50 μm.
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protein C (SPC). Rare KRT5+ cells expressing low levels of SCGB1A1 were detected within
NTCU-induced lesions (figure 5c and d).

Lrig1 loss of function leads to increased tumour size in a murine LUSC model
The Lrig1::eGFP-IRES-CreERT2 knock-in allele leads to Lrig1 loss of function (figure 6a). To establish
whether decreased Lrig1 gene dosage impacts LUSC formation, we compared effects of NTCU in
Lrig1-null, -heterozygous and wild-type mice. Animals were monitored for weight change and there was a
marked separation between the treatment and control arms from week 15 (two-way ANOVA, p<0.05)
(figure 6b).

KRT5+ basal cells are restricted to the upper airway murine epithelium [34]. Thus, expression of KRT5
beyond the trachea and the divisions of the right and left mainstem bronchi is abnormal. Therefore, we
used KRT5 immunostaining to assess the presence of pre-invasive lesions in the bronchial tree following
NTCU treatment. The proportion of total bronchial tree affected by pre-invasive disease in each mouse was
calculated (figure 6c) and compared between Lrig1-null, -heterozygous and wild-type mice. Lrig1
genotype had an effect on the extent of pre-invasive disease (Kruskal–Wallis test, p=0.033), with the
Lrig1-null (Lrig1−/–) group displaying lower overall bronchial epithelial surface with abnormal KRT5
expression, when compared to Lrig1 heterozygous (Lrig1+/–) mice (Dunn’s multiple comparisons test,
p=0.049) (figure 6d). Areas of pre-invasive disease were divided according to severity into flat atypia,
low-grade dysplasia and high-grade dysplasia (table 1 and figure 6e and f). There were comparable
proportions of both low-grade and high-grade lesions across groups (figure 6e). However, the presence of
flat atypia, the earliest feature of pre-invasive disease, was significantly lower in the Lrig1-null animals
when compared to both wild-type and Lrig1+/– mice (two-way ANOVA followed by Tukey’s multiple
comparisons tests, p<0.001) (figure 6e).

Next, we assessed invasive tumours in the three groups. There was a trend towards increased incidence of
LUSC as Lrig1 gene dosage decreased (Chi-squared test for trend, p=0.03) (table 1). When we compared
the frequency and size of tumours between animals with different Lrig1 genotypes, Lrig1 gene dosage had
no significant effect on the number of tumours per individual (figure 6g). However, the absence of LRIG1
led to significantly larger tumours than those in mice with active LRIG1 expression (Kruskal–Wallis test,
p=0.0002) (figure 6h). Larger tumours, alongside the lower frequency of flat atypia in the Lrig1-null lungs,
suggests loss of Lrig1 facilitates and/or accelerates pre-invasive disease progression into invasive LUSC.

To determine whether LRIG1 regulates LUSC progression by modulating cell fate or promoting
proliferation, we investigated expression of P63 and Ki67 within the different spectrum of lesions. KRT5+

lesions were classified according to their severity and the fraction of cells expressing each marker
(regardless of expression levels) were scored. The overall proportion of P63+ cells in NTCU-induced lung
lesions was not significantly affected by Lrig1 genotype or lesion grade (two-way ANOVA, p>0.05)
(figure 7a). However, when comparisons were made only among lesions of the same grade, we found that
flat atypia lesions contained a significantly higher proportion of P63+ cells in Lrig1-null mice than in their
wild-type counterparts (Kruskal–Wallis test followed by Dunn’s multiple comparison test, p=0.04).
Assessment of the fraction of Ki67+ cells revealed differences between distinct lesion grades (two-way
ANOVA, lesion grade effect, p=0.0007). When we evaluated genotype effects within lesions of the same
grade, we found that in comparison to wild-type mice, mice lacking Lrig1 also exhibited an increased
fraction of Ki67+ cells in flat atypia lesions (Kruskal–Wallis test followed by Dunn’s multiple comparison
test, p=0.04) (figure 7b). This suggests that LRIG1 activity restrains LUSC formation by restricting
progenitor cell proliferation in early pre-invasive disease.

Discussion
Studies of the homeostatic upper airway epithelium in mouse and human highlight phenotypic and
functional heterogeneity within the basal cell compartment. Current evidence indicates basal cells comprise
a population of multipotent stem cells and committed progenitors [32, 35–37]. Here we find that Lrig1 is
heterogeneously expressed in the airway epithelium and its expression identifies a more proliferative
subpopulation of basal cells with increased in vitro self-renewal potential. These findings are in line with
previous studies in the epidermis and forestomach, where LRIG1 expression marks proliferative epithelial
stem/progenitor cells, and in glandular gastric epithelial cells, where Lrig1-expressing cells have higher
organoid-forming ability than their Lrig1-negative counterparts [21, 23]. This suggests a conserved role for
LRIG1 in regulation of progenitor cell activity in distinct epithelia.

In contrast to the skin and intestine, where Lrig1 is enriched in the stem cell compartment [24, 25], in the
murine gastric epithelium Lrig1 is expressed by both progenitor and differentiated cells [23, 38]. Similarly,
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FIGURE 6 Effects of leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) loss-of-function on N-nitroso-tris-chloroethylurea
(NTCU)-induced lung carcinogenesis. a) Immunoblot for LRIG1 on cerebellar tissue lysates from wild-type, Lrig1-heterozygous and Lrig1-null mice.
Note that protein levels change in a gene-dosage dependent manner. α-tubulin is shown as a loading control. b) Weights of NTCU-treated and
control animals (mean±SEM, Lrig1+/+ n=11, Lrig1+/– n=9, Lrig1–/– n=7). Two-way ANOVA: time effect (p<0.0001) and time × treatment interaction
(p<0.0001). Arrow indicates significant differences between all treatment groups and control arm. Tukey’s multiple comparisons test, p<0.05.
c) Transverse lung sections of NTCU-treated mice stained with haematoxylin and eosin and processed for KRT5 immunohistochemistry to identify
pre-invasive airway lesions and invasive tumours. d) Proportion of lower airway epithelium displaying abnormal KRT5 expression in wild-type (+/+),
Lrig1-heterozygous (+/−) and Lrig1-null (−/−) mice treated with NTCU (mean±SEM, Kruskal–Wallis test, p=0.033, followed by Dunn’s multiple
comparisons test, p=0.049; n=7–11 mice per group). e) KRT5-expressing lesions were categorised as flat atypia, low-grade or high-grade.
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we find that in the upper airways, expression of Lrig1 is detected in basal, ciliated and secretory cells. In
the mouse distal airways, scRNAseq analyses have shown that Lrig1 is enriched in SCGB1A1+ club cells
and expressed at moderate levels by SPC+SCGB1A1+ bronchioalveolar stem cells [39]. Analogous studies
of the human airways show that LRIG1 is heterogeneously expressed across the different epithelial cell
subpopulations [32]. This raises the possibility that LRIG1 may exert functional roles in airway epithelial
stem cells, lineage-restricted progenitors and differentiated cells. In future studies it would be important to
determine how LRIG1 dysregulation affects these different populations using lineage-specific loss- or
gain-of-function approaches.

Dysregulation of LRIG1 is seen across different tumour types [40]. Decreased LRIG1 expression has been
associated with poor prognosis in a range of epithelial tumours, including lung cancer [19, 20, 41]. We
now show that downregulation of LRIG1 occurs early during LUSC evolution, before development of
high-grade lesions and invasive tumours. Primary human pre-invasive squamous lung cancer has not been
grown in culture, limiting functional investigation of the molecular alterations occurring at this stage of
LUSC development. Here we find that LRIG1 knockdown enhances in vitro propagation of primary basal
cells isolated from the human normal airway epithelium, supporting a potential regulatory role in
pre-invasive disease development. Recently, air liquid interface cultures of immortalised human bronchial
epithelial cells with loss of TP53 and SOX2 overexpression have been shown to recapitulate bronchial
dysplasia features [42]. This model may be useful to assess the consequences of loss of LRIG1 in
pre-invasive squamous cancer in future studies.

In an NTCU-induced murine model of LUSC, we found a trend towards increased LUSC development as
Lrig1 gene dosage decreased. The absence of Lrig1 led to decreased presence of flat atypia and formation
of larger invasive tumours. A correlation between lower LRIG1 expression and increased tumour size has
been identified in hepatocellular carcinoma [43]. Gain- and loss-of-function studies in cancer cell lines
from lung, breast and liver indicate that LRIG1 modulates cancer cell proliferation [43–45]. Assessment of
Ki67 expression in NTCU-induced lesions showed that Lrig1 depletion leads to abnormally high
proliferative rates in early flat atypia lesions, but not in dysplasia or invasive tumours. These observations
suggest the larger tumours in the Lrig1-null lungs result from accelerated disease progression, rather than
from increased cell proliferation in established tumours.

We have shown that LRIG1 exerts a tumour suppressive role in LUSC development. Therefore, LRIG1
loss may be used as a biomarker of poor outcome of pre-invasive lesions and lead to a lower threshold for
intervention. With the loss of the break of LRIG1 in EGFR signalling contributing to the development of
pre-invasive disease, our work highlights a potential role for EGFR antagonists in LUSC prevention. Other
data suggest a key role in the suppression of LUAD. As a negative regulator of EGFR signalling, high
LRIG1 expression is associated with a dramatic 2.8-year improved survival in LUAD patients [20].
Decreased LRIG1 transcript levels have been reported in LUAD cell lines, especially those with mutant

Distribution of pre-invasive lesions of different grades within lower airway (mean±SEM). Two-way ANOVA: genotype effect (p=0.009) and lesion grade
effect (p<1×10−6). The presence of flat atypia was statistically different among genotypes (Tukey’s multiple comparisons test, p=7.7×10−4,
p=1.7×10−5). f ) Representative images of NTCU-induced pre-invasive lesions stained for KRT5. Scale bars=50 μm. g) Number of invasive tumours per
mouse. Kruskal–Wallis indicated no significant differences among groups (n=7–11 mice per genotype). h) Size of invasive tumours in mice of
different Lrig1 genotypes (mean±SEM). Kruskal–Wallis test, p=0.0002, followed by Dunn’s multiple comparisons test, p=0.005, p=0.0003; Lrig1+/+ n=23,
Lrig1+/– n=142, Lrig1–/– n=43 invasive lesions. IHC: immunohistochemistry.

TABLE 1 Incidence of N-nitroso-tris-chloroethylurea-induced pre-invasive lesions and lung squamous cell
carcinoma (LUSC) in leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1)-deficient and control mice

Percentage incidence#

Flat atypia (n/N) Low-grade (n/N) High-grade (n/N) LUSC (n/N)

Lrig1 genotype
+/+ 100 (11/11) 100 (11/11) 90.90 (10/11) 36.36 (4/11)
+/− 100 (9/9) 100 (9/9) 88.89 (8/9) 66.67 (6/9)
−/− 100 (7/7) 100 (7/7) 85.71 (6/7) 85.71 (6/7)

#: number of animals with lesions/total number of animals.
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EGFR [44]. Transfection of EGFR-mutant LUAD cells with LRIG1 led to decreased proliferation, invasion
and migratory potential [44].

To date, functional analyses of the role of LRIG1 in NSCLC have relied on in vitro studies and xenograft
models using LUAD cell lines [18, 44]. Here, we have used a chemically induced model of LUSC that
develops endogenous cancer lesions recapitulating the histopathological features of the human disease,
including step-wise progression through pre-invasive stages. RNA sequencing analyses of NTCU-induced
tumours indicate that their transcriptional landscape mimics human LUSC [46], supporting the relevance
of this model for understanding LUSC progression. We show that using NTCU-induced carcinogenesis in
the context of a transgenic murine model enables assessment of gene function during different stages of
LUSC development and provides a system for validating candidate tumour suppressors, oncogenes and
therapeutic targets for the prevention and treatment of LUSC.
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