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Abstract: The distribution of total electron content (TEC) in the ionosphere is irregular and complex,
and it is hard to model accurately. The polynomial (POLY) model is used extensively for regional
ionosphere modeling in two-dimensional space. However, in the active period of the ionosphere, the
POLY model is difficult to reflect the distribution and variation of TEC. Aiming at the limitation of
the regional POLY model, this paper proposes a new ionosphere modeling method with combining
the support vector machine (SVM) regression model and the POLY model. Firstly, the POLY model is
established using observations of regional continuously operating reference stations (CORS). Then
the SVM regression model is trained to compensate the model error of POLY, and the TEC SVM-P
model is obtained by the combination of the POLY and the SVM. The fitting accuracies of the models
are verified with the root mean square errors (RMSEs) and static single-frequency precise point
positioning (PPP) experiments. The results show that the RMSE of the SVM-P is 0.980 TECU (TEC
unit), which produces an improvement of 17.3% compared with the POLY model (1.185 TECU).
Using SVM-P models, the positioning accuracies of single-frequency PPP are improved over 40%
compared with those using POLY models. The SVM-P is also compared with the back-propagation
neural network combined with POLY (BPNN-P), and its performance is also better than BPNN-P
(1.070 TECU).
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1. Introduction

The ionosphere is a part of Earth’s upper atmosphere, which is ionized by solar radiation and
contains a large number of free electrons. These free electrons are sufficient to affect the radio
propagation and cause ionospheric delays of global navigation satellite system (GNSS) signals, which
are the main sources of errors in GNSS applications. They seriously affect the performance of navigation
and positioning, and must be effectively reduced or eliminated [1]. With the development of GNSS
technology and construction of ground-based GNSS stations, GNSS brings great opportunities for the
development of the ionosphere research. GNSS has become one of the most important methods of
ionospheric monitoring, with high accuracy, wide range, and continuous operation [2].

Total electron content (TEC) is an important parameter to describe the characteristics of the
ionosphere. The establishment of the ionosphere model based on GNSS data can effectively characterize
the distribution and variation of TEC in the region [3,4]. Therefore, the accuracy of the ionosphere
model directly affects the receiver positioning performance [5–7]. The two-dimensional polynomial
(POLY) model is most commonly used in ionospheric fitting, which can obtain a good accuracy with
enough date in the stable period of the ionosphere. However, due to the complex ionospheric changes,
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it is difficult to obtain high-accuracy in a wide range of the region. Therefore, how to improve the
capability of the ionosphere model is the focus of current research.

In the past two decades, artificial neural networks(ANN) have been widely used in ionosphere
research and have shown good results in ionospheric modeling, tomography, and prediction [8–10].
Many scholars have conducted researches on the application of ionosphere with ANN and made many
research achievements. Habarulema [11] used the back propagation neural network (BPNN) method
to construct a regional TEC model using a single station observation in turn, which is suitable for
small areas. McKinnell [12] established a high-latitude ionospheric prediction model by selecting the
optimal NN training parameters. Fan [13] proposed a vertical total electron content (VTEC) model
based on generalized regression neural network (GRNN) with high extrapolation accuracy. Hu [14]
proposed a fusion model of the VTEC combined two-dimensional model and BPNN. Ghaffari [15]
applied the wavelet neural network(WNN) and particle swarm optimization (PSO) algorithm to the
ionospheric tomography in the Iranian region. Although many scholars have done a lot of research on
neural networks, there are still many problems in the ANN, such as the choice of network parameters,
the setting of the network structure, and the uncertainty of the output results.

Support Vector Machine (SVM) is one machine learning algorithm based on the principle
of structural risk minimization and VC dimension (Vapnik Chervonenkis dimension) theory for
classification, regression, and other learning tasks. SVM was first proposed by Vapnik [16] in 1995 and
has been used in text categorization, pattern recognition, cluster analysis, etc. SVM can use training
samples effectively and has great generalization ability [17–19]. SVM provides a method to construct a
mapping into a higher-dimensional feature space by using a kernel function, such as linear, polynomial,
sigmoid, and radial basis function(RBF). At present, in the ionosphere field, the SVM algorithm is
mostly used to solve the ionosphere prediction problem [20,21]. Ban [22] used the SVM algorithm to
establish the low-latitude storm ionosphere foF2 model, which can detect the ionospheric disturbance
better and has improved compared with the empirical model. Akhoondzadeh and Liu used SVM to
analyze the TEC time series before and after the earthquake, and proved the effectiveness of SVM
in seismic anomaly detection [23,24]. However, there is little research on using SVM for ionosphere
modeling correction.

This paper proposes an SVM-based ionosphere model (SVM-P) aiming at the problem of
high-accuracy modeling of the ionosphere, considering the limited accuracy of the 2D TEC model and
the good nonlinear regression performance of the SVM. Based on the POLY model, the SVM regression
is used to establish the TEC error prediction for model correction and optimizing the model accuracy.
The accuracy of the SVM-P model is analyzed by GNSS data from continuously operating reference
stations (CORS), compared to the POLY model and BPNN-POLY (BPNN-P) model. The effectiveness
of the method is verified by the single-frequency PPP method.

The rest of this paper is organized as follows: Section 2 describes the principle of ionosphere
POLY model and SVM regression. In Section 4, the process of modeling with SVM and POLY are
introduced. In Section 3, the modeling performance for POLY, SVM-P, and BPNN-P are analyzed by
model accuracy and single-frequency PPP. The discussion and conclusion will be given in Sections 4
and 5, respectively.

2. Materials and Methods

2.1. Ionosphere Polynomial Model

According to the dispersion characteristics of the ionosphere, the ionospheric errors caused by
GNSS signal delay are related to frequencies. Using the dual-frequency receiver, the ionospheric TEC



Sensors 2019, 19, 2947 3 of 14

can be extracted via a linear combination of observations [15], and the phase smoothing pseudo-range
method is used to reduce the observation noise, which can be expressed as:

VTEC =
f 2
1 f 2

2

40.28m f
(

f 2
1 − f 2

2

) (P4 + br + bs) (1)

where, VTEC represents vertical total electron content, f1 and f2 represent carrier frequencies, m f
represents mapping function, P4 represents pseudo-range observation difference by smoothing, where
P4 = P2 − P1, P1 and P2 represent dual-frequency pseudo-range observations, br and bs represent
code biases of receiver and satellite respectively. Code bias can be considered as a constant in 1–2
days [25,26], which are corrected by the previous day’s estimation in this paper.

It is generally assumed that all free electrons are all distributed in a thin shell of height H when
modeling ionosphere using a 2D surface. In this paper, H is valued by 350 km. The location of the
GNSS signal across the ionospheric shell is called the ionospheric pierce point (IPP) and is represented
by geographic latitude and longitude [27]. Based on the VTEC observation of the CORS, the latitude,
and longitude of the IPPs, a regional ionospheric VTEC PLOY model is represented as following [28]:

VTEC =
m∑

i=0

n∑
k=0

ai,k(ϕ−ϕ0)
i(S− S0)

k (2)

where, m and n are the maximum degrees, ai,k(i = 0, 1, . . . , m; k = 0, 1, . . . , n) are the (unknown)
coefficients, S is sun angle at time t, S − S0 = (λ− λ0) + (t− t0), ϕ and λ represent latitude and
longitude of IPPs, ϕ0 and λ0 are the coordinates of the origin of the polynomial, which are the region
center generally.

2.2. Support Vector Machine

In this section, we will briefly introduce the principles and methods of SVM applied to regression
problems. SVM shows good performance in classification and is considered easier to use than neural
networks. Extending classification to regression issues, SVM has a similar structure with neural
networks [29]. The process of the SVM training is shown in Figure 1.
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Figure 1. Support Vector Machine (SVM) algorithm structure: the feature vectors are input parameters 
and the target is the output parameter. 
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separable, they are mapped to the higher-dimensional feature space by the nonlinear mapping 
function 𝜑(𝒙). The regression function can be converted to a convex optimization problem [30]. 
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Figure 1. Support Vector Machine (SVM) algorithm structure: the feature vectors are input parameters
and the target is the output parameter.

Given a training set D =
{
(x1, y1), (x2, y2), . . . , (xN, yN)

}
, xi ∈ Rd, yi ∈ R, where x is the

d-dimensional feature vector, y is 1-dimensional target value. Due to the samples are not linearly
separable, they are mapped to the higher-dimensional feature space by the nonlinear mapping function
ϕ(x). The regression function can be converted to a convex optimization problem [30].

f (x) = ω ·ϕ(x) + b (3)
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min
1
2
‖ω‖2 + C

N∑
i=1

(
ξ∨i + ξ∧i

)
(4)

subject to: 
−ε− ξ∨i ≤ yi −ω ·ϕ(xi) − b ≤ ε+ ξ∧i

ξ∨i ≥ 0
ξ∧i ≥ 0

(5)

where ω is the normal vector to the hyperplane, ‖·‖ represents L2 matrix norm, ξ∨i and ξ∧i are the
lower and upper boundary of slack variables, C is the penalty factor, and ε is the allowable error level
of ε-Insensitive the loss function. The dimensions of ϕ(x) and ω are determined by kernel function.
Adding the Lagrangian multiplier, the optimization problem described by Equation (4) is transformed
into a dual problem. By solving the dual problem, the regression solutions are represented as follows:

f (x) =
nSV∑
i=1

(
a∧i − a∨i

)
K(xi, x) + b (6)

K(xi, x)=<ϕ(xi),ϕ(x)>= exp
(
−γ‖x− xi‖

2
)

(7)

where nSV denotes the number of support vectors, a∨i and a∧i Lagrangian multiplier, K(xi, x) indicates
kernel function, γ is kernel parameter. In this paper, the RBF kernel is adopted [31] as Equation (7),
which replaces the inner product operation in higher-dimensional space, simplifies the approximation
process of nonlinear regression and reduces the amount of computation.

2.3. Support Vector Machine (SVM) for Ionosphere Model Correction

Based on the ionosphere POLY model, this paper proposes an SVM-based ionosphere model
correction method named SVM-P. The SVM regression is used to establish an error prediction model to
correct POLY. The specific implementation steps are shown in Figure 2.
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Figure 2. The flow chart of the Support Vector Machine polynomial (SVM-P) modeling process.

2.3.1. Establish the Ionosphere Polynomial Model

Using the dual-frequency ionospheric TEC observations of the CORS, the regional ionosphere
POLY model is established according to Equation (2). In this paper, the maximum order of the POLY is
selected: m = n = 2, and 9 model coefficients (a0,0, a0,1, . . . , a2,2) need to be solved. For convenience,
we use p1, p2, . . . , p9 to represent the position parameters (1, ∆ϕ, ∆S, ∆ϕ2, ∆S2, ∆ϕ∆S, ∆ϕ2∆S, ∆ϕ∆S2,
∆ϕ2∆S2) of IPPs, where ∆ϕ = ϕ−ϕ0, ∆S = S− S0. The POLY model and its residual of each IPPs can
be calculated as follows:

VTECPOLY,i = fPOLY(p1,i, p2,i, · · · , p9,i) = a0,0p1 + a0,1p2,i + a1,0p3,i + · · ·+ a2,2p9,i (8)
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vPOLY,i = VTECobs,i −VTECPOLY,i (9)

where i = 1, 2, . . . , N represents the number of training samples, VTECPOLY is the VTEC of IPP
calculated by POLY, VTECobs is the VTEC observation, which is used as a true value in this paper,
vPOLY is the residual of POLY. According to the least square criterion, the coefficients can be solved to
establish the POLY model.

2.3.2. Support Vector Machine (SVM) Regression for Residuals

The training samples are constructed to obtain the SVM regression model. The input parameters
include: 1 VTEC value of POLY(VTECPOLY) and 8 IPPs’ position information p2, p3, . . . , p9. The output
target is the residual of the POLY model (vPOLY). Since the SVM regression model is nonlinear and
cannot be expressed by a certain function, it is assumed that the regression function is represented
as follow.

Epre = FSVM(VTECPOLY, p2, p3, p4, p5, p6, p7, p8, p9) (10)

where, FSVM represents SVM regression function, Epre represents the prediction of POLY model residual
from SVM regression, which is the correction for POLY. When the training of SVM is over, we will get
an SVM regression function in the whole region.

2.3.3. Support Vector Machine Polynomial (SVM-P) for Ionospheric Delay Correction

According to the trained SVM regression, the Epre can be calculated to correct POLY. Combined
with the VTECPOLY form POLY model, the prediction value of VTEC VTECSVM−P is expressed as:

VTECSVM−P = VTECPOLY + Epre (11)

By Equations (8), (9), and (11), the ionospheric delay correction VTECSVM−P can be obtained in
any position of IPP via the SVM-P model.

3. Experiments and Results

3.1. Data Processing

The training and test datasets are collected from CORS of Jiangsu Province (JSCORS), China,
which include 1-day observations of 74 stations in DOY 324, 2010 (interval 30 s). The distribution
of stations shown in Figure 3. 60 stations represented by the blue triangle (called training stations)
are used for ionosphere modeling and SVM training. Distributing evenly throughout the region, 14
stations represented by the red star (called test stations), which do not participate in modeling and
training, are used to test the accuracies of the models. Two stations numbered 32 and 50 (BTRD and
GTBH), a part of test stations, are used for single-frequency PPP positioning experiments.
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Firstly, the training data is used for regional POLY modeling and to solve the POLY’s coefficients,
and the 23 hourly models are obtained (from 1:00 to 23:00, 0:00 and 24:00 are excluded). Then calculate
the model residual vPOLY. Combine the residual vPOLY, the POLY model value VTECPOLY, and the
position information of the IPP to constitute training samples. Part of the training samples are shown in
Table 1. Next, the SVM regression is used for the error prediction. Finally, calculate the error prediction
value Epre and the SVM-P model value VTECSVM−P. The VTEC time series in the regional center zenith
direction are calculated by the POLY model and the SVM-P model, compared with the International
GNSS Service (IGS) ionospheric product, as shown in Figure 4.

Table 1. Part of Support Vector Machine (SVM) training samples.

No.
Target Input Parameters

vPOLY VTECPOLY ∆ϕ ∆S ∆ϕ2 ∆S2 ∆ϕ∆S ∆ϕ2∆S ∆ϕ∆S2 ∆ϕ2∆S2

1 −2.585 15.570 −0.075 −1.434 0.006 2.055 0.107 −0.008 −0.153 0.011
2 1.470 17.096 −1.473 1.628 2.171 2.651 −2.399 3.535 −3.906 5.755
3 −0.377 13.025 2.168 6.113 4.699 37.373 13.252 28.727 81.015 175.620
4 −1.372 15.359 −0.364 3.887 0.133 15.112 −1.415 0.515 −5.502 2.003
5 0.361 12.802 3.166 −2.952 10.025 8.712 −9.345 −29.589 27.583 87.332
6 −0.825 16.234 −1.208 −1.319 1.459 1.739 1.593 −1.924 −2.101 2.537
7 −0.225 13.928 1.640 −2.500 2.688 6.248 −4.098 −6.718 10.243 16.793
8 2.427 16.083 0.283 0.578 0.080 0.335 0.164 0.046 0.095 0.027
9 0.313 12.459 3.919 5.080 15.360 25.804 19.909 78.027 101.131 396.357

10 −0.262 15.005 1.413 2.878 1.998 8.282 4.067 5.749 11.705 16.543
11 0.162 11.574 4.701 −3.926 22.095 15.413 −18.454 −86.742 72.450 340.549
12 −0.691 17.145 −3.044 −1.110 9.264 1.233 3.379 −10.285 −3.752 11.419
13 0.407 14.961 −0.223 −2.317 0.050 5.370 0.516 −0.115 −1.196 0.267
14 1.585 17.264 −1.592 0.720 2.535 0.518 −1.146 1.825 −0.825 1.314
15 0.264 13.575 2.122 5.224 4.502 27.294 11.085 23.521 57.913 122.881
16 0.292 16.030 −0.464 2.978 0.215 8.867 −1.381 0.641 −4.113 1.908
17 −0.177 12.502 2.972 −3.837 8.833 14.725 −11.405 −33.895 43.764 130.068
18 −1.153 16.146 −1.886 −1.744 3.557 3.041 3.289 −6.202 −5.735 10.816
19 −1.420 13.952 0.934 −2.940 0.873 8.642 −2.746 −2.566 8.074 7.543
20 0.787 16.471 −0.410 0.111 0.168 0.012 −0.045 0.019 −0.005 0.002
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Figure 4. VTEC time series of IGS, polynomial (POLY), and Support Vector Machine Polynomial
(SVM-P) in the regional center zenith direction.

In Figure 4, the trends of the three series are coincident, indicating that there is no significant
deviation among the POLY model, the SVM-P model, and the IGS product. Affected by solar radiation,
the maximum of TEC in a day is about 19 TECU from 4:00 to 6:00 UTC (12:00 to 14:00 LT), and
ionosphere is relative calm during the night, basically around 8 TECU. Besides, the POLY model
and the SVM-P model use regional observations, which can represent small-scale changes in TEC
more prominently.

3.2. Parameters Selection of Support Vector Machine (SVM)

Since the samples are mapped to a higher-dimensional space during the SVM training process,
the parameters of the kernel function directly affect the performance of the SVM regression. The
parameter γ determines the complexity of the sample mapping, and C achieves the balance among
the model accuracy, the algorithm calculation, and the generalization ability. In this paper, the grid
search method is used to compare and analyze the influence of RBF kernel parameters γ and C on
regression. The correlation coefficient (CC) and the root mean square error (RMSE) are used as the
criteria of parameter selection to search for optimal parameters. CC and RMSE can be represented as:

CC =
n
∑

EprevPOLY −
∑

Epre
∑

vPOLY√
n
∑

E2
pre −

(∑
Epre

)2
−

√
n
∑

v2
POLY − (

∑
vPOLY)

2
(12)

RMSE =

√∑(
Epre − vPOLY

)2

n
(13)

where n is the number of test samples. A data set is selected to analyze the relationship between the
combination of kernel parameters and SVM regression performance.

Figure 5a shows the relationship between CC and the kernel parameters γ and C, and the impact
of kernel parameters on the SVM performance is very significant. When one of the parameters is
fixed, the CC will increase first and then decrease with the change of the other parameter. Finally, the
optimal parameters converge in a peak space in yellow in the grid. The RMSE in Figure 5b shows an
opposite trend with CC, as a valley space, but the range of optimal parameters is roughly the same.
The combination of parameters in the optimal space can satisfy the accuracy requirements of CC and
RMSE at the same time. In addition, the gradient of CC and RMSE is small in the optimal space,
which indicates that SVM is not sensitive to the combination. Therefore, the optimal combination of
parameters (C,γ) is (26, 2−14).
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3.3. Comparisons of Model Accuracies

We also use the BPNN algorithm combined with POLY (BPNN-P) to compare modeling results
with POLY and SVM-P, which have the same process of modeling as SVM-P. The BPNN-P has 9 input
nodes, a single hidden layer with 20 nodes, and 1 output node. The activation function and the learning
rate are selected by sigmoid and 0.01.

The data of test stations are analyzed for the model accuracies. Figure 6 shows the model residuals
of the test samples at 3:00 and 19:00. Comparing the three series of residuals, the residuals of SVM-P
and BPNN-P fluctuate stably around 0, which indicates SVM-P and BPNN-P have higher accuracies
than POLY. From Figure 7, the distribution of |Err| (the absolute value of model residual) of SVM-P
is more concentrated than BPNN-P and POLY. With |Err| < 1.5TECU, the cumulative distribution of
SVM-P is 89.6% at 3:00, greater than 88.7% in BPNN-P, and 69.6% in POLY. At 19:00, 84.1% in SVM-P is
greater than 79.5% in BPNN-P and 56.8% in POLY. This illustrates that SVM-P has a good performance
in error prediction, and improve the accuracy of the ionosphere model.Sensors 2019, 19, x FOR PEER REVIEW 9 of 15 
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Figure 6. Total electron content (TEC) Model residuals of the test samples at two moments. (a) 3:00
UTC; (b) 19:00 UTC.
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Figure 7. Residuals distribution statistics. (a–c) Residuals of polynomial (POLY), back propagation
neural network combined with POLY (PBNN-P), and Support Vector Machine Polynomial (SVM-P)
at 3:00 UTC with 115 samples. (d–f) Residuals of POLY, PBNN-P, and SVM-P at 19:00 UTC with
88 samples.

The RMSEs of the models are shown in Figure 8, and the statistical results are shown in Table 2.
Because the ionospheric activity is different at each moment and the model is greatly affected by the
distribution of visible satellites and IPPs, the accuracies of the models are not uniform within one
day, but all RMSEs are better than 1.7 TECU. Compared with POLY, the SVM-P model can improve
the accuracy of the model. With the low accuracy of the POLY (RMSE is more than 1 TECU), the
improvement effect is obvious, and the maximum can up to 42.3%. When the POLY has reached a high
accuracy, the SVM-P can also increase slightly at least 6.1%. BPNN-P has roughly the same effect with
SVM-P, but the accuracy is not as high as it. Even at some moments, BPNN-P is worse than POLY,
such as 5:00 and 11:00. The mean RMSEs of POLY, BPNN-P, and SVM-P in one day are 1.185 TECU,
1.070 TECU, and 0.980 TECU, respectively from Table 2. It means the SVM-P can effectively reduce
ionospheric modeling errors, and the improvement is 17.3% compared to POLY.
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Figure 8. Model root mean square errors (RMSEs) of polynomial (POLY), back propagation neural
network polynomial (BPNN-P), and Support Vector Machine polynomial (SVM-P) at 23 hourly moments.
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Table 2. Root mean square errors (RMSEs) of three ionosphere models in different moments (TECU).

UTC
POLY BPNN-P SVM-P

RMSE RMSE Improvement RMSE Improvement

1:00 1.154 1.123 2.7% 1.019 11.7%
2:00 1.424 1.156 18.8% 1.161 18.5%
3:00 1.670 1.009 39.6% 0.964 42.3%
4:00 1.605 1.229 23.5% 1.301 19.0%
5:00 1.206 1.235 −2.4% 1.112 7.8%
6:00 1.552 1.297 16.4% 1.240 20.1%
7:00 1.117 0.987 11.7% 0.931 16.7%
8:00 0.897 0.801 10.7% 0.738 17.7%
9:00 0.977 0.918 6.0% 0.838 14.2%

10:00 1.032 0.917 11.1% 0.912 11.6%
11:00 0.907 0.928 −2.3% 0.817 9.9%
12:00 0.902 0.835 7.3% 0.803 10.9%
13:00 0.937 0.970 −3.5% 0.832 11.2%
14:00 1.031 1.044 −1.2% 0.918 11.0%
15:00 1.272 1.164 8.5% 1.076 15.4%
16:00 1.189 1.282 −7.8% 1.103 7.2%
17:00 0.972 0.971 0.1% 0.879 9.6%
18:00 1.377 1.326 3.7% 1.050 23.8%
19:00 1.575 1.138 27.8% 1.095 30.5%
20:00 1.420 1.311 7.7% 1.072 24.5%
21:00 0.886 0.927 −4.6% 0.828 6.6%
22:00 1.233 1.055 14.4% 0.996 19.2%
23:00 0.908 0.995 −9.6% 0.853 6.1%

Mean 1.185 1.070 9.6% 0.980 17.3%

3.4. Single-Frequency PPP

In order to verify and compare how ionosphere models take effects on single-frequency PPP, station
BTRD and GTBH are performed static single-frequency PPP positioning. The estimated parameters X
in PPP include:

X= [x, y, z, dt, Trop, N1, . . . , Nn]
T (14)

where, n is the number of satellites, x, y, z are the coordinate of station estimated as constants, dt is
the clock error of receiver, Trop is the wet troposphere delay (ZWD), N is the integer carrier phase
ambiguities estimated as float values. The clock errors of satellites are corrected by the IGS final clock
product, the dry troposphere delay is corrected by Saastamoinen model, and the ionospheric delays
are corrected respectively by the POLY model and the SVM-P model.

The observations C1 and L1 are selected, and Kalman filter is used as parameters estimator
(engine) for static ambiguity-float PPP solution. The positioning results are shown in Figure 9.
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Figure 9. Single-frequency PPP results. (a,c,e) Station BTRD with no ionosphere model, the POLY and
the SVM-P. (b,d,f) Station GTBH with no ionosphere model, the polynomial (POLY) and the Support
Vector Machine (SVM-P.)

The RMSs of positioning errors with different ionosphere models are listed in Table 3. These
statistics are derived from the position residuals in PPP. It can be seen from Figure 9 and Table 3
that the accuracies of single-frequency PPP are about 0.7 m when ionospheric delay errors are not
corrected, which indicates the ionosphere affects the positioning accuracy. Both ionosphere models
can improve the single-frequency PPP accuracy. The positioning errors are all better than 0.3 m and
improve over 60%.

Table 3. Results of single-frequency PPP (RMS/m).

Station Model North East Up 3D Improvement

BTRD
None 0.680 0.176 0.256 0.747 -
POLY 0.020 0.067 0.259 0.269 64.0%

SVM-P 0.082 0.019 0.113 0.141 81.2%

GTBH
None 0.599 0.100 0.385 0.719 -
POLY 0.060 0.074 0.204 0.225 68.7%

SVM-P 0.032 0.091 0.094 0.135 81.3%

In each of four PPP experiments with ionosphere models in Figure 9b–f, the convergence rate
in North direction is fastest, and it needs a period of time in East direction. And in Up direction, the
trends of errors with two models are not consistent because of the effect of the ionospheric delay. When
using the POLY model, due to the insufficient accuracy of ionospheric delay correction, the positioning
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errors in the Up direction fluctuated greatly, especially around the 1800 epoch. While, when using
the SVM-P model, the errors in Up direction can remain stable after convergence. It can be seen from
Table 3 that the RMSs of the two stations in the horizontal component are basically the same, but the
difference of the RMSs in vertical component (Up direction) is quite obvious. This shows that two
ionosphere model mainly affect the Up direction of the positioning. Since the RMSEs of the SVM-P
model are lower than that of POLY and those are relatively stable in one day, the positioning accuracies
of single-frequency PPP with the SVM-P are 0.141 m and 0.135 m, which increased by 47.6% and 40.2%
than those using the POLY. Therefore, the PPP experiments prove that the SVM-P model can effectively
improve the accuracy of ionospheric delay correction, thus improving the accuracy of single-frequency
PPP positioning.

4. Discussion

According to the SVM-P method proposed in this paper, good performance is demonstrated in
the above experiments. Because the distribution of the TEC is complex and irregular, when using
the linear model for regional TEC fitting, the model will be affected by the overall trend of the TEC
and ignore a lot of small-scale information. However, it is not appropriate to improve the order of
linear model excessively to meet the high accuracy requirement for fitting, which will lead to more
complicated calculations and the quite poor accuracy of the edge of the modeling area. Three sets of
polynomial modeling were carried out according to the different parameters of the polynomial. The
fitting results are as follows (Figure 10):
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When using the 1st order polynomial, the estimated parameters are not enough to reflect the
TEC information effectively; when using the 2nd order polynomial, the model can reflect the overall
TEC distribution in the region; when a higher order is used, the more parameters increase the fitting
accuracy of the regional center. However, it is severely distorted at the edge of the area, and even a
large number of negative values appear. So, the polynomial parameters are chosen as n = m = 2.

SVM can achieve good nonlinear regression performance and the RBF kernel is used in the SVM
algorithm. The POLY model residual is regarded as useful information instead of noise. The residual
model is further fitted by SVM regression on the basis of the POLY model, and regional TEC model
will be established combining the SVM and POLY. The RMSE comparisons of the TEC model at 23
hourly moments show that the model accuracy of the SVM-P is better than that of the POLY, which
proves the feasibility of the above algorithm.

In addition, after the kernel parameters of the SVM are selected, the same results can be obtained
by multiple experiments. However, due to the random assignment of weights, BPNN has different
experimental results every time, which does not lead to satisfactory results in practical applications. In
this paper, the optimal results of the BPNN-P are selected by multiple experiments.

However, there are some limitations to the SVM-P. In practical applications, we use the CORS data
as a training set and the rover users as a test set. The training process of the SVM-P model requires a
large number of observations, so it is suitable for the area with a sufficient number of GNSS stations. In
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spatial, the distribution of the CORS should be able to cover the total observation region and include
the user’s range of motion. The number of training samples should not be less than the number of
sample features. Besides, the variation of the ionosphere is correlated with the diurnal and seasonal
changes, the selections of SVM kernel parameters are not unalterable, which should be chosen for
different situations. Additionally, the SVM-P model is a post-processing method, and there is a delay
when the ionospheric correction provided to real-time users, resulting in a loss of accuracy. Due to
the small change of the ionosphere within a short time, the influence of time delay can be reduced
by increasing the sampling rate of modeling. In the active period of the ionosphere, the interval of
modeling can be decreased to 3-5min; and the interval can be increased to 15-30min in the quiet period.

5. Conclusions

In this paper, we combined the support vector machine regression algorithm and the 2D polynomial
model for regional ionosphere modeling. The observations from JSCORS are used to train SVM,
establish SVM-P model, and conduct static single-frequency PPP experiment. By using the grid search
method, the optimal parameter combination of the SVM kernel parameters (C,γ) is selected. The
analysis of the RMSE proves that the accuracy of the SVM-P model is 0.980 TECU, which is better
than the polynomial model (1.185 TECU), with an improvement of 17.3%. Moreover, compared with
the BPNN-P (1.070 TECU), the SVM-P model can display accurately the distribution of regional TEC.
And in the single-frequency PPP experiment, the SVM-P model can effectively reduce the ionospheric
delay error, and the positioning accuracies are increased by 47.6% and 40.2% compared with the
polynomial model.

For future works, we intend to optimize the selection of the SVM kernel parameters to reduce the
search time and extend the modeling area to a wider range. At this time, the curvature of the earth’s
surface should be taken into account and the spherical harmonic function may show great advantages
compared to the polynomial [32].
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