data reports

open 👌 access

Crystal structure of methyl 3-(3-fluorophenyl)-1-methyl-1,3a,4,9b-tetrahydro-3*H*-thiochromeno[4,3-c]isoxazole-3acarboxylate

M. P. Savithri,^a M. Suresh,^b R. Raghunathan,^b G. Vimala^c and A. SubbiahPandi^{c,a*}

^aDepartment of Physics, Queen Mary's College (Autonomous), Chennai 600 004, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India. *Correspondence e-mail: aspandian59@gmail.com

Received 6 July 2015; accepted 17 July 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title compound, $C_{19}H_{18}FNO_3S$, the five-membered oxazolidine ring adopts an envelope conformation with the methine C atom of the fused bond as the flap. Its mean plane is oriented at a dihedral angle of 50.38 (1)° with respect to the fluorophenyl ring. The six-membered thiopyran ring has a half-chair conformation and its mean plane is almost coplanar with the fused benzene ring, making a dihedral angle of 4.94 (10)°. The two aromatic rings are inclined to one another by 85.96 (11)°, and the mean planes of the oxazolidine and thiopyran rings are inclined to one another by 57.64 (12)°. In the crystal, molecules are linked by C–H··· π interactions, forming a three-dimensional structure.

Keywords: crystal structure; oxazolidine; thiopyran; thiochromenone; C— $H \cdots \pi$ interactions.

CCDC reference: 1413525

1. Related literature

For background on thio-containing heterocyclic rings and for related structures, see for example: Khan *et al.* (2008*a*,*b*).

2. Experimental

2.1. Crystal data

C₁₉H₁₈FNO₃S $M_r = 359.40$ Monoclinic, $P2_1/n$ a = 10.7729 (8) Å b = 12.6361 (8) Å c = 12.625 (1) Å $\beta = 92.992$ (3)°

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan

(SADABS; Bruker, 2004) $T_{min} = 0.938, T_{max} = 0.948$

2.3. Refinement

18645 measured reflections

3024 independent reflections

2456 reflections with $I > 2\sigma(I)$

V = 1716.3 (2) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.30 \times 0.25 \text{ mm}$

 $\mu = 0.22 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.026$

Z = 4

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg3 and Cg4 are the centroids of rings C2-C7 and C11-C16, respectively.

		-		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6-H6\cdots Cg4^{i}$ $C13-H13\cdots Cg3^{ii}$	0.93 0.93	2.75 2.74	3.479 (3) 3.599 (3)	136 153

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y, -z + 2.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

Acknowledgements

MPS and ASP thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5169).

References

Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Khan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008a). Acta Cryst. E64, 0730.

- Khan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008b). Acta Cryst. E64, 01704.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o600-o601 [doi:10.1107/S2056989015013651]

Crystal structure of methyl 3-(3-fluorophenyl)-1-methyl-1,3a,4,9b-tetrahydro-3*H*-thiochromeno[4,3-c]isoxazole-3a-carboxylate

M. P. Savithri, M. Suresh, R. Raghunathan, G. Vimala and A. SubbiahPandi

S1. Structural commentary

Small substituted heterocyclic compounds play an important role in the development of biologically active substances by offering a high structural diversity. In view of their biological importance, the title compound was synthesized and we report herein on its crystal structure.

The molecular structure of the title compound is illustrated in Fig. 1. The five-membered oxazolidine ring [O1/N1/C8— C10] exhibits an envelope conformation with atom C8 as the flap [asymmetry parameter $\Delta Cs(C8) = 2.6$ (2)° and puckering parameters of $q_2 = 0.483$ (2)Å and $\varphi_2 = 256.6$ (3)°]. Its mean pane is oriented at a dihedral angle of 50.38 (13)° with respect to the fluorophenyl ring (C11—C16). The six membered thiopyran ring (S1/C1/C2/C7/C8/C10) has a halfchair conformation and its mean plane is almost coplanar with the fused benzene ring (C2—C7) with a dihedral angle = 4.94 (10)°. This aromatic ring is almost normal to the fluorophenyl ring with a dihedral angle of 85.96 (11)°. The sum of angles at atom N1 of the pyrrolidine ring (320°) is in accordance with sp^3 hybridization.

In the crystal, molecules are linked by C—H $\cdots\pi$ interactions forming a three-dimensional structure (Table 1). The crystal structures of 7-nitro-5*H*-1-benzothiopyrano[2,3-*b*]- pyridin-5-one (Khan *et al.*, 2008a) and 5*H*-1-benzothiopyrano[2,3-*b*] pyridin-5-one (Khan *et al.*, 2008b), are similar to that of the title compound.

S2. Synthesis and crystallization

To a solution of methyl (Z)-2-(((2-formylphenyl)thio)methyl)-3-phenylacrylate (1 mmol) and N-methyl hydroxylamine hydrochloride (1.1 mmol) in acetonitrile (10 ml) was added pyridine (0.2 mmol). The solution was refluxed until the completion of the reaction (monitored by TLC). The solvent was then removed under vacuum. The crude product was subjected to column chromatography on silica gel (100-200 mesh) using petroleum ether-ethyl acetate (9:1) as eluent, which successfully provided the pure product as a colorless solid. The product was dissolved in chloroform and heated for 2 min. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 48 h resulting in the formation of single crystals of the title compound.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms attached to atom C1 were freely refined. All other H atoms were fixed geometrically and allowed to ride on their parent atoms: C—H = 0.93-0.98 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

Figure 1

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Methyl 3-(3-fluorophenyl)-1-methyl-1,3a,4,9b-tetrahydro-3H-thiochromeno[4,3-c]isoxazole-3a-carboxylate

Crystal data	
$C_{19}H_{18}FNO_3S$	F(000) = 752
$M_r = 359.40$	$D_{\rm x} = 1.391 {\rm Mg m^{-3}}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3024 reflections
a = 10.7729 (8) Å	$\theta = 2.3 - 25.0^{\circ}$
b = 12.6361 (8) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 12.625 (1) Å	T = 293 K
$\beta = 92.992(3)^{\circ}$	Block, colourless
V = 1716.3 (2) Å ³	$0.30 \times 0.30 \times 0.25 \text{ mm}$
Z=4	
Data collection	
Bruker Kappa APEXII CCD	18645 measured reflections
diffractometer	3024 independent reflections
Radiation source: fine-focus sealed tube	2456 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
ω and φ scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.3^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Bruker, 2004)	$k = -15 \rightarrow 15$
$T_{\min} = 0.938, \ T_{\max} = 0.948$	$l = -15 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of independent
$wR(F^2) = 0.123$	and constrained refinement
S = 0.99	$w = 1/[\sigma^2(F_o^2) + (0.0547P)^2 + 1.7913P]$
3024 reflections	where $P = (F_o^2 + 2F_c^2)/3$
243 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta ho_{ m max} = 0.52 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
map	Extinction coefficient: 0.0079 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.38912 (6)	-0.09256 (5)	0.73827 (6)	0.0484 (2)
O3	0.14448 (16)	0.08198 (17)	0.72833 (14)	0.0580 (6)
O1	0.44199 (15)	0.19965 (17)	0.95772 (13)	0.0560 (5)
F1	-0.09742 (14)	0.14114 (17)	1.01633 (15)	0.0759 (6)
C7	0.54244 (19)	0.08164 (16)	0.70941 (16)	0.0285 (5)
C2	0.5127 (2)	-0.02335 (18)	0.68520 (17)	0.0344 (5)
C10	0.34366 (18)	0.10865 (17)	0.81229 (16)	0.0288 (5)
C9	0.3219 (2)	0.18273 (19)	0.90866 (17)	0.0342 (5)
C8	0.47396 (19)	0.14639 (17)	0.78729 (16)	0.0285 (5)
C17	0.25020 (19)	0.13405 (18)	0.72143 (16)	0.0331 (5)
C11	0.2322 (2)	0.14500 (17)	0.98805 (16)	0.0314 (5)
C1	0.3454 (2)	-0.00741 (18)	0.84444 (18)	0.0344 (5)
C16	0.1063 (2)	0.16036 (18)	0.96619 (18)	0.0370 (5)
H16	0.0780	0.1928	0.9034	0.044*
C14	0.0609 (3)	0.0799 (2)	1.1315 (2)	0.0494 (7)
H14	0.0030	0.0583	1.1791	0.059*
C6	0.6370 (2)	0.12968 (19)	0.65535 (18)	0.0359 (5)
H6	0.6571	0.1999	0.6700	0.043*
C12	0.2719 (2)	0.0969 (2)	1.08214 (19)	0.0435 (6)
H12	0.3562	0.0861	1.0977	0.052*
C4	0.6718 (2)	-0.0280 (2)	0.55821 (19)	0.0455 (6)
H4	0.7149	-0.0649	0.5081	0.055*
C5	0.7016 (2)	0.0757 (2)	0.58066 (19)	0.0426 (6)

Н5	0.7647	0.1091	0.5459	0.051*
C3	0.5789 (2)	-0.0770 (2)	0.60926 (19)	0.0442 (6)
H3	0.5594	-0.1472	0.5933	0.053*
C15	0.0242 (2)	0.1273 (2)	1.0381 (2)	0.0443 (6)
C13	0.1858 (3)	0.0649 (2)	1.1532 (2)	0.0525 (7)
H13	0.2130	0.0328	1.2165	0.063*
C19	0.6429 (2)	0.2148 (2)	0.9055 (2)	0.0502 (7)
H19A	0.6781	0.2105	0.9768	0.075*
H19B	0.6183	0.2864	0.8902	0.075*
H19C	0.7036	0.1929	0.8570	0.075*
C18	0.0474 (3)	0.1068 (3)	0.6484 (3)	0.0771 (11)
H18A	-0.0251	0.0652	0.6606	0.116*
H18B	0.0759	0.0911	0.5794	0.116*
H18C	0.0270	0.1806	0.6524	0.116*
N1	0.53515 (17)	0.14612 (15)	0.89425 (14)	0.0357 (5)
O2	0.26780 (16)	0.19605 (16)	0.65350 (14)	0.0534 (5)
H1B	0.264 (2)	-0.0329 (19)	0.8609 (18)	0.038 (6)*
H1A	0.403 (2)	-0.0170 (19)	0.902 (2)	0.039 (6)*
H8	0.469 (2)	0.2167 (19)	0.7624 (17)	0.030 (6)*
H9	0.294 (2)	0.249 (2)	0.8768 (19)	0.037 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0561 (4)	0.0372 (4)	0.0531 (4)	-0.0166 (3)	0.0129 (3)	-0.0116 (3)
O3	0.0359 (9)	0.0920 (15)	0.0446 (10)	-0.0205 (9)	-0.0129 (8)	0.0205 (10)
01	0.0364 (9)	0.0935 (15)	0.0382 (10)	-0.0165 (9)	0.0046 (7)	-0.0286 (10)
F1	0.0360 (9)	0.1030 (15)	0.0885 (13)	0.0088 (9)	0.0031 (8)	-0.0189 (11)
C7	0.0278 (10)	0.0316 (11)	0.0257 (10)	0.0021 (8)	-0.0016 (8)	0.0039 (8)
C2	0.0364 (12)	0.0367 (12)	0.0299 (11)	0.0004 (10)	-0.0013 (9)	-0.0009 (9)
C10	0.0277 (11)	0.0351 (11)	0.0234 (10)	-0.0018 (9)	0.0002 (8)	0.0002 (9)
C9	0.0367 (12)	0.0381 (13)	0.0276 (11)	0.0003 (10)	-0.0007 (9)	-0.0011 (10)
C8	0.0299 (11)	0.0270 (11)	0.0283 (11)	-0.0015 (8)	-0.0019 (9)	0.0013 (9)
C17	0.0294 (11)	0.0443 (13)	0.0255 (11)	0.0005 (9)	0.0013 (9)	-0.0022 (10)
C11	0.0343 (11)	0.0336 (11)	0.0263 (11)	0.0049 (9)	0.0027 (9)	-0.0032 (9)
C1	0.0346 (12)	0.0361 (12)	0.0325 (12)	-0.0065 (10)	0.0030 (10)	0.0011 (10)
C16	0.0376 (12)	0.0389 (13)	0.0342 (12)	0.0084 (10)	-0.0017 (10)	-0.0039 (10)
C14	0.0585 (17)	0.0457 (15)	0.0462 (15)	-0.0087 (12)	0.0220 (13)	-0.0039 (12)
C6	0.0331 (11)	0.0378 (12)	0.0368 (12)	0.0033 (9)	0.0017 (9)	0.0067 (10)
C12	0.0433 (14)	0.0528 (15)	0.0343 (13)	0.0136 (11)	0.0031 (10)	0.0062 (11)
C4	0.0452 (14)	0.0588 (16)	0.0329 (13)	0.0151 (12)	0.0067 (11)	-0.0033 (11)
C5	0.0375 (13)	0.0552 (15)	0.0358 (13)	0.0082 (11)	0.0084 (10)	0.0105 (11)
C3	0.0521 (15)	0.0423 (14)	0.0382 (13)	0.0043 (11)	0.0015 (11)	-0.0095 (11)
C15	0.0309 (12)	0.0481 (14)	0.0545 (16)	0.0000 (10)	0.0071 (11)	-0.0169 (12)
C13	0.0671 (18)	0.0536 (16)	0.0377 (14)	0.0109 (14)	0.0107 (13)	0.0133 (12)
C19	0.0375 (13)	0.0671 (18)	0.0456 (15)	-0.0126 (12)	-0.0028 (11)	-0.0141 (13)
C18	0.0421 (16)	0.127 (3)	0.0600 (19)	-0.0163 (18)	-0.0212 (14)	0.0236 (19)
N1	0.0334 (10)	0.0433 (11)	0.0299 (10)	-0.0046 (8)	-0.0039 (8)	-0.0046 (8)

02	0.0442 (10)	0.0722 (13)	0.0432 (10)	-0.0029 (9)	-0.0048 (8)	0.0240 (9)
Geome	etric parameters (Å	, <i>°</i>)				
S1—C	2	1.755 (2)	C1—H1A		0.94 (3)
S1—C	1	1.801 (2)	C16—C15		1.366 (3)
03—0	217	1.322 (3)	C16—H16		0.9300
03—0	218	1.449 (3)	C14—C15		1.363 (4)
01-0	29	1.422 (3)	C14—C13		1.372 (4)
01—N	11	1.480 (2)	C14—H14		0.9300
F1—C	15	1.336 (3)	C6—C5		1.381 (3)
С7—С	6	1.395 (3)	С6—Н6		0.9300
С7—С	2	1.395 (3)	C12—C13		1.383 (4)
С7—С	8	1.502 (3)	C12—H12		0.9300
С2—С	23	1.400 (3)	C4—C3		1.367 (4)
C10—	C17	1.520 (3)	C4—C5		1.375 (4)
C10—	C1	1.522 (3)	C4—H4		0.9300
C10—	C8	1.531 (3)	C5—H5		0.9300
C10—	С9	1.562 (3)	С3—Н3		0.9300
С9—С	211	1.505 (3)	С13—Н13		0.9300
С9—Н	[9	0.97 (3)		C19—N1		1.450 (3)
C8—N	[1	1.471 (3)	C19—H19A		0.9600
С8—Н	[8	0.94 (2)		C19—H19B		0.9600
C17—	02	1.184 (3)	C19—H19C		0.9600
C11—	C12	1.382 (3)	C18—H18A		0.9600
C11—	C16	1.384 (3)	C18—H18B		0.9600
С1—Н	[1B	0.97 (2)		C18—H18C		0.9600
C2—S	1—C1	102.68 (11)	C11—C16—H16		120.4
C17—	O3—C18	116.1 (2)	C15—C14—C13		118.1 (2)
С9—О	01—N1	108.84 (15)	C15—C14—H14		121.0
С6—С	27—С2	118.2 (2)	C13—C14—H14		121.0
С6—С	27—С8	118.65 (19)	C5—C6—C7		121.7 (2)
С2—С	27—С8	123.12 (19)	С5—С6—Н6		119.1
С7—С	2—C3	119.4 (2)	С7—С6—Н6		119.1
С7—С	2—S1	124.10 (17)	C11—C12—C13		119.9 (2)
С3—С	2—S1	116.34 (18)	C11—C12—H12		120.1
C17—	C10—C1	113.77 (18)	C13—C12—H12		120.1
C17—	C10—C8	110.91 (17)	C3—C4—C5		120.3 (2)
C1—C	210—C8	110.89 (18)	C3—C4—H4		119.9
C17—	С10—С9	109.91 (17)	С5—С4—Н4		119.9
C1—C	10—С9	111.71 (17)	C4—C5—C6		119.4 (2)
С8—С	210—С9	98.67 (1	6)	C4—C5—H5		120.3
01-0	C9—C11	111.01 (18)	С6—С5—Н5		120.3
01—C	C9—C10	105.01 (17)	C4—C3—C2		121.0 (2)
C11—	C9—C10	117.17 (19)	С4—С3—Н3		119.5
01-0	29—Н9	108.1 (1	4)	С2—С3—Н3		119.5
C11—	С9—Н9	110.6 (1	4)	F1—C15—C14		118.2 (2)

supporting information

С10—С9—Н9	104.4 (14)	F1-C15-C16	119.1 (2)
N1—C8—C7	112.81 (17)	C14—C15—C16	122.7(2)
N1 - C8 - C10	100.47(16)	C14-C13-C12	120.9(2)
C7 - C8 - C10	116 89 (17)	C14—C13—H13	119.5
N1-C8-H8	108.8(13)	C12-C13-H13	119.5
C7 - C8 - H8	108.5(13)	N1 - C19 - H194	109.5
$C_{10} C_{8} H_{8}$	100.5(13) 100.0(13)	N1 = C19 = H19R	109.5
$C_{10} = C_{17} = C_{17}$	109.0(13) 122.2(2)		109.5
02 - C17 - C10	123.2(2) 124.1(2)	$\frac{1119}{110} = \frac{110}{100} = \frac{110}{100}$	109.5
02 - C17 - C10	124.1(2) 112 58 (10)		109.5
	112.38 (19)	H19A—C19—H19C	109.5
C12— $C11$ — $C16$	119.3 (2)	HI9B - CI9 - HI9C	109.5
C12—C11—C9	122.1(2)	03	109.5
C16—C11—C9	118.6 (2)	O3—C18—H18B	109.5
C10—C1—S1	112.17 (15)	H18A—C18—H18B	109.5
C10—C1—H1B	112.2 (14)	O3—C18—H18C	109.5
S1—C1—H1B	103.7 (14)	H18A—C18—H18C	109.5
C10—C1—H1A	109.2 (15)	H18B—C18—H18C	109.5
S1—C1—H1A	108.2 (15)	C19—N1—C8	113.99 (19)
H1B—C1—H1A	111 (2)	C19—N1—O1	103.60 (17)
C15—C16—C11	119.1 (2)	C8—N1—O1	102.23 (15)
C15—C16—H16	120.4		
C6—C7—C2—C3	0.8 (3)	O1—C9—C11—C12	-22.1 (3)
C8—C7—C2—C3	178.1 (2)	C10-C9-C11-C12	98.5 (3)
C6—C7—C2—S1	-175.09 (16)	O1—C9—C11—C16	157.1 (2)
C8—C7—C2—S1	2.2 (3)	C10-C9-C11-C16	-82.3 (3)
C1—S1—C2—C7	-12.6(2)	C17—C10—C1—S1	61.9 (2)
C1—S1—C2—C3	171.40 (18)	C8—C10—C1—S1	-63.9(2)
N1—O1—C9—C11	130.75 (19)	C9—C10—C1—S1	-172.93(15)
N1—O1—C9—C10	3.2 (2)	C2—S1—C1—C10	42.50 (19)
C17—C10—C9—O1	-146.89(19)	C12—C11—C16—C15	-0.2(3)
C1-C10-C9-01	85.8 (2)	C9-C11-C16-C15	-179.4(2)
C8-C10-C9-O1	-30.8(2)	C_{2} C_{7} C_{6} C_{5}	-0.9(3)
C17-C10-C9-C11	894(2)	C8 - C7 - C6 - C5	-1783(2)
C1-C10-C9-C11	-379(3)	C16-C11-C12-C13	-0.1(4)
C8-C10-C9-C11	-15455(19)	C9-C11-C12-C13	1791(2)
C6-C7-C8-N1	-872(2)	C_{3} C_{4} C_{5} C_{6}	0.1(4)
C_{2} C_{7} C_{8} N1	95.5(2)	C7 - C6 - C5 - C4	0.1(1) 0.4(3)
$C_2 = C_7 = C_3 = R_1$	157.06(19)	$C_7 = C_0 = C_3 = C_4$	-0.1(4)
C_{2}^{2} C_{7}^{2} C_{8}^{2} C_{10}^{10}	-20.2(3)	C_{1}^{2} C_{2}^{2} C_{3}^{2} C_{4}^{2}	-0.3(4)
$C_{17} = C_{10} = C_{10} = C_{10}$	20.2(3)	$C_{1} = C_{2} = C_{3} = C_{4}$	175 88 (10)
C1 $C10$ $C8$ $N1$	-70.2(2)	S1 - C2 - C3 - C4	173.88(19) 170.4(2)
C1 = C10 = C6 = N1	-70.2(2)	C13 - C14 - C15 - F1	1/9.4(2)
$C_{17} = C_{10} = C_{8} = C_{7}$	47.00 (19)	C13 - C14 - C15 - C10	-0.2(4)
$C_1 = C_1 = C_2 = C_2$	-75.5(2)	C11 - C16 - C15 - F1	-1/9.3(2)
$C_1 - C_1 0 - C_8 - C_7$	52.1(2)	C11 - C16 - C15 - C14	0.3(4)
C9_C10_C8_C/	169.45 (17)	C15—C14—C13—C12	-0.1 (4)
C18—O3—C17—O2	-1.6 (4)	C11—C12—C13—C14	0.2 (4)
C18—O3—C17—C10	176.2 (2)	C7—C8—N1—C19	77.3 (2)

C1—C10—C17—O2	-142.9 (2)	C10—C8—N1—C19	-157.50 (19)
C8—C10—C17—O2	-17.1 (3)	C7—C8—N1—O1	-171.62 (16)
C9—C10—C17—O2	90.9 (3)	C10—C8—N1—O1	-46.41 (19)
C1—C10—C17—O3	39.4 (3)	C9—O1—N1—C19	146.0 (2)
C8—C10—C17—O3	165.18 (19)	C9—O1—N1—C8	27.3 (2)
C9—C10—C17—O3	-86.8 (2)		

Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of rings C2–C7 and C11–C16, respectively.

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C6—H6···Cg4 ⁱ	0.93	2.75	3.479 (3)	136
C13—H13··· <i>Cg</i> 3 ⁱⁱ	0.93	2.74	3.599 (3)	153

Symmetry codes: (i) x+1/2, -y+1/2, z-1/2; (ii) -x+1, -y, -z+2.