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SPLiT-seq provides a low-cost platform to generate single-cell data by labeling the cellular origin of RNA
through four rounds of combinatorial barcoding. However, an automatic and rapid method for prepro-
cessing and classifying single-cell sequencing (SCS) data from SPLiT-seq, which directly identified and
labeled combinatorial barcoding reads and distinguished special cell sequencing data, is currently lack-
ing. Here, we develop a high-efficiency preprocessing tool for single-cell sequencing data from SPLiT-
seq (SCSit), which can directly identify combinatorial barcodes and UMI of cell types and obtain more
labeled reads, and remarkably enhance the retained data from SCS due to the exact alignment of insertion
and deletion. Compared with the original method used in SPLiT-seq, the consistency of identified reads
from SCSit increases to 97%, and mapped reads are twice than the original. Furthermore, the runtime
of SCSit is less than 10% of the original. It can accurately and rapidly analyze SPLiT-seq raw data and
obtain labeled reads, as well as effectively improve the single-cell data from SPLiT-seq platform. The data
and source of SCSit are available on the GitHub website https://github.com/shang-qian/SCSit.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cellular heterogeneity is a widespread phenomenon in biology
by which cells vary in genetic and genomic factors [1]. Cell hetero-
geneity may have dramatic impact on biological processes and dis-
eases, such as bacterial sepsis, cell immunity, aneurysm and
cardiomyocyte [2–5]. High-throughput single-cell sequencing
(SCS) technologies, such as next generation sequencing (NGS)
and third generation sequencing (TGS), have been developed and
widely used to identify cell types from morphologically similar cell
populations and multi-cellular tissues [6–10]. Compared with con-
ventional sequencing technologies, SCS have an obvious advantage
in cell type identification at the single-cell level, especially for low-
abundance gene information that may be easily neglected in previ-
ous tissue-level studies [11]. SCS provide a cutting-edge
technology to measure the real-time expression of genes in a single
cell [12–14] and reveal inter-cellular heterogeneity [15–17], which
play an important role in understanding cellular features and func-
tions in tumors [18], developmental biology [19,20], microbiology
[21], and neuroscience[22,23].

At present, several single-cell sequencing technologies have
been developed, including DroNC-seq [24], CROP-seq [25], LIANTI
[26], and scCOOL-seq [27], scSLAM-seq [28], DART-seq [29] and
TAP-seq [30]. DroNC-seq combines single nucleus RNA-seq
(sNuc-seq) and Drop-seq using microfluidic beads marking up
single-cell DNA, showing efficient and sensitive capabilities to
identify single-cell types [24]. CROP-seq, called CRISPR droplet
sequencing, enables pooled CRISPR-Cas9 screening with single-
cell droplet, which facilitates high-throughput single-cell sequenc-
ing in a cost-effective way [25]. LIANTI linearly amplifies the whole
genome DNA sequence by inserting the transposons in single cells,
which significantly increases the depth and resolution of single-
cell DNA sequencing [26]. scCOOL-seq is a single-cell complex
sequencing technology that simultaneously characterizes the chro-
matin state, nucleosome location, DNA methylation, copy number
variation and chromosome ploidy [27]. scSLAM-seq is a single-cell,
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thiol-(SH)-linked alkylation of RNA for metabolic labelling
sequencing which records transcriptional activity directly integrat-
ing metabolic RNA labelling and biochemical nucleoside conver-
sion [28]. DART-seq enables multiplexed amplicon sequencing
and transcriptome profiling in single cells [29]. TAP-seq, called tar-
geted Perturb-seq, focuses single-cell RNA-seq coverage on genes
of interest and permits a routine analysis of thousands of
CRISPR-mediated perturbations within a single experiment [30].
Although the SCS technologies mentioned above have their own
advantages and characteristics, they all require custom microflu-
idics or microwells for cell sorting to obtain single cells, resulting
in the high cost of single-cell sequencing.

Recently, Rosenberg et al. developed a single-cell RNA-seq
method, split-pool ligation-based transcriptome sequencing
(SPLiT-seq), which labeled the cellular origin of RNA through four
rounds of combinatorial barcoding and unique molecular identifier
(UMI) (Fig. 1A) [12]. SPLiT-seq eliminated the need of single cells
isolation because of the index information of DNA barcodes. The
alignment of cell barcodes could be used to identify cell types from
SPLiT-seq data, and this principle greatly reduced SCS cost and
experimental requirements, making it to be widely used in single
cell research. However, there is currently no automatic and rapid
preprocessing method that enables the classification of single-
cell sequencing data from SPLiT-seq. The existing methods simply
based on ordinary alignment tools, such as BLAST or BWA, are
time-consuming and fallibility for simultaneous determination of
all three barcodes in different regions of each sequence. BLAST,
an ordinary alignment tool, takes a lot of computation time in
determination of all three barcodes by blastn-short and can only
run serially on a single CPU core. BWA is faster, but the length of
the barcodes (8 bp) is too short for BWA to take advantage for
sequence alignment. Moreover, the alignment results of existing
alignment tools considering the allowable 1–2 base mismatches
require special screening, which are unable to automatically label
barcodes with fault-tolerant matching. To date, there is a lack of
an automatic and rapid method to identify and label combinatorial
barcoding reads and distinguish special cell sequencing data from
SPLiT-seq. Therefore, we develop a high-efficiency preprocessing
tool for single-cell sequencing data from SPLiT-seq (SCSit), which
automatically identifies three rounds of barcode and UMI and sig-
nificant increase the clean SCS reads due to the accurate detection
of insertion and deletion of barcodes in the alignment. SCSit effec-
tively solves the classification and extraction of cell type labels
from SPLiT-seq and achieves more accurate single-cell data.
2. Materials and methods

2.1. Feature of SCS data

Raw data of SPLiT-seq was sequenced on Illumina platform
using 150 nucleotide (nt) kits and paired-end sequencing. Read1
included the transcript (cDNA) and R1 primer sequences, and
Read2 covered UMI, three BC barcode combinations and cDNA
(Fig. 1B). Thus, the identification of Read2 determines the accuracy
and efficiency of cell type classification in SCS data, and it is a key
step in SCSit.
2.2. Identification of index position of barcodes in Read2

Five contents contain UMI, three BC barcodes and cDNA, and the
UMI and three barcodes in Read2 were used as specific tag to
obtain labeled reads that identified different cell types (Fig. 1B).
Each barcode is composed of indicator sequences of cell type (8
nt) and index sequences of barcodes (Table S1). The index
sequences of barcode 1 and 2 (index21, 30 nt), barcode 2 and 3 (in-
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dex32, 30 nt) were joined each end to end (Fig. 1B and Table S1),
and the joint sequences (index21 and index32) were used to iden-
tify each round barcode in Read2. The sequences of index21 and in-
dex32 were divided into 23 segments by 8 nt k-mer. Then the
Read2 were mapped to 23 segments by sliding window (8 nt)
and detected the position of index sequences of three barcodes.
There were three situations of detection of index sequence in
Read2:

(1) Complete match of index sequence: sliding window
sequence (8 nt) of Read2 was completely and continuously
matched to index sequence of barcode, the position of index
sequence of Read2 was determined by the start of matched
window1 (W1, Ms) and the end of matched window23
(W23, Me), and Me-Ms was equal to the length of index
sequence (30 nt) (Fig. 2A).

(2) Considerate one mismatch: i) If one mismatch exists in the
position m of sequences (9 � m � 21), and W1 and W23 are
all completely matched. The index sequence of Read2 could
be identified while Me-Ms = 30, and the start and end posi-
tion of index sequences are determined from Ms to Me
(Fig. 2B). ii) If the mismatch occurs in the position m
(1 � m � 8) of matched W1, the index sequence of Read2
could be identified while Me-Ms = 30-m, and the start and
end position of index sequences are determined from Ms-
m to Me (Fig. 2B). iii) If the mismatch occurs in the position
m (22 � m � 30) of matched W23, the index sequence of
Read2 could be identified while Me-Ms = 30-m, and the start
and end position of index sequences were determined from
Ms to Me + m (Fig. 2B).

(3) Considerate one INDEL (length of index sequence in
Read2 – 30 nt): i) If INDEL is present in the position m
(9 � m � 21) of between matched W1and W23. The index
sequence of Read2 could be identified while Me-Ms is equal
to the length of matched index sequence containing inser-
tion (31 nt) or deletion (29 nt), and the start and end posi-
tion of index sequences are determined from Ms to Me
(Fig. 2C). ii) If the INDEL exists in the position m
(1 � m � 8) of matched W1, the index sequence of Read2
could be identified while Me-Ms = 30-m, and the start and
end position of index sequences with insertion are deter-
mined from Ms-m-1 to Me and with deletion from Ms-
m + 1 to Me (Fig. 2C). iii) If the INDEL exists in the position
m (22 � m � 30) of matched W23, the index sequence of
Read2 could be identified while Me-Ms = 30-m, and the start
and end position of index sequences with insertion are
determined from Ms to Me + m + 1 and with deletion from
Ms to Me + m (Fig. 2C).

2.3. Identification of indictor sequences of barcodes in Read2

Based on the identification of round index of barcodes, the
labeled reads could be obtained, which cell type could be classified
by the alignment of indictor sequences of barcodes. For the identi-
fication of indictor sequences, we executed a quad to decimal con-
version, and used 0, 1, 2, and 3 to present A, T, G, and C. Then the
fragment sequences were converted to decimal number (intSeq),
which was calculated by

intSeq ¼
Xn

i¼0

trans seq i½ �ð Þ � 4 n�i�1ð Þ

where seq[i] denotes the ith base of a fragment, n is the length of
one fragment. The three round barcodes were converted and stored
in decimal number lists, and the intSeq values were used as the
index of three lists (Fig. 3A). The indictor sequences of barcodes



Fig. 1. Schematic overview of barcoded cDNA molecules from SPLiT-seq data (A: labeling transcriptome with SPLiT-seq, P5, P7, R1 and R2 refer PCR step of library
preparation, 1st BC, 2nd BC, 3rd BC and 4th BC refer to 4 rounds barcodes, RT primer refer to reverse transcription primer, UMI refer to unique molecular identifier, B:
Components of sequenced Read containing three barcodes, UMI and cDNA. Index32 is the joint sequences of 3rd BC and 2nd BC, and Index21 is the joint sequences of 2nd BC
and 1st BC).

Fig. 2. Index sequence identification of barcode in Read2 (INS: insertion, DEL: deletion, A: complete match of index sequence. B: considerate one mismatch. C: considerate
one INDEL).
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in Read2 were mapped to the barcode lists by using the intSeq
index, thus labeled reads could rapidly be marked that cell types
could be rapidly identified in SCSit.

To further make the SCSit more applicable, we used the distance
function to allow mismatch between indictor sequence of Read2
and three round barcodes. The distance function is defined by

Dist x; yð Þ ¼
Xn�1

i¼0

D x i½ �; y i½ �ð Þ � 1þ i
n

� �
;

D x; yð Þ ¼ 0 x ¼ y
1 x–y

;

�

where x[i] and y[i] are referred to as the ith base of sequence x and
y, n referred to as the length of them. For the indicator sequence of
4576
barcode, n = 8. If the value of Dist is less than threshold (2), the bar-
code identification of Read2 is valid, otherwise Read2 is abandoned.
2.4. Identification and preprocessing of Read1

Raw Read1 sequences were retained with the valid Read2, and
trim the reads by PrimerList (forward and reverse, Table S2) used
in the SPLiT-seq literature. The sequences of PrimerList were
divided into n segments (r1, . . ., rn) by k-mer (8 nt), and similarly
converted to the decimal number (intSeq) (Fig. 3A). Read1
sequence was divided into l (q1, . . ., ql) segments. If the last seg-
ment is less than 8 bases, then it achieves the 8 bases backwards
(ql) (Fig. 3B). Then the fragment was direct inquiry by intSeq index
of PrimerList. The first and last matched segment of Read1 were
recorded and used to trim the primer sequences of Read1.



Fig. 3. Decimal conversion of barcodes and segmentation of sequences (A: decimal conversion, B: the sequence was divided into n segments with 8 nt).
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2.5. Implementation and validation

SCSit was developed by C program and parallel compute by
multithread to quickly identify the cell type of SPLiT-seq reads.
The raw reads FASTQ format of SPLiT-seq data as input executed
SCSit program and output labeled reads with combinatorial bar-
codes and UMI. The output Read1 FASTQ format file was composed
of combinatorial barcodes and UMI, and Read2 file was corre-
sponding sequencing data (Fig. 4A). To validate the accuracy
and reliability of SCSit, we collected and compared the treated
five samples from mouse (SAMN08567263) and mixed human
and mouse cells containing HEK293, HelaS3, and NIH/3T3
(SAMN08567259, SAMN08567260, SAMN08567261, and SAMN08
567264) used in the SPLiT-seq literature [12]. The original method
used in SPLiT-seq discarded reads that last 6 bases of them did not
match barcode sequence, UMI region were then filtered based on
quality score that read with greater than 1 low-quality base
(phred � 10) and three 8 nt cell barcodes with more than one mis-
match. We compared the SCSit and original method by using the
filtered clean data. The source of SCSit and validation data were
available on the GitHub website https://github.com/shang-qian/
SCSit.
3. Results

Five datasets of different species from SPLiT-seq were used to
perform the assessment of SCSit. The identified labeled reads and
runtime were compared between SCSit and original methods
(Table 1). The results indicate the identified labeled reads of SCSit
in SAMN08567263 (56,833,343), SAMN08567261 (163,780,622),
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SAMN08567260 (163,502,984), SAMN08567259 (148,423,169)
and SAMN08567264 (160,257,239) were more than those in the
original method (Table 1). And the rate of identified reads in SCSit
were all more than 65% that were distinctly higher than those by
the original method. The consistency of SCSit identified reads
was 96 ~ 97% in the original (Table 1). The reads uniquely identified
by SCSit are all more than 13 percent in five samples (Fig. 4B–F).
Especially, almost double increase rates of identified reads are
found in SAMN08567260 and SAMN08567264 (Table 1). The main
reason for the obvious improvement of SCSit in labeled reads iden-
tification is the consideration of indel and mismatch of barcodes
alignment and UMIs (Table S3), which further illustrates the neces-
sity of developing proper method to obtain labeled reads from
SPLiT-seq data. Besides, we assessed the runtime of SCSit for five
datasets under 4 cores of CPU. Results demonstrate that the run-
time of five samples in SCSit is less than the original method with
blastn-short (Table 1). The runtime of SCSit was mainly used to
identify the indictor of barcodes and trimming primer, while the
original took two part time that contains barcodes alignment with
blastn-short and UMI identification.

To further validate the accuracy of obtain labeled reads from
SCSit, we mapped the identified reads to either the combined
mm10-hg19 genome or mm10 genome using STAR [31]. The
mapped reads number of SCSit are more than these in the original
method in five samples, SAMN08567264 has the most incremental
mapped reads (114,732,417) and twice than the original method
(Table 1 and Fig. 4G). The 93 ~ 98% of uniquely mapped reads by
SCSit are consistent with the reads in the original, which directly
enhances the number of mapped reads (Table S3). The above
results illustrate that SCSit is an accurate and efficiency tool to
obtain labeled reads from SPLiT-seq.

https://github.com/shang-qian/SCSit
https://github.com/shang-qian/SCSit


Fig. 4. Pretreatment of SCS reads and comparison clear reads from SCSit and original method (A: work flow of SCSit, B-F: SAMN08567263, SAMN08567261, SAMN08567259,
SAMN08567260, and SAMN08567264, G: comparison of mapped reads between SCSit and original).
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Table 1
The statistical assessment of SCSit in five samples.

Sample ID Method Raw reads No. Identified reads No. (ratio*) Consistency rate in the original (%) Runtime (h) Mapped reads No.

SAMN08567263 SCSit 77,621,181 56,833,328 (73.22%) 96.10 0.62 44,541,508
Original 51,706,161 (66.61%) 17.68 41,067,548

SAMN08567261 SCSit 218,683,580 163,780,622 (74.89%) 97.18 1.90 123,956,003
Original 145,809,694 (66.68%) 50.34 112,226,501

SAMN08567259 SCSit 221,577,898 148,423,169 (66.98%) 97.17 1.98 109,834,181
Original 131,707,053 (59.44%) 51.01 98,810,811

SAMN08567260 SCSit 215,597,675 163,502,984 (75.84%) 96.81 1.87 122,062,984
Original 82,387,120 (38.21%) 49.58 62,516,718

SAMN08567264 SCSit 241,868,411 160,257,239 (66.26%) 96.88 2.15 114,732,417
Original 75,844,129 (31.36%) 55.67 54,887,436

ratio*: the percentage of identified reads in raw reads. Original referred to original method.

Mei-Wei Luan, Jia-Lun Lin, Ye-Fan Wang et al. Computational and Structural Biotechnology Journal 19 (2021) 4574–4580
4. Discussion

SCSit, an automatic, rapid and accurate preprocessing tool for
single-cell sequencing data, and obtain labeled reads for SPLiT-
seq data which can directly identifies cell types. SPLiT-seq labels
cell types by four rounds of combinatorial barcoding and UMI
[12]. K-mer alignment algorithm that completely considers the
mismatch and indel in barcode sequences and UMI are used to
obtain labeled reads and classify cell types in SCSit, and conversion
index of decimal conversion greatly improves the efficiency of
alignment. The comparison of identified reads and consistency
ratio with the original illustrates that SCSit has a high-efficiency
preprocessing performance for cell type’s identification of SCS data
from SPLiT-seq.

SCSit identifies more labeled reads in five samples, the uniquely
identified reads were 7,142,680, 22,079,788, 20,440,162,
83,743,898 and 86,777,528 in sample SAMN08567263,
SAMN08567261, SAMN08567259, SAMN08567260 and SAMN
08567264, respectively (Table S3). The unique additional reads of
SCSit contain the barcodes with indel, unidentified UMI and bar-
codes in the original, and the barcodes absence that one of the
three barcodes was missing (Table S3). The UMI and barcodes
unidentified reads in original are 90 ~ 97% of uniquely identified
reads in SCSit (Table S3). In order to facilitate comparison of SCSit
and original method that discard the barcode sequence with more
than one mismatch [12], we used one mismatch and one indel for
barcodes alignment in this study. Actually, SCSit is also suitable for
the case of more than one mismatch and indel in the identification
of Read2. However, evaluating results from SCSit with more than
one mismatch and indel show that the identified reads only
increase 4 ~ 5% but takes 20 ~ 40% more runtime (Table S4). Con-
sidering the optimal balance of efficiency, we use one mismatch
and one indel as default setting in SCSit.

SCSit is a high-efficiency preprocessing tool for single-cell
sequencing data and provides accurately and rapidly processing
of SPLiT-seq raw sequencing data for biologists and bioinformati-
cian. In order to make researchers better understand and use
SCSit, we shared the source code under the MIT license on
GitHub (https://github.com/shang-qian/SCSit) and integrated it
into Conda environment for convenient use by researchers. The
alignment of barcodes with fault-tolerant and indel is the main
reason for the high-efficiency and rapid preprocessing in SCSit,
which are the basis of sequence alignment algorithm, so it
ensures the reliability and accuracy of SCSit. Although the fault-
tolerant and indel alignment were proposed for SPLiT-seq data
in this study, the core principle could be widely used in other
single-cell sequencing data similar to SPLiT-seq that using bar-
code sequence information. Recently, single cell sequencing is a
hot topic in the field of life science, SCSit will be updated and
improved in time to accommodate more single-cell sequencing
platform data.
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5. Conclusions

SCSit, a rapid and high-efficiency preprocessing tool for single-
cell sequencing data was developed in this study. It could accu-
rately analyze SPLiT-seq raw data and labeled reads, and effectively
improved the single-cell data from SPLiT-seq platform.
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