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Abstract

While exploring the effects of aerosol IFN-c treatment in HIV-1/tuberculosis co-infected patients, we observed A to G
mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL) of aerosol IFN-c-treated patients and
induction of adenosine deaminase acting on RNA 1 (ADAR1) in the BAL cells. IFN-c induced ADAR1 expression in monocyte-
derived macrophages (MDM) but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1
infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected in vitro. Over-
expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by
nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1
over-expressing cells in vitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-c
suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts
HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral
latency in macrophages.
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Introduction

Mycobacterium tuberculosis infects one-third of the world’s

human population. In 2012, approximately 8.6 million people

developed active TB with 1.3 million deaths of whom 320,000

were HIV/TB co-infected [1], There is a mutual interaction

between HIV-1 and tuberculosis, each aggravating the other by

reducing CD4+ cells and enhancing inflammation and HIV-1

replication [2,3]. Interferons (IFN) are secreted proteins central to

both innate and cellular immunity. The IFN-c pathway is critical

to host defense in M. tuberculosis-exposed mice [4,5]. In humans,

mutational defects in the IFN-c receptor or signaling intermediates

result in disseminated mycobacterium infection [6]. IFN-c is also

antiviral, reducing HIV-1 replication in macrophages [7,8]. In

2001, IFN-c was used subcutaneously to prevent opportunistic

infections (OIs) in HIV-1-infected patients but failed to reach

significance due to over dispersion in the model (1.71 OIs for IFN-

c recipients versus 3.45 OIs for controls over 48 months, NS), and

had reversible adverse events [9].

One of the interferon-mediated mechanisms restricting viral

replication is induction of RNA editing enzymes leading to hyper-

editing and inactivation of viral RNAs in avian leucosis virus [10],

measles virus [11], parainfluenza virus [12], polyoma virus [13],

and respiratory syncytial virus [14]. Adenosine deaminase acting

on RNA 1 (ADAR1) is one of those RNA editing enzymes. It

catalyzes the deamination of adenosine (A) to inosine (I) that is

then recognized as guanosine (G) during subsequent rounds of

replication [15]. ADAR1 exists as two isoforms: a 150-kDa form

whose expression is induced by IFN, and a constitutively expressed

110-kDa form. The 150-kDa form is the only ADAR family

member expressed in the cell cytoplasm suggesting a unique role

for this IFN-induced RNA editing enzyme [16]. Recently, RNA

editing by the 150-kDa isoform of ADAR1 was shown to be a

potent inhibitor of HIV-1 replication [17] raising the possibility

that ADAR1 also acts on HIV-1 in vivo.

ADAR1 is similar to the RNA editing enzyme cytidine

deaminase APOBEC3G, shown to be an innate immune inhibitor

of HIV-1 replication in lymphocytes [18]. APOBEC3G produces
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a cytidine to uridine mutation in the minus strand DNA during

reverse transcription. It therefore effectively prevents proviral

integration in T cells. Unlike APOBEC3G, ADAR1 is not effective

in inhibiting HIV-1 replication in lymphocytes [19].

HIV-1-infected individuals who remain asymptomatic despite

prolonged infection are designated as long-term non-progressors

(LTNP). These individuals frequently have vigorous anti-HIV-1

immune responses detectable with the IFN-cElispot assay or

intracellular IFN-c staining [20,21]. When the HIV-1 sequences of

LTNP were examined, A-to-G and G-to-A hyper-mutations were

found throughout the entire genome, suggesting a role for RNA

editing enzymes in viral replication [22,23].

During pathophysiological investigation of patient-derived

material from the lungs of HIV/TB co-infect patients treated

with aerosolized IFN-c, we observed hyper-mutation of lung

derived HIV-1 and induction of ADAR1 mRNA in bronchoal-

veolar lavage cells retrieved from these patients. We therefore

developed cell culture models to test if ADAR1 inhibited HIV-1

replication and produced A to G mutations in macrophages. We

chose to use macrophage models because alveolar macrophages

are a major source of HIV-1 replication during tuberculosis and

because these long lived cells are a potential reservoir for latent

virus during prolonged antiretroviral therapy [24].

Results

The HIV-1 envelope glycoprotein V3 region in
bronchoalveolar lavage (BAL) fluids is highly mutated
when patients are exposed to IFN-c

We conducted a clinical trial with aerosolized IFN-c as an

adjuvant treatment for patients with and without multi-drug

resistant tuberculosis [25,26,27,28]. Five hundred mg/day (ap-

proximately 10 million units/day) of IFN-c was delivered to the

lung space three times a week for four weeks [29]. Five HIV-1/TB

patients were saline-lavaged just after starting anti-tuberculosis

treatment and after competing one month of adjunctive aerosol

IFN-c treatment. Lung HIV-1 RNA levels were significantly

reduced at the end of the IFN-c treatment period (2.262.46105

copies/ml vs. 1.862.06104 copies/ml, (mean6SE); p,0.05

Figure 1A). The HIV-1 envelope gp120 V3 sequence in patients’

BAL fluid demonstrated a significant number of mutations when

clones obtained before IFN treatment were compared to clones

obtained after treatment in the same patient. We sequenced 10

sub-clones of the viral envelope RNA in each patient and a

significant number (27%: p,0.01) of these mutations post IFN-c
therapy were A to G transitions. In addition, a large proportion of

mutations were G to A transitions (Figure 1B). In contrast, no A

to G transitions were observed from 10 sub-clones of viral RNA in

the BAL fluid of a HIV/TB patient who received only
conventional mycobacterial treatment (data not shown). We

sequenced 10 sub-clones of the viral RNA in their plasma and

found no A to G transitions in blood-derived HIV-1 after IFN-c
therapy or after conventional mycobacterial treatment, suggesting

the mutational effect of aerosol IFN-c treatment was localized to

the lung. The plasma viral load (VL) was not significantly changed

following IFN-c treatment (4.760.96106 copies/ml vs.

5.460.96106 copies/ml (mean6SE); p = 0.7). These observations

are compatible with previous observations that aerosol distribution

is limited to the lung compartment [29].

Hot spots of amino acid replacement around the
envelope glycoprotein V3 region after IFN-c treatment
without induction of an X4-tropic virus genotype

Previous observations suggest that there is a preferential

selection of adenosines for modification by ADAR1, with a 59

neighbor preference [30]. We analyzed the sequences from paired

samples of patients before and after aerosol IFN-c treatment and

noticed a similar tendency for the adenosine preferential selection

of the 59 neighborhood (A..U = G.C) suggesting, at least in

part, that mutations from A to I are caused by ADAR1

(Figure 2A).

Due to the importance of the envelope glycoprotein V3 region

in determining co-receptor usage, amino acid substitutions

occurring around V3 region were compared before and after

IFN-c treatment. Sequence analysis from five paired HIV/TB co-

infected patients revealed that there were 10 hot spots of amino

acid replacement around the V3 region after IFN-c treatment

(Figure 2B). We define hot spots as sites that demonstrate amino

acid substitutions seen in three or more of the five patients. Hot

spots existed not only within the hyper-variable V3 region but also

in the relatively conserved C2 and C3 regions. Indeed, the

constant region C3 (amino acid #351) had the most frequent

amino acid hot spots in this treatment group. The substitutions at

amino acid #310, #347, and #354 were predominantly A to G

(Figure 2C). These mutations did not increase the charge of the

V3 region (a correlate of CXCR4 usage), but instead reduced it.

Total positive charges in V3 regions are used as one marker of co-

receptor preference usage [31]. We previously observed in the

context of HIV/TB co-infection that there is a tendency for X4

virus to be selectively isolated in the lung space [2,32]. In vitro
studies also showed IFN-c augmented susceptibility of MDM to

infection with X4 virus [33,34]. However, in vivo IFN-c treatment

did not increase the charge, suggesting IFN-c treatment did not

select X4 virus in vivo (Figure 3). IFN-c treatment also did not

result in substitutions to basic amino acids at positions #311 and/

or #325 of the envelope protein that correlate with CXCR4 co-

receptor usage (also referred to positions #11 and/or #25

positions of the V3 loop). The amino acid of these positions

remained neutral or acidic after IFN-c treatment (data not shown).

The 150-kDa ADAR1 isoform (ADAR1L) is induced by IFN-
c or HIV-1 infection in primary macrophages but not in
primary CD4 T cells

Since ADAR1 is induced by IFNs in several cell types [16], we

examined by Western blot whether IFN-c induced ADAR1 in

macrophages. Prior to antiretroviral therapy stimulation or

infection, monocyte-derived macrophages (MDM) strongly express

the 110-kDa (constitutive) form, whereas the 150-kDa isoform was

weakly expressed, the ratio of the long to short form being 0.003.

Six hours after the addition of various concentrations (0.5–

500 ng/ml) of IFN-c, the 150-kDa (IFN-inducible) ADAR1L

isoform was induced, and 50 ng/ml of IFN-c increased to the ratio

to 0.049 (Figure 4A and data not shown). ADAR1L induction

was observed even after overnight incubation with IFN-c (data not

shown). We also investigated the regulation of ADAR1L in

primary CD4 T cells. In the absence of stimulation the ratio of

ADAR1L to ADAR1S was 0.16, higher than observed in

stimulated MDM (Figure 4B). However, there was little change

in ADAR1L or ADAR1S with IFN-c treatment or HIV-1

infection, suggesting different mechanisms of ADAR1 induction

in macrophages and T cells.

ADAR1 Inhibits HIV-1 Replication in Macrophages
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ADAR1 expression in the lung
We evaluated the effect of antiretroviral therapy in vivo on the

expression of ADAR1 mRNA using high-density cDNA arrays by

analyzing mRNA of BAL cells from three HIV-1 infected

individuals before versus one month after antiretroviral therapy,

as well as from five normal volunteers. Antiretroviral therapy

significantly reduced plasma VL in all three individuals [24]. In

pre-antiretroviral therapy specimens, ADAR1 mRNA was higher

as compared to normal volunteers, suggesting ADAR1 was

induced in response to HIV-1 replication. However, a post-

antiretroviral therapy, the levels of ADAR1 mRNA returned to

those of normal volunteers (Figure 5A). These HIV-1 patients

and volunteers did not have any lung diseases and their BAL cells

consisted of more than 90% alveolar macrophages. We then

examined the ADAR1 mRNA expression in BAL cells of 8 TB

patients treated with IFN-c. Half had an increase in ADAR1

mRNA expression while only one had a decrease (Figure 5B).

siRNA knock-down of ADAR1 increases HIV-1 replication
in primary macrophages

To test the effect of ADAR1 expression in primary macro-

phages we used an siRNA knockdown strategy. We transfected

MDM with ADAR1 siRNA specific to both isoforms. Transfection

with ADAR1 siRNA but not ADAR2 or scrambled siRNA

reduced expression of both isoforms of ADAR1 as revealed by

Western blotting (Figure 6A). Two days after siRNA transfection,

HIV-1 was added to the MDM cells for 5 days. Supernatants were

harvested, and de novo virus content determined by 50% the tissue

culture infectious dose (TCID50) (Figure 6B). Infectivity was

significantly increased when ADAR1 was knocked down, whereas

the infectivity was un-changed when ADAR2 was knocked down.

Figure 1. Reduction of lung HIV-1 RNA levels and HIV-1 envelope mutations associated with aerosol IFN-c treatment. (A) HIV-1 RNA
levels in bronchoalveolar lavage (BAL) fluids of 5 HIV-1/M. tb co-infected patients before (pre IFN-c) and after (post IFN-c) treatment with aerosolized
IFN-c. HIV-1 RNA viral load at post-treatment was significantly reduced in BAL fluids (p,0.05; mean6SE). (B) Nucleotide mutations around the V3
region of HIV-1 envelope post IFN-c treatment. The percentages of mutations found in the V3 region were calculated by comparing virus sequences
before and after IFN-c therapy. A to G and G to A mutation occurred significantly as compared with other mutations (p,0.01).
doi:10.1371/journal.pone.0108476.g001

Figure 2. Characteristics of HIV-1 envelope mutations after IFN-c treatment in vivo. (A) Frequency of modification occurring at adenosines
with different 59 nearest neighbors. Adenosine in the preferential selection of 59 neighbors for ADAR1 (A..U = G.C). (B) Numbers of amino acid
substitutions around HIV-1 envelope glycoprotein V3 region. X-axis number is the amino acid position is counted from N-terminus of the envelope
protein. (C) Amino acid substitutions resulted from by A to G mutations are shown in red.
doi:10.1371/journal.pone.0108476.g002
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Similar results were obtained with real time PCR assays using the

same supernatants (data not shown). We repeated siRNA

experiments using alveolar macrophages from patients on

antiretroviral therapy [24]. Plasma VLs of all patients were under

the detection limit. Supernatants were harvested and virus content

measured by quantitative RT-PCR (Figure 6C). Again, virus

replication was significantly increased when ADAR1 was knocked

down (p,0.05).

Replication of HIV-1 induces ADAR1 expression in vitro
We then developed an in vitro model to test the mechanism of

ADAR1 action in macrophages. We choose the transformed HL-

60 cell line latently infected with HIV-1 (OM10.1) to model

chronic infection of alveolar macrophages since these cells are a

major source of viral replication during OI [32,35]. The OM10.1

cells constitutively release infectious HIV-1 virions and virus

production can be inhibited by treatment with anti-HIV-1 drugs

such as indinavir sulfate (IDV) [36]. We added a high

concentration of IDV in the culture media for several weeks.

More 150-kDa ADAR1L expression was seen in OM10.1 without

IDV as compared to the parental HL-60 cell lines, while less

ADAR1L was seen in OM10.1 treated with IDV (see HL-60 vs.

OM-IDV vs. OM+IDV in Figure 7A lanes 1 to 3).

ADAR1 inhibits virus replication and induces mutations
similar to those observed in vivo

We hypothesized that ADAR1 may be induced by IFN-c and

the induction of ADAR1 would in turn cause mutations in HIV-1

RNA that inhibits HIV-1 replication. To test this hypothesis, we

stably transfected the ADAR1 gene into OM10.1 cells to generate

the cell line YS+OA. As shown in Figure 7A (lane 2 vs. lane 4),

YS+OA expressed significantly more ADAR1L than the parental

OM10.1. With IDV treatment, ADAR1L expression was

decreased over several days (Figure 7A, lane 4 vs. lane 5).

We also stably transfected a plasmid expressing shRNA to the

ADAR1 gene into OM10.1 cells to generate the cell line YS-OA.

We confirmed the ADAR1L expression was significantly reduced

in YS-OA cells (data not shown). We measured HIV-1 concen-

tration in the supernatant from the culture of YS+OA and YS-OA

cells treated with IDV to prevent the re-infection. HIV RNA from

YS+OA was significantly lower (p,0.05) than that from the YS-

OA (Figure 7B), as were gag Pr55 and p24 proteins (Fig-
ure 7C). However, nuclear run-on transcription rate assays show

the nascent viral RNA synthesis was similar in both cell lines

(n = 4, Figure 7D, p = 0.9). These data suggest that ADAR1

inhibits HIV-1 replication post-transcriptionally.

Finally, we infected MDM with replication defective VSV-NL-

luc and three days after the infection added an ADAR1 expression

vector to the MDM. We repeated the sequence analysis described

above. The analysis of the viruses produced by MDM transfected

with ADAR1 showed mutations identical to those found in vivo
(Figure 8). These data suggest that ADAR1 may have induces

mutation in the HIV-1 RNA.

As previously noted, we found a significant number of A to G

mutations around the V3 region of HIV isolates from patients

treated with aerosol IFN-c. To compare these in vivo data to

in vitro effects, we also sequenced the same region from viruses

generated in the YS+OA cell line. There were no mutations

observed in the viruses from culture supernatants when we sub-

cloned the RT-PCR amplicons and sequenced more than 20

clones (data not shown). A similar result was observed when we

used RNA extracts from whole cells. However, after immuno-

precipitation of whole cells with anti-ADAR1 antibody and

sequencing of RNA extract from the precipitate, we found the

mutation pattern that was very similar to our in vivo observation

(Figure 8), suggesting that induced ADAR1 may interact with

viral RNA in the cells. When we performed immuno-precipitation

experiments with anti-ADAR2 antibody, we did not find such

mutations.

Discussion

Our studies support the hypothesis that the ADAR1 gene

product inhibits HIV-1 replication in human macrophages and

likely produces the high frequency of A to G mutation found in

HIV-1/TB co-infected patients after aerosol IFN-c treatment.

Using in vivo data from HIV-1 infected patients before and after

antiretroviral therapy, we found that ADAR1 mRNA was elevated

in BAL pre-antiretroviral therapy and returned to normal post-

antiretroviral therapy suggesting that ADAR1 is induced during

Figure 3. Comparison of total positive charges in the V3 loops of viruses isolated from patients at pre- and post- IFN-c treatment.
No increase in positive charges was observed in any patients after the treatment.
doi:10.1371/journal.pone.0108476.g003
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Figure 4. ADAR1 expression in primary macrophages and T cells in vitro. (A) IFN-c induced 150-kDa ADAR1L in MDM. Cells were treated for
six hours with the indicated concentrations of IFN-c or infected with HIV-1 overnight. Immune-blot of actin was used as loading control. The ratio
150-kDa (IFN inducible) ADAR1L isoform to 110-kDa (constitutive) ADAR1S is shown below each lane. (B) IFN-c did not induce ADAR1L in primary
CD4+ T cells. CD4+ T cells were incubated with IFN-c or HIV-1 as in panel (A).
doi:10.1371/journal.pone.0108476.g004

Figure 5. ADAR1 mRNA expression in the human lung. (A) ADAR1 mRNA levels were higher in HIV-1-infected patients before anti-retroviral
treatment and reduced to normal after treatment (p,0.01, mean6SE). ADAR1 mRNA expression was measured by high-density cDNA arrays. Before
anti-retroviral therapy and after 4 weeks of antiretroviral therapy in BAL cells of the same patients. Normal indicates mRNA from BAL cells of
uninfected volunteers. (B) ADAR1 mRNA expression was measured by high-density cDNA arrays in 8 patients before and one-month after treatments
with aerosolized IFN-c. IFN-c treatment was associated with about 2 fold increase in of ADAR1 mRNA (0.1560.03 vs 0.2560.07; mean6SE).
doi:10.1371/journal.pone.0108476.g005
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active viral replication. The actions of ADAR1 could be a double

edged sword, providing an innate immune pathway that inhibits

viral replication but also producing mutations that could lead to

drug resistance and increased virulence.

We focused on the 150-kDa isoform because it is inducible by

type I and type II IFN and is the only ADAR family member that

is present in the cytoplasm [16], and, thus may mediate the post

transcriptional effects. Transfection with the 150-kDa isoform

produces the inhibitory effect of ADAR1 on HIV-1 replication

[17]. This paper extends the observations of others into humans,

in particular primary macrophages from HIV-1 positive patients

and demonstrates that exogenously administered IFN-c produces

the types of alteration in ADAR1 levels and viral sequences

predicted by the in vitro models.

We also demonstrate significant differences in the regulation of

ADAR1 in primary lymphocytes and macrophages. Unstimulated

T cells have relatively robust expression of the 150 kDa isoform as

compared to MDM but interferon does not further increase the

level of ADAR1 in lymphocytes. In contrast, untreated primary

macrophages weakly express the 150-kDa isoform, and IFN-c
induces more than a 10 fold increase in these cells. HIV RNA has

structured regions, such as TAR that bind the double-stranded

RNA-binding domains of ADAR1 and PKR, another antiviral

interferon inducible protein. In lymphocytes, ADAR1 participates

in a multi-protein complex that inhibits the antiviral effect of PKR

[37]. Some of the reported inconsistency about the activity of

ADAR1 on HIV-1 replication may be due to cell type specific

effects of ADAR1 [17,19]. Here, we studied ADAR1 inhibition of

HIV-1 replication in alveolar macrophages, since these are long

lived cells that representing one of the potential cellular reservoirs

for latent HIV infection [24].

When we knocked down ADAR1 in MDM and alveolar

macrophages of patients with endogenous HIV-1 infection, the

viral concentration significantly increased, suggesting that ADAR1

suppresses HIV-1 replication in these macrophages. In our

transformed macrophage model, altering ADAR1 levels did not

change HIV-1 transcription rate as measured by nuclear run-on

assay, indicating that ADAR1 regulates HIV-1 replication post-

transcriptionally.

The cell culture model produced the same pattern of ADAR1-

associated mutations as observed in vivo. This was also apparent

when we evaluated the effect of antiretroviral therapy. These data

support the validity of this in vitro model system for investigating

the anti-HIV mechanisms of ADAR1. Among the HIV-1 RNA

populations present in the cell, the population specifically bound to

ADAR1 was edited while those not bound to ADAR1 were not

mutated. We also did not find mutations in the virions released

into the culture supernatant, suggesting that the edited RNA may

Figure 6. HIV-1 replication following ADAR1 siRNA knockdown in MDM infected in vitro and alveolar macrophages from HIV-1
seropositive patients. (A) Knockdown of ADAR1 (L+S) by siRNA in MDM. siRNA for ADAR1 led to attenuated expression of both isoforms while
siRNA specific to ADAR2 did not attenuate expression of either isoform as compared to negative control. (B) Induction of HIV-1 replication in MDM
after ADAR1 siRNA treatment. 50% tissue culture infectious dose (TCID50) infectivity assay was used to measure virus infectivity in the supernatant of
siRNA treated MDM. TCID50 assay was performed 5 days after HIV-1 infection. Infectivity was normalized to that of control. No induction of virus
replication was seen in cells treated with ADAR2 siRNA. (C) Induction of HIV-1 replication by ADAR1 siRNA in alveolar macrophages of four HIV-
infected patients on antiretroviral therapy. Two days after the knock down of ADAR1 gene with siRNA, the amount of virus in the culture supernatant
was significantly increased as compared to ADAR2 siRNA control (p,0.05).
doi:10.1371/journal.pone.0108476.g006
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not be suitable for virus assembly. The existence of ribonuclease

specific for inosine-containing RNA has been described, leading to

the possibility that edited HIV-1 RNA is rapidly destroyed [38].

These observations may account for the absence of the mutated

RNA in the cells or culture supernatants. In vivo, however, there

must be an escape mechanism for edited HIV-1 RNA since A to G

mutations are frequent.

Our in vivo observation suggests that there might be at least

two deaminases induced by aerosol IFN-c treatment, including

adenosine and cytidine deaminases. Similar to ADAR1, some

Figure 7. ADAR1 overexpression and knock down in a chronically HIV-1 infected macrophage cell model system. (A). Chronic HIV-1
infection induced ADAR1 in vitro. Expression of 150 kD and 110 kD ADAR1 was measured in OM10.1 cells and YS+OA cells treated with and without
indinavir (IDV). OM10.1 is a latently HIV-1 infected macrophage cell line (HL-60 cell is the parental uninfected cell line). YS+OA cells are OM10.1 cells
that stably over-express ADAR1. YS+OA cells have increased expression of the ADAR1 150 kDa isoform. Densitometry data are shown below the
lanes. (B) HIV-1 RNA copies in the culture supernatant from ADAR1-overexpressing YS+OA were significantly lower than those of ADAR1-knocked
down YS-OA. (p,0.05; mean6SE, n = 6). YS-OA is OM10.1 cells that are stably transfected with shRNA to knock down of ADAR1. (C) Intra-cellular p24
gag and its precursor Pr55 protein in ADAR1-overexpressing YS+OA as compared to ADAR1-knocked down YS-OA and untreated OM10.1. (D) Nuclear
run-on transcription assays of YS+OA cells and YS-OA cells. Synthesis of HIV-1 nascent RNA was calculated as the ratio of HIV-1 RNA to GAPDH RNA.
doi:10.1371/journal.pone.0108476.g007

Figure 8. Comparison of mutations around the V3 region of HIV envelope in viruses isolated in vivo (Fig. 1B) versus mutations in
viruses produced in vitro from the ADAR1-overexpressing chronically HIV-infected YS+OA cell line.
doi:10.1371/journal.pone.0108476.g008
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cytidine deaminases are induced by IFN [39]. However, whereas

the cytidine deaminase inhibits virus infection at the reverse

transcription step, adenosine deaminase may affect the HIV-

1replication at a post-transcription stage (Figure 9). Our in vitro
observations suggest that there is a reciprocal expression between

ADAR1 and APOBEC3G and that both molecules might

contribute to anti-HIV-1 immunity. Adenosine and cytidine

deaminases inhibit replication of a large number of viruses

[10,11,13,18] and ADAR genes are conserved in vertebrates but

present only in a few invertebrates [15]. RNA editing may be one

of principal mechanisms for inhibiting viral replications and be

acquired during vertebrate evolution as invertebrates lack the IFN

systems.

The differences between previous clinical trials of IFN-c in

HIV-1 positive patients [9] and this clinical trial, might be due to

the higher dose and also the administration method of IFN-c. In

this clinical trial, 500 mg of IFN-c was delivered via nebulizer to

the lower respiratory tract, while previous trials administered

100 mg by a subcutaneous injection [25,26,29]. When we

compared aerosol to subcutaneous IFN-c treatment in a random-

ized clinical trial in South Africa, aerosol and not subcutaneous

IFN-c had a significant effect on mycobacterial smears, clinical

symptoms and inflammatory cytokines in bronchoalveolar lavage

cell supernatants [28]. Subcutaneous IFN-c injection involves

CD4+ T cells and macrophages while aerosol administration

mainly targets alveolar macrophages, the major source of HIV-1

replication in the lung [32,35]. ADAR1 expression induced by

IFN-c may also be different between CD4+ T cells and

macrophages. Aerosol IFN treatment has several potential

advantages, including the immunomodulation therapy for pulmo-

nary tuberculosis [25,28] and the improvement of HIV-1 infection

in the lung. Since significant percentages of HIV-1 patients world-

wide are co-infected with TB [1], they may benefit from the

aerosol delivery approach that augments the interferon response in

the lung.

Materials and Methods

Study population
The protocol for this study was approved by the Human

Subjects Review Committees of New York University School of

Medicine and Bellevue Hospital Center. All participants were

provided their written informed consent to participate in this

study. The ethics committees approved this consent procedure.

Normal volunteers with normal chest radiographs, spirometry

results, and physical examinations were recruited. HIV-1 testing

was done on all patients by using enzyme-linked immunosorbent

assays (ELISA), and results were confirmed by Western blotting.

(1) HIV-1/TB co-infected patients. Eight patients with

active pulmonary tuberculosis with HIV-1 infection participated.

These patients were not on antiretroviral therapy. M. tuberculosis
isolates were recovered from sputum cultures, and 7 of 8 culture

isolates were sensitive to first-line anti-tuberculosis medication. All

patients had their symptoms reviewed and had chest computerized

tomography scans and active evaluations relative to rIFN-c aerosol

treatment. Five patients received 500 mg of rIFN-c (Intermune)

mixed with 3 ml of normal saline via a Respigard nebulizer three

times a week for 4 weeks in addition to their anti-tuberculosis

medications. One patient received a conventional anti-tuberculosis

medication regimen including isoniazid, rifampin, pyrazinamide,

and ethambutol.

Bronchoalveolar lavage (BAL) was first performed in 8 patients

1062 days after the start of treatment with anti-tuberculosis drugs.

For one patient with multidrug-resistant tuberculosis, the first BAL

was done after 12 weeks of second-line therapy. A follow-up BAL

was performed approximately 1 day after the final aerosol IFN-c
treatment. For a patient who received only conventional

medication, BAL was done before the treatment and after 4

weeks of the initiation of the treatment [26].

(2) HIV-1 patients before and after antiretroviral

therapy. BAL was first performed in 3 patients before

antiretroviral therapy. A follow-up BAL was done after 4 weeks

of starting antiretroviral therapy [24]. BAL was performed to 4

Figure 9. A diagram showing the distinct targets of adenosine and cytidine deaminase in the HIV-1 life cycle. IFN-c induces both
adenosine deaminase (ADAR1L) and cytidine deaminase (APOBEC3G). Adenosine deaminase may inhibit the step after viral transcription whereas
cytidine deaminase acts on reverse transcription immediately after virus entry.
doi:10.1371/journal.pone.0108476.g009
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other patients treated with antiretroviral therapy; plasma VLs of

these patients were below the limit of detection. All patients had no

pneumonia as confirmed by chest radiographs and standard

cultures of BAL fluid. BAL cells were more than 90% alveolar

macrophages.

BAL
BAL was performed with a flexible fiber-optic bronchoscope

fiber, and patients were given local anesthesia. BAL cells are

representative of inflammatory and immune cells from the lung

parenchyma. Normal saline (6650-ml aliquots) was instilled and

suctioned sequentially from two or three sites. The recovered fluid

was filtered through sterile gauze. The total cell count was

measured in a hemocytometer. Cell differentials were performed

on cyto-centrifuge slides stained with Diff-Quik, and 500 cells were

analyzed. Cell viability was determined by trypan blue exclusion,

and in all cases, recovered cells were .90% viable.

Reagents
All reagents were purchased from Sigma unless otherwise noted.

Anti-viral compounds and all anti-HIV-1 antibodies were

provided by NIH AIDS Research and Reference Reagent

program.

Purification of primary CD4+ T cells, and monocyte-
derived macrophages (MDM)

Primary T cells were negatively selected from whole blood of

healthy volunteers using RosetteSep CD4 T cell enrichment

(StemCell Technology). For making MDM, whole blood was

obtained from normal volunteers and separated into PBMCs by

Ficoll-Hypaque sedimentation (Amersham Pharmacia). PBMCs

were allowed to adhere to plastic plates, then harvested as

monocytes. Monocytes were cultured to differentiate into MDM

after 10–14 days in RPMI-1640 plus 10% bovine fetal serum.

Cell culture
Alveolar macrophages, MDM, and primary T cells were

obtained from normal volunteers with written informed consent.

The protocol was approved by the IRB Committees of New York

University Medical Center and Bellevue Hospital. HL-60 cells

(ATCC CCL-240), Jurkat cells (ATCC TIB-152), OM10.1 (NIH

AIDS Research and Reference Reagent program #1319), YS+
OA (stably transfected ADAR1 gene to OM10.1 and selected with

neomycin), YS-OA (stably transfected shRNA to ADAR1 gene to

OM10.1 and selected with puromycin) were obtained or generated

as described. All of these cells were cultured with RPMI 1640 with

10% FCS. 293T cells were provided by Dr. John S. Munger (NYU

Langone Medical Center) and were cultured in DMEM with 10%

FCS.

HIV-1 and infection
Cells were infected with R5-tropic HIV-1 (BaL; NIH AIDS

Research and Reference Reagent program #510) for 4 h at 37uC.

HIV-1 RNA was extracted from the supernatants and assayed to

determine HIV-1virus concentration. HIV-1 concentration was

measured as previously described with real-time quantitative RT-

PCR [32,28]. HIV-1 infection was performed at a multiplicity of

infection (MOI) of 1.0 to 10.

HIV-1 virus infectivity
50% tissue culture infectious dose (TCID50) was calculated as

previously described [34] according to the Reed and Muench

method with modification. Instead of using phytohemagglutinin

stimulated T cell blasts, we used an indicator cell line (TZM-bl

from NIH AIDS Research and Reference Reagent program

#8129).

Cell extract preparation
Nuclear extracts, cytoplasmic extracts or whole cell extracts

were prepared as previously described [32,40]. Pierce BCA

reagents were used to determine protein concentrations of the

extracts.

Immunoblots
Immunoblots were performed as previously described [32].

Proteins were separated by SDS-PAGE (Bio-Rad), then probed

with primary antibodies (rabbit anti-ADAR1 antibody from

Zymed) followed by visualization with anti-rabbit HRP antibodies

(Santa Cruz) and ECL plus (Amersham).

Transfection
The plasmid for ADAR1 expression was purchased from

ATCC (MGC 45112) with the pCMV-sport6 vector. Plasmid was

transfected using cationic lipids (Invitrogen) or calcium phosphate

mediate (Promega) according to the manufacturer’s instructions.

To make YS+OA cells, the EcoRV-XhoI fragment containing

ADAR1 cDNA was ligated into pcDNA3.1 (Invitrogen). The

ADAR1 expression vector was stably transfected into OM10.1 by

Gene Pulser (Bio-Rad) and was selected with 500 mg/ml of

neomycin. To make the control vector, the EcoRV-NotI site

containing ADAR1 cDNA was ligated into pcDNA3.1. This

vector has reversely inserted ADAR1 cDNA and absence of

ADAR1 protein expression was confirmed in the transfected 293T

cells by Western blot.

To make YS-OA cells, a plasmid containing shRNA to ADAR1

gene was transfected into OM10.1 by Gene Pulser and was

selected with 2 mg/ml of puromycin.

siRNA and shRNA
To identify the effect of ADAR1 protein expression we used

oligofectamine (Invitrogen) to transfect the annealed siRNA

mixture specific to ADAR1 150-kDa and 110-kDa (top strand,

59- CCAGCACAGCGGAGUGGUATT-39; bottom strand, 59-

UACCACUCCGCUGUGCUGGTT-39, from Darmacon) and

specific to ADAR2 (top strand, 59-UACAUGAGUGAUC-

GUGGCCUU-39; bottom strand, 59-GGCCACGAUCACU-

CAUGUAUU-39) [41]. After 2 days cells were harvested and

ADAR1 expression determined by immunoblot. A plasmid

containing shRNA to knock down of ADAR1 gene was purchased

from SuperArray. Oligonucleotides for shRNA to ADAR1 are 59-

CCACTTACTACGCTCCAAGAT-39 and 59-

TGAGGGTCTTCAGCTGCATTT-39. The negative control is

59- GGATCTCATTCGATGCATAC-39.

RNA labeling and hybridization for cDNA filters
RNA labeling and hybridization for cDNA filters were

performed as previously described [27,27,40].

Image analysis
Image analysis for cDNA filters was performed as previously

described [27,40]. Quantification of Western blot was made by

ImageJ 3.1 software [42].

Nuclear run-on transcription rate assay
The rate of viral transcription was determined by nuclear run-

on with modifications described below [27,40]. Briefly, 56107

ADAR1 Inhibits HIV-1 Replication in Macrophages

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e108476



YS+OA or YS-OA cells were collected in cell lysis buffer at 4uC.

Nuclei were collected by centrifugation at 4uC. Nuclear run-on

and RNA isolation were performed in the presence of biotin-16-

UTP (Roche). Dynabeads M-280 were used to capture the biotin-

labeled RNA molecules from the purified viral RNA, and beads

were washed twice with 2x SSC plus 15% formamide and once

with 2x SSC and re-suspended in RNase-free water before the

preparation of random nanomer-primed cDNA. Quantitative

real-time RT-PCR was performed described above. The synthesis

of HIV-1 nascent RNA was calculated as the ratio of HIV-1 RNA

to GAPDH RNA.

Determination of viral sequences
The genotype of viruses was determined as described previously

[2,40]. Nested-PCR products were sub-cloned using TOPO TA

Cloning kit (Invitrogen). The PCR products were sequenced by

ABI PRISM autosequencer with BigDye-Deoxy Terminator Cycle

Sequencing kit (Applied Biosystems).

Virus stocks and infection
The vesicular stomatitis virus glycoprotein (VSV-G)-pseudo-

typed HIV-1 virus was produced as described previously [43].

Briefly, 293T cells were co-transfected with pVSV-G and pNL4-3-

EGFP (NIH AIDS Research and Reference Reagent program

#11100) or pNL4-3 Luc.R2E2 (NIH AIDS Research and

Reference Reagent program #3418) with Lipofectamine (Invitro-

gen). Supernatants containing VSV-G-pseudotyped HIV-1 virus

were collected 48 h after transfection. Viral supernatants were

used fresh or stored at 280uC before infection. Viral concentra-

tion was measured as previously described with real-time

quantitative RT-PCR as described above. Infection was per-

formed at multiplicity of infection (MOI) at 1.0 to 10 using

spinoculation (1500 g for 1 hour at room temperature). After the

spinoculation, cells were washed and incubated for 48 h before

flow cytometry analysis.

Immunoprecipiation (IP) and quantitative PCR
IP experiments were performed and followed by quantitative

PCR for HIV-1 as previously described [40]. Briefly cell lysates

from whole cells were separated into three aliquots. The first

aliquot was precipitated with anti-ADAR1 antibody or anti-

ADAR2 antibody (Zymed), the second with control rabbit IgG,

and the third was kept as an input. The former two samples were

incubated with agarose-protein A/G beads. Captured viruses were

directly extracted by TriReagent. RT-PCR was performed on the

captured viruses as described above.

Data analysis
Non-parametric data, including differences between two groups,

were evaluated using the Mann-Whitney U test. To evaluate the

significance of the mutation rate, the chi square goodness-of-fit test

was used. A p value ,0.05 was considered significant.
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