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DIAGRAM and CAD from CARDIoGRAMplusC4D 
consortia. Mendelian randomization analyses identified 
a one standard deviation (SD) increase in LDL-C caused 
an increased risk of CAD (odds ratio [OR] 1.63 (95 % 
confidence interval [CI] 1.55, 1.71), which was not influ-
enced by removing SNPs associated with diabetes. LDL-C/
CAD-associated SNPs showed consistent effect directions 
(binomial P = 6.85 × 10−5). Conversely, a 1-SD increase 
in LDL-C was causally protective of diabetes (OR 0.86; 
95 % CI 0.81, 0.91), however LDL-cholesterol/diabetes-
associated SNPs did not show consistent effect directions 
(binomial P = 0.15). HMGCR, our positive control, associ-
ated with LDL-C, CAD and a glycemic composite (derived 

Abstract Therapeutic interventions that lower LDL-cho-
lesterol effectively reduce the risk of coronary artery dis-
ease (CAD). However, statins, the most widely prescribed 
LDL-cholesterol lowering drugs, increase diabetes risk. We 
used genome-wide association study (GWAS) data in the 
public domain to investigate the relationship of LDL-C and 
diabetes and identify loci encoding potential drug targets 
for LDL-cholesterol modification without causing dysgly-
cemia. We obtained summary-level GWAS data for LDL-C 
from GLGC, glycemic traits from MAGIC, diabetes from 
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from GWAS meta-analysis of four glycemic traits and 
diabetes). In contrast, PCSK9, APOB, LPA, CETP, PLG, 
NPC1L1 and ALDH2 were identified as “druggable” loci 
that alter LDL-C and risk of CAD without displaying asso-
ciations with dysglycemia. In conclusion, LDL-C increases 
the risk of CAD and the relationship is independent of any 
association of LDL-C with diabetes. Loci that encode tar-
gets of emerging LDL-C lowering drugs do not associate 
with dysglycemia, and this provides provisional evidence 
that new LDL-C lowering drugs (such as PCSK9 inhibi-
tors) may not influence risk of diabetes.

Introduction

LDL-cholesterol (LDL-C) is a recognized causal risk factor 
for coronary artery disease (CAD) (Cholesterol Treatment 
Trialists et al. 2012; Holmes et al. 2015). Meta-analysis of 
randomized clinical trials (RCTs) shows a 1 mmol/l reduc-
tion in LDL-C results in 25 % reduction in risk of CAD 
(Cholesterol Treatment Trialists et al. 2010). Indeed, statins 
remain the drug of choice to achieve LDL-C reduction, 
as they have proven long-term efficacy for reducing risk 
of cardiovascular disease and overall mortality. However, 
statins have been linked to increased risk of type 2 diabetes 
(T2D), (Preiss et al. 2011; Sattar et al. 2010) with recent 
evidence indicating this is mediated by an on-target effect 
(specifically through inhibition of 3-hydroxy-3-methyl-
glutaryl-CoA reductase, HMGCR, the intended target of 
statins) (Swerdlow et al. 2015).

Whether the T2D effects of statins are specific to 
HMGCR inhibition or a general characteristic of LDL-C 
modification is of considerable importance given the ongo-
ing development of drugs designed to reduce LDL-C. These 
include: (1) monoclonal antibody inhibitors of proprotein 
convertase subtilisin/kexin type 9 (PCSK9, encoded by the 
PCSK9 gene) such as evolocumab and alirocumab (Stein 
et al. 2012); (2) antisense inhibitors of apolipoprotein B 
(apoB-100, encoded by APOB), such as mipomersen (Akdim 
et al. 2010), and; (3) the antisense inhibitor ISIS APO(a)Rx, 
which reduces lipoprotein(a) (Lp(a), encoded by LPA). These 
compounds are now in phase II (APO(a)Rx: NCT02160899) 
and phase III (mipomersen: NCT01475825; evolocumab: 
NCT01764633l) randomized clinical trials (RCTs) for CAD 
events. It is, therefore, important to characterize any glyce-
mia-modifying properties of drugs that target protein prod-
ucts of PCSK9, APOB and LPA and to identify and prioritize 
additional potential therapeutic targets that alter LDL-C and 
risk of CAD but without causing dysglycemia.

Genetic studies provide unique opportunities to inform 
our understanding of disease etiology, causal mechanisms 
and potential therapeutic targets. Recently, data from a 
variety of GWAS studies have become available in the 

public domain, and by integrating multiple such data sets, it 
should become possible to obtain novel information on the 
potential intended and unintended consequences of drug 
therapy. Furthermore, these GWAS data can be exploited 
for Mendelian randomization analyses to generate unbi-
ased, causal effect estimates that are free from reverse cau-
sality and confounding (Lawlor et al. 2008).

In this study, we clarify the relationship of LDL-C, CAD 
and dysglycemia through integrative analyses of GWAS 
datasets. This involves investigating: (1) whether, risk of 
T2D is altered as a consequence of LDL-C modification; 
(2) whether CAD prevention by LDL-C modification is 
dependent on the effect of LDL-C on diabetes; (3) whether 
pharmacological targets of emerging LDL-C lowering 
drugs associate with dysglycemia, and; (4) discovery of 
potential therapeutic targets for LDL-C lowering and CAD 
prevention that do not result in dysglycemia.

Methods

We obtained summary-level data for: (1) LDL-C from the 
Global Lipids Genetics Consortium (GLGC); (2) glyce-
mic traits from the Meta-Analyses of Glucose and Insu-
lin-related traits Consortium (MAGIC), (3) T2D from the 
DIAbetes Genetics Replication And Meta-analysis (DIA-
GRAM) consortium, and (4) CAD from the Coronary 
ARtery DIsease Genome-wide Replication And Meta Anal-
ysis (CARDIoGRAM) plus The Coronary Artery Disease 
(C4D) Genetics, collectively known as CARDIoGRAM-
plusC4D consortium. The consortia provide these data 
openly on their respective websites: GLGC: http://www.
sph.umich.edu/csg/abecasis/public/lipids2013; MAGIC: 
http://www.magicinvestigators.org; DIAGRAM: http://
diagram-consortium.org; and, CARDIoGRAMplusC4D: 
http://www.cardiogramplusc4d.org. All datasets were lim-
ited to individuals of European ancestry.

We used data from GLGC as a means to harmonize esti-
mates across the consortia. We limited our focus to SNPs 
that were genome-wide significant for their association 
with LDL-C in GLGC (at P < 5 × 10−8). We made SNPs 
directionally consistent across the datasets so that the effect 
alleles increased LDL-C. This was done by inverting alleles 
and corresponding beta coefficients where necessary. SNPs 
were mapped to the nearest loci using RefSeq (http://www.
ncbi.nlm.nih.gov/refseq).

We used these data to investigate the shared association 
of LDL-C-related SNPs with risk of CAD, T2D and con-
centrations of fasting glucose. We used a nominal signifi-
cance threshold of P < 0.05, on the basis that LDL-C is rec-
ognized as causal for CHD, and that some LDL-C loci also 
modify glycemic traits; thus, a Bonferroni-adjusted P value 
threshold would be too stringent in this scenario.

http://www.sph.umich.edu/csg/abecasis/public/lipids2013
http://www.sph.umich.edu/csg/abecasis/public/lipids2013
http://www.magicinvestigators.org
http://diagram-consortium.org
http://diagram-consortium.org
http://www.cardiogramplusc4d.org
http://www.ncbi.nlm.nih.gov/refseq
http://www.ncbi.nlm.nih.gov/refseq
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Mendelian randomization analysis was conducted by 
identifying SNPs in independent loci and R2 < 0.8 that asso-
ciated with LDL-C at P < 5 × 10−8. As a sensitivity analy-
sis, we used a stricter R2 threshold of <0.2. Corresponding 
beta coefficients or log odds (together with their standard 
errors) were obtained for CAD, T2D and fasting glucose 
and we arranged SNPs so that the estimates corresponded 
to the same reference allele. Using the summary estimates 
for each of the traits, we synthesized instrumental variable 
estimates for each SNP by dividing the SNP-outcome asso-
ciation by the SNP-LDL-C association and using the delta 
method to approximate the standard error (Thomas et al. 
2007). This generated an instrumental variable estimate 
for each SNP, which we pooled using fixed-effects meta-
analysis to yield a summary causal effect of the association 
of LDL-C with risk of CAD, T2D and concentrations of 
fasting glucose. To investigate the independence of effect 
of LDL-C on risk of CAD, we removed SNPs that associ-
ated with T2D at P < 0.05 and subsequently at P < 0.01 and 
repeated the analysis focusing on only the remaining SNPs. 
Effect estimates were compared using the three different 
analyses (i.e. using all SNPs, excluding SNPs at P < 0.01 
for T2D and excluding SNPs at P < 0.05 for T2D).

To increase power from the published datasets, we per-
formed a ‘glycemic burden composite’ GWAS, by meta-ana-
lyzing the SNP beta coefficients and corresponding standard 
errors for glycemic traits and T2D risk in MAGIC and DIA-
GRAM. This was conducted in METAL. The GWAS meta-
analysis approach is an established technique to increase 
power to detect associations of SNPs with clinically related 
phenotypes (Ellinghaus et al. 2012; McGeachie et al. 2014; 
Zhernakova et al. 2011). We meta-analyzed four out of 
the six glycemic traits in MAGIC (fasting glucose, fasting 
insulin, fasting proinsulin and HbA1c) and T2D risk from 
DIAGRAM. We excluded HOMA-B and HOMA-IR from 
MAGIC based on the high correlation between the Z-scores 
of those traits with that of fasting insulin (Kendall’s tau rank 
correlation 0.95 and 0.75 for fasting insulin with HOMA-IR 
and HOMA-B, respectively; Supplementary Table 4), which 
provided little additional information for the meta-analysis 
results and resulted in excessive genomic inflation due to 
the same individuals being analyzed multiple times (includ-
ing HOMA-B/HOMA-IR λ = 1.91; excluding HOMA-B/
HOMA-IR λ = 1.24).

We followed two approaches to identify loci associated 
with differences in LDL-C and a corresponding difference 
in risk of CAD that were (1) related and (2) unrelated to the 
glycemic burden composite. First, SNP pruning was con-
ducted by LD pruning under an r2 < 0.5 threshold and using 
the “clumping” function in Plink to prioritize lead SNPs 
based on P value with the glycemic burden composite. This 
reduced the number of SNPs from ~2.6 M to ~440 k SNPs. 
SNPs that associated with LDL-C (P < 5 × 10−8), CAD 

(P < 0.05) and did not associate with the glycemic burden 
composite (P > 0.05) were taken forward. Moreover, we 
selected only genes that did not have an over-representation 
of SNPs associated with the glycemic burden (Fisher’s exact 
P > 0.05). Second, we then repeated this step looking for 
loci associating with LDL-C, CAD and the glycemic bur-
den—these loci were taken forward and we selected only 
those that had an over-representation of SNPs that associ-
ated with the glycemic burden composite (Fisher’s exact 
P < 0.05). We calculated Fisher’s exact tests with EVA 
(available at http://www.exploratoryvisualanalysis.org/).

To investigate whether drugs exist that target the proteins 
encoded by these genes, we used publicly available drug-
gene interaction databases. For small molecules, we used 
chEMBL (Gaulton et al. 2012), a repository of experimen-
tal molecules (most of which have not been fully developed 
and are of unknown efficacy), developed mainly by the phar-
maceutical industry. For already marketed drugs, we used 
an integrated database, DGIdb (http://dgidb.genome.wustl.
edu), which incorporates several drug-gene interaction data-
bases, such as DrugBank (Law et al. 2014) and PharmGKB 
(Thorn et al. 2010). Loci that were pharmacodynamic targets 
of drugs were identified through online searches (including 
DrugBank http://www.drugbank.ca, GeneCards http://www.
genecards.org, PubMed and Google Scholar).

Finally, we investigated PCSK9, APOB and LPA for their 
association with LDL-C, CAD and glycemic burden com-
posite. This was to investigate the likely impact on glycemic 
status of emerging LDL-C lowering agents at intermediate 
or advanced stages of clinical development. For a positive 
control, we examined SNPs in HMGCR, given their known 
causal effects on LDL-C, CAD and T2D (Swerdlow et al. 
2015). We identified SNPs in PCSK9, APOB, LPA and 
HMGCR associating with LDL-C at GWAS significance 
in the GWAS catalog (http://www.genome.gov/gwastud-
ies accessed October 1st, 2014) and took these forward to 
investigate their associations with LDL-C, CAD and gly-
cemic burden composite in our datasets. To investigate the 
preponderance for SNPs in these loci to associate with the 
glycemic burden composite, we synthesized a Circos plot.

Analyses were conducted in R version 2.15.2, Stata 
version 13.1 (College Station, Texas) and METAL (http://
www.sph.umich.edu/csg/abecasis/metal).

Results

We identified SNPs from the Global Lipids Genetics 
Consortium [GLGC, including data from up to 95,454 
individuals of European ancestry (Global Lipids Genet-
ics et al. 2013)] that surpassed the significance threshold 
(P < 5 × 10−8) with LDL-C and took these forward to 
interrogate their relationship with CAD, T2D and fasting 

http://www.exploratoryvisualanalysis.org/
http://dgidb.genome.wustl.edu
http://dgidb.genome.wustl.edu
http://www.drugbank.ca
http://www.genecards.org
http://www.genecards.org
http://www.genome.gov/gwastudies
http://www.genome.gov/gwastudies
http://www.sph.umich.edu/csg/abecasis/metal
http://www.sph.umich.edu/csg/abecasis/metal
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glucose. This resulted in 2966 SNPs associated with LDL-
C, corresponding to 197 independent SNPs at 172 distinct 
loci.

SNPs associated with LDL‑C and CAD

84 of the 2966 LDL-C associated SNPs (25 of 172 loci) 
had nominally significant associations (at P < 0.05) with 
CAD risk in CARDIoGRAMplusC4D (including 63,746 
cases and 130,681 controls of European ancestry) (Supple-
mentary Fig. 1) (Consortium et al. 2013). Of these 25 loci, 
22 (88 %) showed the same direction of effect for LDL-C 
and CAD (i.e., were associated both with higher LDL-C 
concentration and with higher risk of CAD; binomial 
P = 6.85 × 10−5) (Fig. 1).

Mendelian randomization analysis of 197 independ-
ent SNPs associated with LDL-C yielded a causal OR for 
CAD of 1.63 (95 % confidence interval [CI] 1.55, 1.71; 
P = 8.0 × 10−83) per one standard deviation (SD) increase 
in LDL-C (Fig. 2). Using a stricter R2 threshold (<0.2) for 
SNP inclusion identified 145 independent SNPs and did 
not materially alter the findings (Supplementary Figure 4).

SNPs associated with LDL‑C and T2D

61 of the 2966 LDL-C SNPs (15 of 172 loci) were nomi-
nally significant (at P < 0.05) for T2D in DIAGRAM 
(34,840 cases, 114,981 controls of European ancestry) 
(Supplementary Fig. 1). However, there was no clear rela-
tionship between LDL-C and T2D: of the 15 loci, 6 (40 %) 
showed the same direction of effect (binomial P = 0.15; 
Fig. 3).

Mendelian randomization analysis incorporating 197 
independent LDL-C associated SNPs yielded a causal OR 
for T2D of 0.86 (95 % CI 0.81, 0.91 P = 2.1 × 10−7) per 
1-SD increase in LDL-C. Removal of 15 SNPs that associ-
ated with T2D at P < 0.01 and 34 SNPs that associated with 
T2D at P < 0.05 resulted in a diminution of the causal OR 
for T2D to 0.89 (95 % CI: 0.83, 0.94; P = 0.002) and 0.94 
(95 % CI: 0.88, 1.01; P = 0.10), respectively. The corre-
sponding causal OR for CAD when the 34 SNPs associated 
with T2D (at P < 0.05) were removed remained unaltered 
at 1.61 (95 % CI 1.52, 1.70; P = 3.3 × 10−61) (Fig. 2). As 
before, using a stricter R2 threshold (of <0.2) did not mate-
rially alter the findings (Supplementary Figure 4).

Fig. 1  Relationship of LDL-C-associated loci with risk of CAD. The majority (22 of 25) of loci showed a consistent direction of effect with risk 
of CAD. LDL-C effect estimates are per SD; whiskers represent 95 % CI
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Fig. 2  Mendelian randomiza-
tion to investigate the causal 
relationship of a one standard 
deviation genetically-instru-
mented increase in LDL-C 
with risk of coronary artery 
disease (CAD), type 2 diabetes 
(T2D) and levels of fasting 
glucose. Single nucleotide 
polymorphisms (SNPs) were 
initially selected based on their 
independent association with 
LDL-C at R2 < 0.8 (n = 197; 
“All SNPs” stratum). There-
after, we removed SNPs that 
associated with T2D risk at 
P < 0.01 (15 SNPs removed) 
and P < 0.05 (34 SNPs 
removed). Findings for the anal-
ysis using a stricter R2 threshold 
(<0.2) are presented in Supple-
mentary Figure 4

Fig. 3  Relationship of LDL-C-associated loci with risk of T2D. Six of the 15 loci showed a positive association with T2D risk. LDL-C effect 
estimates are per SD; whiskers represent 95 % CI
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SNPs associated with LDL‑C and fasting glucose

In the MAGIC consortium dataset (133,010 individu-
als of European ancestry), 58 SNPs (19 of 172 loci) were 
nominally associated (at P < 0.05) with fasting glucose 
(Supplementary Fig. 1). As with T2D, there was no clear 
consistency in direction of effect, with 9 of 19 loci (47 %) 
showing concordant directions of effect for LDL-C and 
fasting glucose (binomial P = 0.17; Fig. 4).

Mendelian randomization using 197 LDL-C-associated 
SNPs showed that a 1-SD increase in LDL-C had no clear 
effect on fasting glucose (0.009 mmol/l; 95 % CI −0.001, 
0.020; P = 0.08).

SNPs associated with LDL‑C, CAD, fasting glucose 
and T2D

We next integrated data from the four traits (LDL-C, CAD, 
fasting glucose and T2D) using a subset of the 2966 SNPs 
associated with LDL-C (at P < 5 × 10−8) that also showed 
a nominally significant association (P < 0.05) with CAD 
risk (n = 84). Of these 84 SNPs, 17 were associated with 
fasting glucose and 13 with T2D risk. Six SNPs were asso-
ciated with both T2D risk and fasting glucose. Of note, 

these six independent SNPs that associated with all four 
traits were consistent in their associations with higher 
LDL-C, higher CAD risk, lower fasting glucose and lower 
T2D risk (binomial P = 0.016) (Supplementary Fig. 2).

Eight of 17 SNPs associating with LDL-C, CAD and 
fasting glucose were located at the HMGCR locus. Other 
loci that were associated with LDL-C and CAD, and 
with fasting glucose and T2D included CELSR2, PSRC1, 
APOC1 and SUGP1.

Synthesis of a glycemic burden composite trait

To increase power to detect associations of loci with glyce-
mic status, we developed a “glycemic burden composite”, 
which involved meta-analysis of associations of four gly-
cemic traits (fasting glucose, fasting insulin, fasting pro-
insulin, HbA1c) together with T2D risk and included over 
2.5 million SNPs in the MAGIC and DIAGRAM consor-
tia datasets. We excluded HOMA-B and HOMA-IR from 
MAGIC based on the high correlation (see “Methods” and 
Supplementary Table 4 for more details), This identified 
306 SNPs with significant associations with the glycemic 
burden composite (at Bonferroni-corrected P < 5 × 10−8) 
(Supplementary Fig. 3 and Data file S1).

Fig. 4  Relationship of LDL-C-associated loci with fasting glucose. Nine of 19 loci showed a positive association with fasting glucose. LDL-C 
effect estimates are per SD; Fasting glucose effect estimates are in mmol/l; whiskers represent 95 % CI
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We evaluated suitable loci that altered LDL-C levels and 
CAD risk that were free from dysglycemic effects, follow-
ing three routes:

Loci that encode established or emerging LDL‑C drug 
targets for CAD prevention

We focused our attention on four loci encoding targets for 
existing or emerging lipid-lowering agents: HMGCR (the 
intended target of the statin drugs), PCSK9, APOB and LPA 
(targets of drugs currently in phase II and phase III RCTs). 
We identified SNPs in the GWAS catalog (http://www.
genome.gov/gwastudies, accessed October 1st 2014) in these 
loci that associated with LDL-C at GWAS significance.

For HMGCR (which served as a positive control), 5 
SNPs were identified (rs12916, rs3846662, rs3846663, 
rs7703051, rs12654264, Table 1): all 5 HMGCR SNPs 
associated with the glycemic burden composite. The direc-
tion of effect was as expected: SNPs associated with lower 
LDL-C levels, lower risk of CAD and higher values for the 
glycemic burden composite.

For PCSK9, two SNPs were identified (rs11206510, 
rs2479409). Both PCSK9 SNPs associated with CAD, 
yet neither of them associated with the glycemic burden 
composite.

For APOB, five SNPs were identified (rs1367117, 
rs3791980, rs676210, rs515135, rs693), three of which asso-
ciated with CAD. Again, no association of these five APOB 
SNPs was identified with the glycemic burden composite.

For LPA, two SNPs were identified (rs3798220, 
rs10455872), one of which (rs3798220) was not present in 
CARDIoGRAMplusC4D and no suitable proxy was avail-
able. The other SNP (rs10455872) associated with CAD. 
Neither of the two SNPs associated with the glycemic bur-
den composite.

To exploit all available data, we focused on SNPs in the 
same four loci (PCSK9, APOB, LPA and HMGCR) and 
evaluated the physical distribution and associations of these 
SNPs with the glycemic burden composite (Supplementary 
Fig. 3). The majority of SNPs in HMGCR associated with 
the glycemic burden composite, in contrast to the SNPs in 
PCSK9, APOB or LPA (Fig. 5).

Loci that associate with LDL‑C and CAD, but do not 
associate with the glycemic burden composite

To identify potential drug targets that alter LDL-C and 
CAD risk with no consequence on glycemic traits, we 
examined SNPs in loci that associated with LDL-C (at 
P < 5 × 10−8) and CAD (at P < 0.05) but did not associ-
ate with the glycemic burden composite (P > 0.05). This 
yielded 74 loci.

Because these loci may still harbor SNPs that associate 
with the glycemic composite, we investigated the propor-
tion of independent SNPs in these loci that associated with 
the glycemic burden composite. Loci that did not show 
an excess of independent SNPs associating with the gly-
cemic burden composite (at Fisher’s exact P < 0.05) were 

Table 1  Association of variants in HMGCR, PCSK9, APOB and LPA with LDL-C, CAD risk and glycemic burden composite for GWAS Cata-
log SNPs (color figure online)

Locus Drug target SNP CHR Pos LDL-C (GLGC)
P value

CAD (CARDIo-GRAM-
plusC4D)
P value

Glycemic burden 
composite
P value

HMGCR Statins rs12916 5 74656539 7.79  10 78 0.005 0.027

rs3846662 5 74651084 2.44  10 35 0.062 0.024

rs3846663 5 74655726 1.76  10 42 0.018 0.011

rs7703051 5 74625487 4.57  10 44 0.020 0.015

rs12654264 5 74648603 2.45  10 44 0.016 0.028

PCSK9 Evolocumab,  
Alirocumab and others

rs11206510 1 55496039 5.23  10 20 4.809  10 4 0.358

rs2479409 1 55504650 1.93  10 28 0.011 0.401

APOB Mipomersen rs1367117 2 21263900 9.48  10 183 0.023 0.074

rs3791980 2 21245329 9.74  10 21 0.023 0.578

rs676210 2 21231524 6.37  10 25 0.077 0.581

rs515135 2 21286057 3.14  10 109 8.628  10 4 0.155

rs693 2 21232195 3.52  10 89 0.201 0.114

LPA APO(a)Rx rs3798220 6 160961137 6.12  10 11 N/A 0.980

rs10455872 6 161010118 1.94  10 15 3.08 10 13 0.160

Blue = lower level of trait or risk of outcome; red = higher level of trait or risk of outcome

http://www.genome.gov/gwastudies
http://www.genome.gov/gwastudies


460 Hum Genet (2016) 135:453–467

1 3

investigated for druggability. In this context, “druggable” 
relates to a locus that encodes a protein targeted by an 
existing therapeutic (see “Methods” for more details).

Of the 74 loci, 62 were identified that did not harbor an 
excessive proportion of SNPs associating with the glyce-
mic burden composite (Supplementary Table 1).

The protein products of 23 of the 62 loci were identified 
as targets of existing medications (Supplementary Table 2), 
see “Methods” for more details. Seven of the 23 loci were 
identified as pharmacodynamic targets for drugs (Table 2): 
PCSK9, APOB, CETP, PLG, NPC1L1, LPA and ALDH2. 
PCSK9, APOB and LPA have been discussed above.

Fig. 5  Circos diagram to 
show association of SNPs in 
PCSK9, APOB, LPA, LDLR 
and HMGCR with glycemic 
burden composite. The outer 
ring represents the genomic/
chromosomal location. Each 
SNP is a green, orange or red 
point in the graph. Green dots 
in green shaded ring represent 
SNPs with 1 > P ≥ 0.05; orange 
circles in orange shaded ring 
correspond to SNPs within 
0.05 > P ≥ 0.001 and; red 
triangles in red shaded ring 
represent SNPs with P < 0.001. 
61 % of HMGCR SNPs associ-
ated with the glycemic burden 
composite (at P < 0.05) vs. less 
than 5 % for SNPs in PCSK9, 
APOB and LPA (color figure 
online)

Table 2  Loci that are pharmacodynamic targets of existing drugs identified from integrative analysis of the datasets

Gene Drug that acts pharmacodynamically on gene protein product Gene effect

LDL-C level CAD risk Glycemic burden composite

Drug-loci combinations with no effect on glycemic status

 PCSK9 ALN-PCS, BMS-PCSK9, ALN-PCS01, SPC5001 ↓ ↓ No effect predicted

 APOB SPC4955 ↓ ↓ No effect predicted

 CETP Dalcetrapib, Anacetrapib, Torcetrapib, R7232, PF-3185043, CP-800569 ↓ ↓ No effect predicted

 PLG Tenecteplase, Alteplase, Reteplase, Urokinase, Aminocaproic acid, Anistre-
plase, Streptokinase

↓ ↓ No effect predicted

 NPC1L1 Ezetimibe ↓ ↓ No effect predicted

 ALDH2 Disulfiram ↑ ↓ No effect predicted

Daidzin

 LPA ISIS APO(a)Rx ↓ ↓ No effect predicted

Drug-loci combinations that impact glycemic status

 HMGCR Statins ↓ ↓ ↑
 SLC22A3 Metformin ↓ ↓ ↓
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We identified CETP as a druggable locus (targeted by 
CETP inhibitors such as anacetrapib) that has associations 
with LDL-C and CAD risk and an absence of association 
with the glycemic burden composite.

PLG encodes plasminogen, an enzyme that degrades 
plasma proteins including thrombin clots. Plasminogen is 
also associated with circulating lipid levels (Crutchley et al. 
1989). The drugs that target the protein product of PLG, 
namely tissue plasminogen activators (e.g., streptokinase), 
are used clinically to degrade coronary artery thrombi in 
the setting of acute coronary syndrome with treatment effi-
cacy demonstrated in RCTs (Baigent et al. 1998). Their 
adverse effect profile, however, includes higher risk of seri-
ous bleeding (a direct consequence of their mechanism of 
action), rendering them unsuitable for use in primary pre-
vention of CAD. Furthermore, their primary mode of action 
is not lipid reduction, but thrombolysis.

ALDH2 was identified to associate with LDL-C and 
CAD in the absence of modifying glycemic status. Inter-
estingly, and in contrast to the other loci, ALDH2 associ-
ated with directionally opposite effects on LDL-C and risk 
of CAD (Table 2). ALDH2 encodes aldehyde dehydroge-
nase, responsible for metabolizing acetaldehyde, a break-
down product of alcohol. Disulfiram, a drug currently used 
to treat alcohol dependence, directly inhibits aldehyde 
dehydrogenase.

NPC1L1 was identified to alter LDL-C and CAD risk 
but did not associate with the glycemic burden composite. 
NPC1L1 encodes Niemann-Pick C1-Like 1 protein, a trans-
membrane protein that is inhibited by ezetimibe (Garcia-
Calvo et al. 2005).

Loci that associate with LDL‑C, CAD and glycemic burden 
composite

These loci affect glycemic status in addition to their effects 
on LDL-C and CAD risk, and therefore drugs modulat-
ing their encoded proteins may cause adverse dysglyce-
mic effects. Forty independent loci were found to associ-
ate with LDL-C (P < 5 × 10−8), CAD and the glycemic 
burden composite (both P < 0.05). Of these, 11 loci were 
shown to have a higher than expected proportion of SNPs 
associated with the glycemic burden composite (Fisher’s 
exact P < 0.05), of which five loci (HMGCR, SLC22A3, 
FADS2, ABO and PTPN11) were druggable (Supplemen-
tary Table 3). Two of these loci (HMGCR and SLC22A3) 
have existing drugs that target them pharmacodynamically. 
SLC22A3 is gaining recognition as the target of metformin, 
(Chen et al. 2010) a drug used to treat diabetes (by reducing 
blood glucose concentration), which also reduces levels of 
LDL-C (Keidan et al. 2002; Pentikainen et al. 1990; Rob-
inson et al. 1998; Salpeter et al. 2008; Wulffele et al. 2004) 
and risk of CAD (Lamanna et al. 2011). Unlike HMGCR, 

where SNPs in the locus reduce LDL-C and CAD risk yet 
increase glycemic burden, SLC22A3 SNPs reduce all three 
traits (LDL-C, CAD risk and glycemic burden).

Discussion

We sought to clarify the relationship between LDL-C, 
dysglycemia and risk of CAD and shed light on potential 
therapeutic targets for CAD prevention that are free from 
dysglycemic effects. To this end, we exploited the public 
availability of data from several large-scale genetic consor-
tia. Using genetic data can reliably guide which therapeutic 
targets should be prioritized (Holmes et al. 2013; Nelson 
et al. 2015).

In this study, we found that the vast majority of SNPs 
that influence both LDL-C and risk of CAD have the same 
direction of effect, that is, alleles associated with higher 
LDL-C levels increase CAD risk. This is further under-
scored by the causal effect estimate derived from Men-
delian randomization, consistent with the known causal 
relationship between LDL-C and CAD. Both contribute 
further evidence in support of the so-called “LDL hypoth-
esis”: regardless of the means, a reduction in LDL-C results 
in a corresponding reduction in risk of CAD (Jarcho and 
Keaney 2015). In contrast to the relationship of LDL-C 
with risk of CAD, we observed no clear patterns of asso-
ciation for SNPs that influence LDL-C, risk of T2D or 
concentrations of fasting glucose. This is despite our Men-
delian randomization analysis that revealed a protective 
causal effect of LDL-C on the risk of T2D [directionally 
consistent with the relationship seen with statins and T2D 
risk in randomized clinical trials (Preiss et al. 2011)]. Even 
so, there are many loci (including druggable loci) that alter 
LDL-C and CAD risk that are expected to have no substan-
tive effect on glycemic status: these include targets of novel 
therapies that are protein products of PCSK9, APOB and 
LPA. These findings are reinforced by the persistence of the 
causal relationship between LDL-C and risk of CAD even 
after excluding SNPs associated with T2D. Importantly, 
this demonstrates that the underlying causal association of 
LDL-C SNPs with risk of CAD remains intact, irrespective 
of whether SNPs also associate with T2D. Real potential 
therefore exists in identifying LDL-C targets that alter risk 
of CAD and do not impact upon glycemic status.

Of particular importance was our analysis of four can-
didate loci: HMGCR, PCSK9, APOB and LPA. HMGCR 
encodes 3-hydroxy-3-methyl-glutaryl-CoA reductase, 
the intended pharmacological target of statins, and is rec-
ognized to increase risk of T2D, both from randomized 
clinical trials (Preiss et al. 2011; Sattar et al. 2010) and 
from a recent large-scale Mendelian randomization study 
(Swerdlow et al. 2015). HMGCR SNPs that associated with 
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LDL-C and CAD had a strong association with our gly-
cemic burden composite. In contrast, SNPs in APOB and 
PCSK9 that associated with LDL-C and CAD did not asso-
ciate with the glycemic burden composite. These findings 
were reciprocated when we analyzed all available SNPs in 
these loci—there was a clustering of HMGCR SNPs asso-
ciated with the glycemic burden trait that was not found 
for PCSK9, APOB or LPA. Thus, the overwhelming evi-
dence, from several independent sources, is that drugs that 
target protein products of PCSK9, APOB or LPA should 
not impact upon glycemia. This is important as on-going 
phase III clinical trials of PCSK9 inhibitory monoclonal 
antibodies (e.g. evolocumab in NCT01764633; RN316 
in NCT01975389 and NCT01975376; and, alirocumab in 
NCT01617655) and APOB mRNA antisense oligonucleo-
tide inhibitor (mipomersen in NCT01475825) will most 
likely show beneficial effects on major clinical outcomes 
[as evidenced by strong genetic associations with CAD 
and extremely encouraging findings from large, individual 
(Koren et al. 2014) and pooled analysis of phase II RCTs 
of PCSK9 inhibition (Stein et al. 2014)]. Our findings indi-
cate these emerging drugs are unlikely to be hampered by 
mechanism-based effects on glycemic status. It is therefore 
possible that these emerging drugs may, in future, replace 
statins as the drug of choice for LDL-C lowering and CAD 
prevention, although this is likely to follow several years of 
safety monitoring and patent expiration to reduce costs.

Our multi-trait meta-GWAS to quantify a glycemic bur-
den composite enabled us to investigate potential druggable 
genes that alter LDL-C and CAD risk but have no appreci-
able effect on glycemic status. In addition to PCSK9, LPA 
and APOB loci, we identified the druggable loci CETP, 
NPC1L1, ALDH2 and PLG. CETP is particularly inter-
esting and controversial (Hewing and Fisher 2012; Miller 
2014; Mohammadpour and Akhlaghi 2013). CETP inhibi-
tors were developed principally to raise HDL-C with the 
aim of reducing CAD risk, but potent examples of these 
drugs also reduce LDL-C (Bloomfield et al. 2009). Phase 
III clinical trials of CETP inhibitors for clinical events 
have been conducted, the largest being dal-OUTCOMES 
(Schwartz et al. 2012), which randomized 15,871 patients 
to dalcetrapib or placebo for 31 months and was terminated 
early because of futility. Furthermore, meta-analyses of 
several phase III RCTs have failed to show cardiovascu-
lar benefit (Kaur et al. 2014; Keene et al. 2014). Of note, 
meta-analyses may be flawed by including torcetrapib, a 
CETP inhibitor that had ‘off-target’, deleterious hyperten-
sive effects (Gutstein et al. 2012; Sofat et al. 2010) and 
has since been abandoned (Diener et al. 2012). Further-
more, therapeutic effects of dalcetrapib (used in dal-OUT-
COMES) on LDL-C were small (Schwartz et al. 2012). 
Our data suggest that more potent CETP inhibitors, such 
as anacetrapib, that lower LDL-C (in addition to raising 

HDL-C) (Bloomfield et al. 2009) are likely to reduce CAD 
risk without any consequence on glycemic status. While 
ACCELERATE (NCT01687998), a phase III placebo-con-
trolled RCT of 12,000 individuals with existing vascular 
disease randomized to evacetrapib has been halted for futil-
ity, (Lilly 2015) REVEAL (NCT01252953), with 30,000 
individuals randomized to anacetrapib or placebo remains 
on-going and is anticipated to provide definitive evidence.

NPC1L1 encodes the pharmacodynamic target of 
ezetimibe, an LDL-C lowering therapeutic that has, similar 
to CETP inhibitors, had a controversial history. Despite the 
effective lowering of LDL-C by ezetemibe, initial RCTs 
had not demonstrated its efficacy for surrogate markers of 
CHD or CHD events (Kastelein et al. 2008; Taylor et al. 
2009). However, recent genetic studies (Myocardial Infarc-
tion Genetics Consortium I et al. 2014; Ference et al. 2015) 
and findings from a phase III RCT [IMPROVE-IT (Can-
non et al. 2015)] provide evidence that ezetimibe is effi-
cacious at reducing risk of CVD (McPherson and Hegele 
2015). Our findings extend current knowledge to suggest 
that pharmacological lowering of LDL-C by ezetimibe with 
corresponding CAD prevention is unlikely to be accompa-
nied by dysglycemia.

ALDH2 is also of considerable interest. Given the recent 
large-scale Mendelian randomization analysis of a SNP in 
ADH1B that indicates alcohol consumption alters LDL-C 
and CAD risk, (Holmes et al. 2014) we have the corollary 
of ALDH2, encoding aldehyde dehydrogenase, another key 
enzyme in the primary metabolic pathway of alcohol. SNPs 
in ALDH2 associate with an increase in LDL-C concentra-
tion and yet a reduction in CAD risk. Importantly, drugs 
that specifically target the protein product of ALDH2, used 
to treat alcohol dependence, such as disulfiram, should be 
further investigated for their effect on LDL-C and CAD 
risk. Preliminary studies suggest that disulfiram increases 
total cholesterol (Major and Goyer 1978), thus the drug may 
associate with a reduction in risk of CAD (in keeping with 
the expected pattern of association as reported in Table 2). 
The association of PLG with LDL-C and CAD is interest-
ing: prospective studies and clinical trials show consistent 
associations of plasminogen with lipid levels (Crutchley 
et al. 1989) and CAD risk (Baigent et al. 1998; Lowe et al. 
2004; Sakkinen et al. 1999). However, the mechanism-based 
risk of bleeding that exists with plasminogen activators ren-
ders their widespread use for CAD prevention unlikely.

Our study has several advantages. First, it demonstrates 
the value of exploiting data available in the public domain 
to conduct original analyses and answer important ques-
tions on the causal relationships between traits and dis-
eases. In this respect, the Mendelian randomization analy-
sis for CAD limited to SNPs not associating with T2D risk 
provides novel insights into disentangling the relationships 
between LDL-C, glycemic status and risk of CAD. Second, 
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the now well-characterized associations of the HMGCR 
locus, selected as a positive control, with the glycemic bur-
den composite, LDL-C and CAD were confirmed, further 
validating the techniques we used. The SLC22A3 locus, 
of which the protein product is reported as the pharma-
cological target of metformin, is also noteworthy. Met-
formin retains a special place in the management of T2D 
as the only oral hypoglycemic agent that benefits both 
glycemic status and risk of CAD. We show that variants 
in SLC22A3 alter glycemia, LDL-C and risk of CAD in a 
fashion that reflects the profile of actions seen with met-
formin in randomized trials, (Lamanna et al. 2011; Salpeter 
et al. 2008; Wulffele et al. 2004) providing further evi-
dence that SLC22A3 may well be the pharmacological tar-
get of metformin. It is intriguing that SLC22A3 shares the 
same LDL-C and CAD modifying properties as HMGCR 
whereas the opposite effect on glycemia. One could spec-
ulate that metformin co-prescribed with statins could off-
set the diabetogenic effects of statins, whilst providing an 
additional means to reduce LDL-C (and CAD risk) that is 
independent of HMGCR.

Our study also has several limitations. First, use of sum-
mary-level data prevented more intricate analysis includ-
ing use of covariates and conditioning, and was limited to 
the models used in the original analyses. However, use of 
summary estimates from published GWAS consortia maxi-
mizes use of all available data, thereby mitigating against 
publication bias, increasing power and enhancing gener-
alizability of findings (Lin and Zeng 2010). Second, our 
threshold for the glycemic burden composite (P < 0.05) in 
SNPs associating with LDL-C (P < 5 × 10−8) and CAD 
(P < 0.05) may be interpreted as insufficiently stringent, 
given the multiple tests conducted. However, we followed 
up investigations of all loci for the glycemic burden com-
posite with a Fisher’s test to identify independent loci that 
harbored SNPs associated with the glycemic burden com-
posite—and in doing so, we minimized any false posi-
tives (or negatives) using this approach. The choice of a 
P value threshold of P < 0.05 for CAD is justifiable given 
the known causal association of LDL-C SNPs with CAD 
together with the directions of effect of SNPs on both traits, 
and given that all SNPs associated at GWAS significance 
for LDL-C. Third, gene–gene interactions may make an 
important contribution to the genetic architecture of dis-
ease, and such interactions may not display so-called “mar-
ginal effects”, meaning that associations arising from inter-
actions would not be detected in conventional associated 
analyses (Cordell 2009; De et al. 2015). Follow-up studies 
could investigate the role of gene–gene interactions in this 
setting. Fourth, the association of HMGCR loci with glyce-
mic burden composite means that, if this information was 
known a few decades ago, statins may not have been devel-
oped for CAD prevention. However, this is often the case as 

drug discovery progresses, and early drugs are superseded 
by drugs with a more favorable adverse effect profile, or a 
broader therapeutic index (Diener et al. 2012). Finally, our 
Mendelian randomization analyses used a “conventional” 
ratio approach that does not take into account potential 
pleiotropy of the genetic instruments. Further studies are 
needed to investigate whether these findings are influenced 
by unbalanced pleiotropy using emerging approaches such 
as multivariate and/or Egger-Mendelian randomization 
(Bowden et al. 2015; Burgess et al. 2015).

The integrative use of multiple GWAS datasets, as we 
report, represents a novel approach to answering critical 
questions on disease etiology and to inform on intended 
and unintended consequences of pharmacological modifi-
cation of biomarkers. Real opportunities exist for academia 
to work together with pharmaceutical industry to translate 
GWAS data and maximize understanding of which thera-
peutic targets to prioritize based on robust, large-scale, inte-
grative genomic analyses (Kathiresan 2015). This would 
facilitate discovery of safe, efficacious new therapeutics and 
potentially offset the exuberant costs of drug development. 
Indeed, drug mechanisms that have genetic support are more 
than twice as likely to succeed in clinical trials, (Nelson et al. 
2015) and GWAS plus Mendelian randomization have been 
identified as key solutions to revitalizing drug development 
in cardiovascular disease (Fordyce et al. 2015).

In conclusion, we used publicly available data to inter-
rogate the relationship of LDL-C-associated SNPs for their 
associations with CAD risk, glycemic traits and T2D risk. 
We identify several potential therapeutic targets that influ-
ence LDL-C and risk of CAD that do not alter glycemic 
status. We provide evidence that emerging drugs that target 
protein products of PCSK9, APOB and LPA are unlikely to 
impact upon glycemic status, and in that regard, may have 
advantages over statins for LDL-C lowering and prevention 
of CAD.
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