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Background: Currently, there are no efficient therapies for Alzheimer’s disease

(AD) among the elderly, although it is the most common etiology of dementia

among the elderly. Quercetin, which has a variety of therapeutic properties,

may pave the way for novel approaches to AD treatment. In the AD patients’

frontal cortex, current study aims to identify the potential mechanisms of

quercetin’s pharmacological targets.

Materials and methods: The pharmacological targets of quercetin have been

studied from DrugBank and SwissTarget. In order to distinguish AD-associated

genes targeted by quercetin (Q-ADGs), we utilized an integrated intersection

of gene expressions of the frontal cortex in combination with transcriptome

analysis. To detect cortex-related Q-ADGs and immune-related Q-ADGs, a

drug screening database and the immune infiltration analysis was utilized.

The Q-ADGs were then linked with the AD severity scores (MMSE scores)

to find severity-associated Q-ADGs. In addition, the miRNA-seq datasets

were examined to identify severity-associated Q-ADG-miRNAs. Twelve genes,

more frequently related to AD by previous studies among all the genes

identified in the present study, were subjected to the verification of qRT-PCR

in AD cell model.

Results: In the frontal lobe of AD, 207 Q-ADGs were discovered and found

that axonogenesis, glial differentiation, and other biological processes had

been enriched. There were 155 immune-related Q-ADGs (e.g., COX2, NOS2,

HMGB1) and 65 cortex-related Q-ADGs (e.g., FOXO1, CXCL16, NOTCH3).

Sixteen Q-ADGs (e.g., STAT3, RORA, BCL6) and 28 miRNAs (e.g., miR-142-5p,

miR-17-5p) were found to be related to MMSE scores. In the qRT-PCR results,

six out of twelve genes were significantly regulated by quercetin. DYRK1A,

FOXO1, NOS2, NGF, NQO1, and RORA genes were novel target of quercetin

in AD. DYRK1A, NOS2, and NQO1 genes targeted by quercetin have benefits

in the treatment of AD. However, FOXO1, NGF, and RORA genes targeted by

quercetin might have a negative impact on AD.
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Conclusion: The role of quercetin in AD appears to be multifaceted, and it can

affect patients’ frontal cortex in a variety of pathways, such as axonogenesis,

immune infiltration, and glial cell differentiation. DYRK1A, NOS2, and NQO1

might be potential novel effective drug targets for quercetin in AD.
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Introduction

People with Alzheimer’s disease (AD) suffer gradually
declining cognitive function, personality changes, and
psychiatric symptoms. AD is the leading cause of age-
related dementia worldwide (Wang et al., 2009). There is still
uncertainty as to how AD develops, since it is a complicated
neurodegenerative disorder (Wang et al., 2018). However,
genetic changes may be prevalent causes of early-onset familial
AD (FAD), such as mutation in the presenilin or amyloid
precursor protein (APP) gene causing the most frequent
and aggressive forms of FAD (Athan et al., 2001; Dewachter
and Van Leuven, 2002; Bergmans and De Strooper, 2010).
At the genetic level, significant progress has been made in
understanding AD’s etiology (Damjanac et al., 2009; Campion
et al., 2019; Ułamek-Kozioł et al., 2020; Zhang X. et al., 2020).
To date, AD is mostly resistant to conventional therapies.
Therefore, therapeutic drug may be developed targeting
AD on the basis of pathological, biochemical and genetic
evidence.

Quercetin, a plant-derived flavonoid, has been found
as a promising antioxidant and antiinflammatory molecule
(Katsarou et al., 2000; Panicker et al., 2010). Quercetin has been
demonstrated to decrease the immune response in a variety
of immunological-related disorders, including experimental
allergic encephalomyelitis (EAE) and even infection with
COVID-19 (Muthian and Bright, 2004; Zheng et al., 2021).
Quercetin’s efficacy in treating experimental EAE is often
linked to its ability to inhibit Th1 differentiation and IL-12
signaling (Muthian and Bright, 2004). Additionally, quercetin
has therapeutic benefits on neurodegenerative illnesses by

Abbreviations: AD, Alzheimer’s disease; DYRK1A, dual specificity
tyrosine phosphorylation regulated kinase-1A; Aβ, amyloid β-peptide;
3NTyr10-Aβ, 3′-nitrotyrosine Aβ; APP, amyloid precursor protein; EAE,
experimental autoimmune encephalomyelitis; FAD, familial Alzheimer’s
disease; DEG, differentially expressed gene; CNS, central nervous
system; QGs, quercetin-associated genes; ADGs, AD-associated
genes; Q-ADGs, quercetin-associated ADGs; PPI, protein-protein
interaction; MMSE, mini-mental state examination; FOXO1, forkhead
box O1; BBB, blood–brain barrier; HPLC, high performance liquid
chromatography; DMEM, Dulbecco’s modified eagle medium; GEO,
gene expression omnibus; Treg, T regulatory; qRT-PCR, quantitative
real-time polymerase chain reaction; mTOR, mechanistic target of
rapamycin; PS1, presenilin 1; NOS2, nitric oxide synthase; NQO1,
nicotine-adenine diphosphonucleotide, quinone oxidoreductase 1.

modulating a variety of proteins including Bcl-2, PARP,
Bax, COX2, NF-kB, STAT3, chemokines, and cytokines
(Ghafouri-Fard et al., 2021; Zingales et al., 2021). Recently,
quercetin has been shown to prevent pathologies and promote
neuroprotective effect in the therapy of AD by relieving
functional and cognitive symptoms (Qi et al., 2020). In vivo
and in vitro, numerous investigations shown that quercetin
improves the clearance of aberrant proteins, such as β-
amyloid and hyperphosphorylated tau, which are important
pathologic markers of AD (Suganthy et al., 2016; Lu et al.,
2018; Qi et al., 2020). A lipophilic compound known
as quercetin penetrated the blood-brain barrier (BBB) in
experiments with animal models of degenerative diseases (M
S and C D, 2017; Orhan, 2021). This indicates quercetin
has direct effects on the central nervous system (CNS).
A number of studies have implicated quercetin in a number
of activities, including mitophagy, inhibition of microglia and
astrocyte activation, regulation of the inflammatory response
in dendritic cells, and inhibition of neuronal death (Han
et al., 2021). Given that these processes of pathophysiology
had been identified in AD patients, it was hypothesized that
quercetin may also have therapeutic benefits on AD patients’
pathogenic processes.

Recently, more and more novel approaches, such as
Connectivity Map and microarray data (Iyaswamy et al., 2020),
have been used to identify drug therapeutic targets targeting
AD. Until yet, most of previous research on AD animal
models studied on how quercetin had exerted its impact on
the metabolism of the aggregation of β-amyloid protein and
APP (Halevas et al., 2020; Yu et al., 2020). However, a lot
of AD models do not accurately mimic real illness, especially
late-onset disease. As a result, direct study on human brain
tissue is required for AD research. However, there is presently
no evidence proving quercetin’s function in AD patients’ brain
tissue. The network pharmacology provides a novel tool for
identifying successful medication components and pathways, as
well as a more complete comprehension of the pharmacological
effects of pharmaceuticals in particular disorders. Additionally,
this approach enables direct examination of brain tissue.
The network pharmacological approach was utilized in this
research to investigate the possible pharmacological targets and
mechanism of quercetin in the treatment of AD.
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Materials and methods

Study design

DrugBank and SwissTarget were used to obtain the
pharmacological macromolecular targets of quercetin (i.e.,
quercetin-associated genes, QGs). We performed an integrated
intersection of the gene expressions in frontal cortex (44 AD
patients and 59 healthy controls) to detect AD-associated genes
(ADGs) and quercetin-associated genes for AD (Q-ADGs). To
distinguish immune-related and cortex-related Q-ADGs, we
used a drug screening database and immune cell infiltration
analysis. To detect severity-related Q-ADGs, the levels of
Q-ADG expression were associated with Mini-Mental State
Exam (MMSE) scores of AD. Additionally, to distinguish
severity-related Q-ADG-miRNAs, miRNAs was predicted to
interact with severity-related Q-ADGs. The flow chart of
network pharmacology analyses is shown in Figure 1. We
employed the same method in this investigation to evaluate
frontal cortex, entorhinal cortex, and temporal cortex data.
The article’s primary material relied heavily on frontal cortical
data. Supplementary Tables 2, 3 include entorhinal cortex and
temporal cortex data. Twelve genes, more frequently related to
AD by previous studies among all the genes identified in the
present study, were subjected to the verification of qRT-PCR.

Quercetin-associated genes

PubChem (Kim et al., 2019) was used to acquire the
chemical structures of quercetin. Experimentally validated
quercetin drug targets was utilized to obtained from the
drug target database DrugBank (Wishart et al., 2018).
SwissTargetPrediction (Daina et al., 2019) was used to
screen quercetin targets based on its chemical structures, with
a probability of 1.0 implying the retrieval of an experimentally
validated bioactivity rather than a prediction. The name of
pharmacological targets was standardized by UniProt (The
UniProt Consortium, 2015). With STRING (Szklarczyk et al.,
2021), with the confidence criterion set to high confidence
and the species criterion set to Homo sapiens, a network of
protein-protein interaction (PPI) was constructed.

Alzheimer’s disease-associated genes

In this study, the microarray dataset for AD patients was
accessed from the Gene Expression Omnibus database (Barrett
et al., 2012), a worldwide repository for high-throughput
gene expression datasets. The frontal cortex was analyzed in
detail and without redundancy using two microarray datasets
(GSE48350 and GSE5281) consisting of 44 AD patients and
59 healthy counterparts. The two datasets were both from

Affymetrix Human Genome U133 Plus 2.0 Array which was
subjected to the annotation for the two datasets. Then, the two
datasets were processed by log2 transformation, merged under
no outlier values to exclude abnormal genes, subjected to batch
removal by using the ComBat function in R package sva (version
3.40.0), and quantile normalized on the linear scale using
the normalize.quantiles function in R package preprocessCore
(version 1.54.0). To identify ADGs, differentially expressed gene
(DEG) analysis was conducted between AD patients and healthy
controls. In order to correct multiple testing, the Benjamini-
Hochberg method was applied in order to carry out the
DEG analysis in the R package limma. Significant ADGs were
distinguished with the conditions of | fold change | > 1.3
and p.adj < 0.05.

Quercetin-associated Alzheimer’s
disease-associated genes

The QGs and ADGs were intersected to determine
quercetin-associated ADGs (Q-ADGs). The R package of
clusterProfiler (version 4.0.5) (Yu et al., 2012) was used to
examine these Q-ADGs for Gene Ontology (GO) analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.
The enrichment analysis employed the following parameters:
p.adj method: BH; p.adj 0.05; and significance level: Top 20. The
PPI study was performed using STRING (version 11.5). After
removing duplicates, confidence scores greater than 0.7 was
used to create the PPI network. Cytoscape’s Cytohubba plug-in
was employed to visualize hub genes from the PPI network.

Immune infiltration in the frontal
cortex

The expression matrix of immune cell subtypes in each
AD patient’s brain could be deconvolved using CIBERSORT
(Newman et al., 2019). One hundred and two samples were
selected to perform a 1,000-permutation process using the
default signature matrix in CIBERSORT to convert the gene
expressions to 22 immune cell fractions data (P < 0.05).
The correlation analysis of Pearson’s coefficient was employed
to explore the relation between the Q-ADG expression and
immune cell infiltrations in AD (P < 0.05).

Cortex-related quercetin-associated
genes and cortex-related
quercetin-associated Alzheimer’s
disease-associated genes

For a better understanding of quercetin’s direct effects on the
cerebral cortex as well as the removal of disturbances caused
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FIGURE 1

Flowchart of the effect of quercetin on AD. AD, Alzheimer’s disease; CTL, healthy control; ADGs, AD-associated genes; QGs,
quercetin-associated genes; Q-ADGs, quercetin-associated AD-associated genes.

by immune infiltration within the brain, we utilized the drug
datasets (Hadwen et al., 2018) which contains transcriptomic
data from multidrug-treated cerebrocortical cultures. As a result
of comparison of the gene expression profile before and after
quercetin administration using the drug screening database, we
identified mouse cortex-related quercetin-related genes (cortex-
related QGs) with the conditions of | Zscore | > 3 and p < 0.05
(Hadwen et al., 2018). Later, the R package biomaRt was utilized
to convert the mouse gene sets to their human counterparts.
To identify cortex-related Q-ADGs, the intersection of cortex-
related QGs and ADGs was conducted.

Undetermined quercetin-associated
Alzheimer’s disease-associated genes

Undetermined Q-ADGs were those specific Q-ADGs that
were not categorized as cortex-related Q-ADGs or immune-
related Q-ADGs. The PPI network was created using the
abovementioned criteria, and genes were analyzed using the GO
functional classification system.

Quercetin-associated Alzheimer’s
disease-associated gene expression in
clinical severity of Alzheimer’s disease

Ten AD patients were chosen with the criteria of MMSE
scores ranging 11–26, which means the clinical severity of
normal to moderate dementia. To identify severity-related
Q-ADGs, the correlation analysis of Pearson’s coefficient was
employed to investigate the relation between the MMSE
scores and Q-ADG (cortex-related Q-ADGs, immune-related
Q-ADGs and undetermined Q-ADGs) expressions (P < 0.05).

Severity-related quercetin-associated
Alzheimer’s disease-associated
genes-miRNAs

The frontal cortex miRNA sequencing dataset was
downloaded from GEO (GSE48552), consisting of 12 AD
patient. DESeq2 object was initialized from raw reads count
matrix by using readscount2deseq function in R package
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ImageGP (version 0.1.0). DEGs were acquired by using
readscount2deseq as well. Normalized expressions were
acquired by using deseq2normalizedExpr function in R
package ImageGP with log2 transformation for further analysis.
ImageGP was based on R package DESeq2. Significant ADGs
were distinguished with the conditions of | fold change | > 1.5
and p.adj < 0.05. By comparing conserved 6-mer, 7-mer, and
8-mer regions within each miRNA seed regions, TargetScan
(Lewis et al., 2005) is used to identify potential miRNAs
targeted by severity-related Q-ADGs. In the following step, to
identify the severity-related Q-ADG-miRNAs, we intersected
severity-related miRNA with potential targeted miRNAs.

Cell culturing and reagents

From the Cell Bank1 (Serial: TCR 9), a differentiated
PC12 cell line (#RRID: CVCL_F659) was purchased. We
cultured PC12 cells in high glucose Dulbecco’s modified
Eagle medium (DMEM; VivaCell, Beit Hae-mek, Israel)
containing 1% penicillin/streptomycin (Solarbio, Beijing,
China) and 10% fetal bovine serum (ExCell Bio, Shanghai,
China) at 37◦C and 5% CO2. Amyloid beta-peptide (25–
35) (Aβ25-35; 98% peptide purity) was purchased from
Chinapeptides (Shanghai, China). Quercetin (98% purity
by HPLC) was purchased from Solarbio. Aggregated
Aβ25−35 (final concentration 25 µM) (Wang and Xu, 2019)
was included in the medium with or without quercetin
(final concentration 80 µM) in the PC12 cell for 24 h
(Yu et al., 2020).

Quantitative real-time polymerase
chain reaction

An RNA isolation reagent (CAT: G3013) was used
to isolate total RNA from PC12 cell line. Based on the
manufacturer’s instructions, RNA was reverse transcribed
into cDNA using a RT First Strand cDNA Synthesis Kit
(CAT: G3330). Twelve genes, more frequently related to AD
by previous studies among all the genes identified in the
present study, were subjected to the verification of qRT-
PCR (Supplementary Table 9). QRT-PCR was carried out
using 2 × SYBR Green qPCR Master Mix (None ROX)
(CAT: G3320) with primers. The 2−11Ct method was used to
quantify mRNA relative expression levels with GAPDH as the
internal control. All reagents were purchased from Servicebio
(Wuhan, China). At least three independent experiments with
triplicate samples are required for statistical analysis of qRT-
PCR data.

1 https://www.cellbank.org.cn/search-detail.php?id=256

Statistical analysis

Correlation analyses were under the Pearson correlation.
R > 0.7 denoted a very high linear correlation, 0.5 < R ≤ 0.7
a substantial linear correlation, 0.3 < R ≤ 0.5 a weak linear
correlation, and R≤ 0.3 denoted no linear connection. For non-
normal distributions, the Mann-Whitney test was used instead
of unpaired t-tests. Results were shown as mean± SEM. mRNA
relative levels were demonstrated on linear scale as 2−11CT

means± SEM. P < 0.05 was considered statistically significant.

Results

Quercetin-associated genes

A total of 59 verified pharmacological targets for quercetin
were found using the SwissTarget database and 32 using the
DrugBank database. As shown by the PPI network, 2400
proteins interacting with the drug targets were discovered and
named QGs (Supplementary Table 1).

Alzheimer’s disease-associated genes

Compared to a healthy control group, we found 3,285
ADGs in the frontal cortex of AD patients. Among these
genes, 1,624 of them were upregulated, and 1,661 of them
were downregulated (Supplementary Table 2). Simultaneously,
the same analysis was conducted on data from AD patients’
temporal and entorhinal cortexes (Supplementary Table 2 and
Supplementary Figure 1).

Quercetin-associated-Alzheimer’s
disease-associated genes

In the frontal cortex, 207 genes were QGs (116 upregulated
and 91 downregulated) among the 2,287 ADGs detected.
As a result, these QGs were quercetin target and were
named Q-ADGs. In the PPI network, 619 interacting
edges were formed, containing 207 Q-ADGs (Figure 2
and Supplementary Table 3).

Gene ontology and kyoto encyclopedia
of genes and genomes pathway of
quercetin-associated-Alzheimer’s
disease-associated genes

We identified 207 Q-ADGs in the frontal cortex,
whose biological processes were enriched in, for example,
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FIGURE 2

Drug targets of quercetin and quercetin-associated Alzheimer’s disease-associated genes (Q-ADGs). (A) As compared with healthy controls, the
volcano plot illustrates the differentially expressed genes (DEGs) in the frontal cortex of AD patients. Red highlights indicate genes that have
been upregulated significantly. Blue highlights indicate genes that have been downregulated significantly. Gray colors indicate genes that are
unchanged. (B) QGs, ADGs, and Q-ADGs are demonstrated in Venn diagram. (C) Q-ADGs interact with each other in the PPI network whose
each node represents a Q-ADG.

axonogenesis, glial cell differentiation, gliogenesis, axon
guidance, neuron projection guidance. Additionally, these
Q-ADGs enriched in KEGG pathways such as MAPK
signaling pathway, PI3K-Akt signaling pathway, axon
guidance, and neurotrophin signaling pathway (Figure 3
and Supplementary Table 4).

Immune-related
quercetin-associated-Alzheimer’s
disease-associated genes

In the frontal cortex, compared with healthy controls, AD
patients had higher B cells naive, Monocytes, Macrophages
M1, T cells follicular helper, and Mast cells resting infiltration,
while lower B cells memory, T cells CD4 naïve and Dendritic
cells activated infiltration (Figure 4). We found that eight
types of immune cells were related to 155 Q-ADG in different
ways after correlating Q-ADG expressions with immune
cells scores measured by CIBERSORT (Supplementary
Table 5). T cells CD4 naïve and T cells follicular helper

had the most of the number of Q-ADGs, with 89 Q-ADGs
and 82 Q-ADGs respectively. Thirty-nine Q-ADGs that
showed a correlation with Dendritic cells activated. However,
respectively, there are six, one, six, eight, and four Q-ADGs
correlated with B cells naïve, Monocytes, Macrophages
M1, B cells memory, and Mast cells resting. Among 155
Q-ADGs, 17 Q-ADGs such as STAT3, SMAD3, RAF1,
CD81, RORA, ABL1, and HDAC9, correlated with more
than three types of immune cells. These results proposed
that quercetin may have an important and direct role in
regulating immune infiltration, and was more likely to be
responsible for regulation of neutrophil infiltration in the
frontal lobe of AD.

Cortex-related
quercetin-associated-Alzheimer’s
disease-associated genes

A total of 227 cortex-related QGs were identified
(Supplementary Table 6), such as DYRK1α, nqo1 and
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FIGURE 3

Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of quercetin-associated Alzheimer’s disease-associated
genes (Q-ADGs). (A) Bar plot shows GO enrichment of Q-ADGs. (B) Chord plot shows the genes are linked via ribbons to their assigned GO
terms. (C) Dot plot shows KEGG pathways of Q-ADGs. (D) Chord plot shows the genes are linked via ribbons to their assigned KEGG pathways.

NGF. We intersected ADGs with cortex-related QGs, and
at last found 65 cortex-related Q-ADGs, which was then
utilized to conduct the PPI analysis. The PPI network

demonstrated that NOTCH3, FOXO1, DNAJC3, CAT, GSR,
and ID2 played a critical role in the network, indicating
that these core genes might be important targets of
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FIGURE 4

Immune-related quercetin-associated Alzheimer’s disease-associated genes (Q-ADGs). (A) The Violin plot illustrates the infiltration of immune
cells in AD patients’ frontal cortex. (B) Analysis of the correlation between immune cells signals and the expressions of upregulated Q-ADGs.
The correlation coefficient is represented by the size of the dots, and the larger the point, the greater the correlation coefficient. (C) Analysis of
the correlation between immune cells signals and the expressions of downregulated Q-ADGs. The correlation coefficient is represented by the
size of the dots, and the larger the point, the greater the correlation coefficient.

quercetin that acted directly in the AD patients’ frontal
cortex. According to the GO analysis, response to hydrogen
peroxide, protein folding in endoplasmic reticulum, response
to reactive oxygen species and other biological processes were
enriched within the cortex-related Q-ADGs (Figure 5 and
Supplementary Table 6).

Undetermined
quercetin-associated-Alzheimer’s
disease-associated genes

VEGFA, CDK1, and TGFB1 were identified as core genes in
the PPI network of 50 undetermined Q-ADGs, indicating that
it is possible that quercetin regulates these functionally related
genes as well. In addition to the undetermined Q-ADGs, KEGG
pathways analysis demonstrated that these genes were enriched

in the pathways such as NF-kappa B signaling pathway, MAPK
signaling pathway, and apoptosis (Figure 6).

Severity-related
quercetin-associated-Alzheimer’s
disease-associated genes

To collect the correlation between Q-ADGs and the MMSE
scores (11–26) of 10 AD patients, severity-related Q-ADGs
were identified from 23 Q-ADGs with strong correlations
to MMSE scores. Among the severity-related Q-ADGs, such
as STIP1, FSTL1, HSP90B1, ITGA9, MAFG, and SYNPO2
had a positive correlation with the clinical severity of AD
(negative correlation with the MMSE scores), while STK39,
VASH1, and FZD5 had negative correlation with the severity.
Among the immune-related Q-ADGs, STAT3, IRS2, HSPB1,
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FIGURE 5

Cortex-related quercetin-associated Alzheimer’s disease-associated genes (Q-ADGs). (A) ADGs, cortex-related QGs, and cortex-related
Q-ADGs are shown in Venn diagram. (B) Cortex-related Q-ADGs interact each other are shown in the PPI network. (C) GO enrichment analysis
shows the biological process of cortex-related Q-ADGs.

RORA, CEBPB, BCL6, SDC4, and HIF3A had a positive
correlation with the clinical severity of AD, while RFC3,
RRAGB, and SMC2 had negative correlation with the severity.
Among the undetermined Q-ADGs, CEBPD and KLF6 had a
positive correlation with the severity of AD, while USF1 had
negative correlation with the clinical severity (Figure 7 and
Supplementary Table 7).

Severity-related
quercetin-associated-Alzheimer’s
disease-associated genes-miRNAs

Compared with the early stage of AD, in the frontal cortex,
203 miRNAs (169 upregulated and 94 downregulated) were
identified to be differently expressed in the late stage. These
miRNAs had a correlation with AD severity. There were 38

AD severity-related miRNAs (miR-223-3p, miR-17-5p, miR-
26b-5p, etc.) have been identified which target 18 genes (STAT3,
IRS2, KLF6, etc.) out of the 23 severity-related Q-ADGs in the
group with MMSE scores ranging from 11 to 26 (Figure 8 and
Supplementary Table 8).

Quercetin regulates gene expressions
in Alzheimer’s disease cell model

In the PC12 cell model of AD, 12 selected genes more
frequently referred to AD by previous studies among all the
genes identified by network pharmacology, DYRK1A, FOXO1,
NOS2, NGF, NQO1, NOTCH3, BCL6, HMGB1, KEAP1,
RORA1, STAT3, and CXCL16, were detected by the qRT-PCR
with or without 80 µM quercetin. The primer sequences for
qRT-PCR were shown in Supplementary Table 9. Quercetin
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FIGURE 6

Undetermined quercetin-associated Alzheimer’s disease-associated genes (Q-ADGs). (A) PPI network of undetermined Q-ADGs. (B) The
pathways of undetermined Q-ADGs are shown in KEGG enrichment analysis.

FIGURE 7

Severity-related quercetin-associated Alzheimer’s disease-associated genes (Q-ADGs). (A) Cortex-related Q-ADGs, (B) immune-related
Q-ADGs, and (C) undetermined Q-ADGs. Analysis of the correlation between MMSE scores (11–26) and Q-ADG expressions. On the x-axis,
MMSE scores are displayed. On the y-axis, gene expression levels are displayed. Every sample is shown as a blue dot representing the level of
expression of key genes.
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FIGURE 8

Network of severity-related quercetin-associated Alzheimer’s disease-associated gene (Q-ADG)-miRNAs. The red shapes of V represent
upregulated miRNAs in late stage of AD; the green shapes of V represent downregulated miRNAs in late stage of AD; and the blue circles
represent the upregulated mRNA with the developing of AD.

significantly downregulated the mRNA levels of DYRK1A,
FOXO1, NOS2, NGF, and RORA while quercetin significantly
upregulated NQO1 mRNA level (Figure 9). The expression
levels of the remaining 6 genes were not affected by quercetin.

Discussion

In the elderly, as the most prevalent type of dementia,
AD presents a number of challenges to those who suffer
from it (Babatope et al., 2021). Quercetin was recently
found to be an anti-inflammatory, antioxidant, analgesic, and
perhaps therapeutic agent for COVID-19 in the prevention
and neuroprotection of histopathology in AD animal models,
but its efficacy in human brain tissue has not been established
(Saeedi-Boroujeni and Mahmoudian-Sani, 2021). The purpose
of this research was to develop network pharmacology to
discover potential quercetin medication targets in the CNS
of AD patients. We discovered that quercetin may ameliorate
pathological events by altering astrocytes, microglia, the
infiltration of B cells naive, T cells follicular helper, Monocytes,
Macrophages M1, Mast cells resting, B cells memory, T cells
CD4 naïve and Dendritic cells activated in the frontal cortices,
biological process of axonogenesis, glial cell differentiation,
gliogenesis, axon guidance, neuron projection guidance, KEGG

pathway of MAPK signaling pathway, axon guidance, PI3K-
Akt signaling pathway, neurotrophin signaling pathway, and
miRNA interactions, among others (Figure 10).

DYRK1A gene was involved in neuronal development
and serves a number of functions in the adult CNS (Park
et al., 2012; Smith et al., 2012; Pathak et al., 2018). DYRK1A
mRNA and protein level were significantly upregulated in AD
patients brains, including in the hippocampus (Kimura et al.,
2007; Velazquez et al., 2019). DYRK1A overexpression may
contribute to the synaptic dysfunction and cognitive decline
in AD and Down syndrome patients (Park et al., 2012; Smith
et al., 2012; Pathak et al., 2018). By phosphorylating PS1
and reducing phosphatidylcholine concentrations, upregulated
DYRK1A may contribute to AD pathogenesis (Ryu et al.,
2010; Hijazi et al., 2017). Up-regulated DYRK1A downregulate
neprilysin which was a major Aβ-degrading enzyme to reduce
the pathological process of Aβ aggregation in AD (Kawakubo
et al., 2017). DYRK1A increased phosphorylation of tau, APP,
and PSEN1, which are three key proteins in AD pathologic
process (Wegiel et al., 2011; Branca et al., 2017). In several
experimental models of systemic autoimmunity and mucosal
inflammation, T regulatory cells (Treg) induced by DYRK1A
inhibitors significantly reduced inflammation (Khor et al.,
2015). Normalizing DYRK1A gene expression in a mouse model
improves numerous AD phenotypes (García-Cerro et al., 2017).
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FIGURE 9

Quercetin regulates gene expressions in the PC12 cell model of AD. QRT-PCR detects the mRNA expressions of DYRK1A (A), FOXO1 (B), NOS2
(C), NGF (D), NQO1 (E), NOTCH3 (F), BCL6 (G), HMGB1 (H), KEAP1 (I), RORA1 (J), STAT3 (K), and CXCL16 (L) genes in the Control
(Aβ25−35 + saline solution) and Quercetin (Aβ25−35 + quercetin) groups. *P < 0.05; **P < 0.01; ***P < 0.001.

The qRT-PCR results in the present study have revealed
that quercetin significantly downregulated DYRK1A mRNA
expression in AD cell model (p < 0.005) (Figure 9A). Inhibition
of DYRK1A hyperactivity in AD by quercetin in the brain may
pave the way for therapies on cognitive decline in AD patients
(Smith et al., 2012; Branca et al., 2017; Pathak et al., 2018).

Oxidative stress and AD are linked together by forkhead
box O1 (FOXO1) (Paroni et al., 2014; Zhang W. et al., 2020).
FOXO1 overexpression reduced both tau phosphorylation and
Aβ expression (Zhang W. et al., 2020). FOXO1 has been shown
to activate autophagy by suppressing mTOR (Zhao et al., 2010).

A signaling pathway involving IL-7/CD127 was activated by
FOXO1, which enhanced Treg cell proliferation (Cai et al.,
2017). FOXO1 overexpression reduces inflammation and boosts
anti-oxidative capability (Huang et al., 2019). However, contrary
to the result in decidualized endometrial stromal cells (Kusama
et al., 2021), we found that quercetin significantly decreases
FOXO1 mRNA level in AD cell model (p < 0.005) (Figure 9B),
which indicates that FOXO1, downregulated by quercetin, may
play a bad role.

In AD, the inducible form of nitric oxide synthase (NOS2)
was increased (Kummer et al., 2012). There has been a
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FIGURE 10

The pharmacological mechanism of quercetin in Alzheimer’s disease (AD) patients is depicted in a schematic diagram. In AD patients,
severity-related quercetin-associated AD-associated genes (Q-ADGs) are shown in the red ellipses; the blue ellipses show Q-ADGs which are
not associated to MMSE scores; and miRNAs are shown in the green shapes of V.

connection between NOS2 and the risk of AD or dementia
associated with Lewy bodies (Singleton et al., 2001). The
activation of the inducible NOS2, which results in increased NO
production, which partly leads to the inflammatory response
in AD (Kummer et al., 2011). NOS2 isoforms associated with
inflammation in brain glial cells are believed to contribute to
neurological disorder etiology and progression (Murphy et al.,
2002). There was a significant TH17 immune response increase,
along with matrix metalloproteinase-9 expression, associated
with increased expression of inducible NOS2 (Sodenkamp et al.,
2011). NOS2-specific inhibitors diminish inflammation in mice
(Weinberg, 2000). The qRT-PCR results in the present study
have revealed that quercetin significantly downregulated NOS2
mRNA expression in AD cell model (p < 0.05) (Figure 9C).
There was a significant reduction in the amount of 3’-
nitrotyrosine Aβ (3NTyr10-Aβ), overall Aβ deposition and
cognition impairments in APP/PS1 animals with a NOS2
deficiency or with oral therapy with the NOS2 inhibitor
(Kummer et al., 2011; Irwin et al., 2016).

NQO1, having antioxidant and anti-inflammatory function
(SantaCruz et al., 2004; Mokarizadeh et al., 2020), is declined
in AD patients’ and mice’s brains (Torres-Lista et al., 2014;
Osama et al., 2020; Wang et al., 2020). The NQO1 produces anti-
oxidative types of ubiquinone and vitamin E, which contribute
to antioxidant protection as well as dopaminergic neuronal
tolerance to chronic oxidative damage (Ross et al., 2000;
Xu et al., 2019). NQO1 is modulated by Nrf2 gene which

contributes to the maintenance of cellular redox homeostasis,
regulates inflammation and provides neuroprotection against
both Aβ and p-tau (Osama et al., 2020). The qRT-PCR results
in the present study have revealed that quercetin significantly
upregulated NQO1 mRNA expression in AD cell model
(p < 0.001) (Figure 9E). Increased NQO1 activity may be
neuroprotective for AD patients (Osama et al., 2020).

In PC12 cells, Nerve growth factor (NGF) increases APP
mRNA levels through a process that most likely includes Ras
activation, and is likely regulated by particular APP promoter
sequences (Villa et al., 2001). In AD patients, NGF level is
markedly higher in cerebrospinal fluid (CSF), and cholinergic
neuron target areas such as the hippocampus and cortex (Hock
et al., 2000; Fahnestock et al., 2001; Du et al., 2018). The qRT-
PCR results in the present study have revealed that quercetin
significantly downregulated NGF mRNA expression in AD cell
model (p < 0.05) (Figure 9D). Although some studies suggested
that NGF prevented cholinergic degeneration and memory
deficits (Wu et al., 2004; Fjord-Larsen et al., 2010), proper
reduction of the hyperactive NGF by quercetin in AD might
benefit for AD patients.

Three immune cells demonstrated significant differences via
immune infiltration analysis: T cells CD4 naïve, T cells follicular
helper, and Dendritic cells activated. Respectively, 101 gene
targets were related to immune cells among immune-related
Q-ADGs. Up-regulated genes (STAT3, etc.) were positively
correlated with T cells CD4 naïve, and negatively correlated with
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T cells follicular helper and Dendritic cells activated. On the
opposite, down-regulated genes (SMAD3, etc.) were negatively
correlated with T cells CD4 naïve, and positively correlated
with T cells follicular helper and Dendritic cells activated.
We proposed that these up- or down-regulated genes had a
more direct association with immunological infiltration. COX-
2 is increased and has been confirmed to participate in the
pathogenesis of AD. These up- or down-regulated genes were
consistent with the increase of the astrocyte-associated genes
in the brain of AD patients in comparison with controls. An
immune cell-regulated enzyme in the brain, cyclooxygenase-2
(COX-2), is produced in neuron as a result of synaptic excitatory
activity and inflammation (Woodling et al., 2016). Furthermore,
COX-2 can be downregulated by quercetin (Srivastava and
Srivastava, 2019). Therefore, by targeting COX-2, quercetin
might regulate immune infiltration in the CNS. It is required
for the innate immune response against inflammation to be
initiated by ROR-alpha (RORA), a transcription factor of
nuclear receptors (García et al., 2015). RORA expression is
distinctly upregulated in the AD brain (Acquaah-Mensah et al.,
2015), consistent with our study the trend of RORA being
present in the brain at higher levels in late stage of AD than in
early stage of AD. Furthermore, we found RORA was negatively
associated with AD clinical severity (MMSE 11-26) (Figure 7B).
Overexpression of RORA ameliorated inflammatory damage
in the mouse models (Oh et al., 2019). However, the qRT-
PCR results in the present study have revealed that quercetin
significantly downregulated RORA mRNA expression in AD
cell model (p < 0.05) (Figure 9J), which may have a negative
impact on AD pathological process via the enhancement of
immune response.

In many neurodegenerative diseases, such as AD and
Parkinson’s disease, glia dysfunction contributes to CNS
pathology. Neuroinflammation generated by hyperactive glia
cells is a significant feature of AD and a possible target for
therapy (An et al., 2020). Gene Ontology analysis indicated
glial cell differentiation is a significant biological process, where
quercetin may exert pharmacological effects.

In the present study, Severity-related Q-ADGs and Severity-
related Q-ADG-miRNAs were divided into the part of the
normal to moderate dementia group (MMSE 11–26), or severe
dementia group (MMSE 0–10) was excluded, because we
believe patients with severe dementia may be disturbed by
other complex basic diseases, such as cerebrovascular disease,
infections, cardiovascular disease, and metabolic diseases, which
might exert a higher influence on gene expressions than the
pathologies of AD. Otherwise, rather than the whole course
of AD, the association between Q-ADG expression levels and
AD severity may arise only during certain illness episodes. For
example, in the early stages of AD, some genes may correlate
favorably with clinical severity, but they might not correlate, or
they might be negatively correlated, in the intermediate or late
stages. As a result, a stratified analysis of AD patients at various

phases of the illness should be conducted in the grounds of a
thorough assessment of MMSE scores.
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