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Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas
adaptive immune systems enable bacteria and archaea to efficiently respond
to viral pathogens by creating a genomic record of previous encounters.
These systems are broadly distributed across prokaryotic taxa, yet are sur-
prisingly absent in a majority of organisms, suggesting that the benefits of
adaptive immunity frequently do not outweigh the costs. Here, combining
experiments and models, we show that a delayed immune response which
allows viruses to transiently redirect cellular resources to reproduction,
which we call ‘immune lag’, is extremely costly during viral outbreaks,
even to completely immune hosts. Critically, the costs of lag are only
revealed by examining the early, transient dynamics of a host–virus
system occurring immediately after viral challenge. Lag is a basic parameter
of microbial defence, relevant to all intracellular, post-infection antiviral
defence systems, that has to-date been largely ignored by theoretical and
experimental treatments of host-phage systems.
1. Introduction
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas immune
systems are the only known form of adaptive immunity found in prokaryotic
organisms [1,2]. These antiviral defence systems enable bacteria and archaea to
incorporate short stretches of viral genetic material into specific loci on the host
genome (the CRISPR ‘array’) as individual immune memories, called ‘spacers’
[2]. Spacers are later transcribed and processed into CRISPR-RNA (crRNA)
sequences that guide CRISPR-associated (Cas) proteins to cleave viral nucleic
acids [3–5]. Thus, a genomic record of past infections is used to prevent future
infection (see [6] for a recent review of the mechanisms of CRISPR-Cas immunity).

CRISPR-Cas systems are widely but sparsely distributed across the tree of life
[7–9]. Their broad distribution among taxa is probably attributable to the fact that
these systems are highly effective at clearing viral infections (e.g. [2]), extremely
adaptable in a constantly shifting co-evolutionary arms race [10,11], and, similarly
to other defence systems [12], frequently horizontally transferred [12–15] (for
reviews of various aspects of CRISPR biology, see [9,16–18]). However, a majority
of prokaroytes lack CRISPR-Cas immune systems [19], even as CRISPR-Cas can
usually be found in a closely related relative. To solve this apparent paradox var-
ious authors have proposed a number of costs and limitations of CRISPR-Cas
immunity that may drive selection against this system in favour of alternative
defence strategies (of which there are many [20]). These ‘cons of CRISPR’ poten-
tially include autoimmunity [21], the inhibition of beneficial horizontal gene
transfer [22,23], the inhibition of other cellular processes by the cas genes (specifi-
cally DNA repair; [24,25]), incompatibility with lysogenic phage [26], and the
possibility that CRISPR-Cas may be unable to keep up with extremely diverse
pathogenic environments [27,28]. Nevertheless, experiments show that CRISPR-
Cas systems can be essentially cost-free in phage-free culture conditions [29–31].
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Figure 1. Considering lagged CRISPR immunity. (a) During competition, immune lag can lead infected cells to face significant delays in reproduction while cellular
resources are temporarily diverted to viral production before the infection can be cleared via cleavage of viral nucleic acids (left). By contrast, a surface mutant (SM)
strategy does not allow viral genetic material to enter the cell in the first place, preventing any lag (middle). The balance between the cost of lag and any growth
cost associated with the SM strategy will determine whether CRISPR immunity is favoured evolutionarily (right). (b) Schematic of model of host–virus dynamics with
lagged CRISPR immunity. Lagged cell compartment highlighted for emphasis (compare to base model without lag in the electronic supplementary material, figure
S1). The dashed line for spacer acquisition signifies that these immunization events are rare. (Online version in colour.)
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In contrast to results indicating that CRISPR-Cas defence
generates little-to-no constitutive costs for the host in the absence
ofphage—at least in laboratory-rearedPseudomonas aeruginosa—
a severe inducible cost of CRISPR-Cas immunity upon phage
infection has been observed [29]. The source of the inducible
cost of CRISPR-Cas immunity was, until recently, mysterious.
Importantly, while CRISPR-immune cells were observed to
have reduced fitness when exposed to phage in competition
experiments, subsequent efficiency of plating experiments
showed that CRISPR-immune cells did not experience a detect-
able level of phage-inducedmortality [29], indicating that phage
inhibit the growth of immune cells but either do not kill them or
dosovery rarelyat levels that cannot explainCRISPR’s inducible
cost. Chabas et al. [32] suggested that the inducible cost is the
result of transient expression of phage genes in the cell before
CRISPR-Cas is able to clear an infection (figure 1). Recently,
Meaden et al. [31] have provided evidence confirming this lag
hypothesis in experiments with P. aeruginosa strain PA14 and
its phage DMS3vir, demonstrating that phage gene expression
is responsible for a reduction in the fitness of CRISPR-immune
host. Specifically,Meaden et al. [31] showed that aphageprotease
was transiently expressed in CRISPR-immune cells before infec-
tion could be cleared, and that expression of this gene was
detrimental to host fitness. When a virus infects a cell, viral
genes will be expressed, often at very high levels. At the same
time, the host cell’s expression patternsmay be ‘reprogrammed’
by the infecting virus (creating a ‘virocell’; [33–35]). Intracellular
DNA- or RNA-degrading defences may take some time to find
and degrade invading genetic material in the cell, and during
that time transcription in an infected cell may be transiently
altered [34,35], potentially haltinghost growth and re-purposing
cellular resources. This phenomenon, which we call ‘immune
lag’, was observed by Meaden et al. [31] in CRISPR-immune
cells, so that even when cells are able to effectively clear infec-
tions and prevent lysis they still pay a heavy growth cost
associated with infection (figure 1a). Could immune lag be a
major cost of adaptive immunity, leading the host to sometimes
favour alternative immune strategies?



Table 1. Parameter and variable definitions for models discussed in main text.

symbol definition value and units

R resources dynamic, μg ml−1

S susceptible host dynamic, cells ml−1

I infected host dynamic, cells ml−1

C CRISPR-immune host dynamic, cells ml−1

L lagged host dynamic, cells ml−1

CF upregulated immune host dynamic, cells ml−1

M surface mutant host dynamic, cells ml−1

V viruses dynamic, viruses ml−1

e resource conversion factor 5 × 10−7 μg cell−1 [39,48]

v Max. growth rate 2 h−1 [51]

z half-saturation constant 1 μg ml−1 [39,48]

r0 resource concentration in

reservoir

350 μg ml−1 [39,48]

κ growth cost of SM 0.01 [30,31]

w flow rate 0.3 h−1 [39,48]

μ probability of spacer

acquisition

10−7 [52]

δ adsorption rate 10−7 ml h−1 [39,48]

β burst size 80 viruses cell−1 [52]

γ rate of lysis of infected cells 4
3 h

�1 [52]
−1
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Uponcloserexamination, the impactof immune lagonnatural
systems is less clear. Experiments that demonstrate the inducible
cost of CRISPR-Cas immunity require the host to be exposed to
extraordinarily high viral titres (at least 108–1010 PFUml−1 in our
own experiments, described below) to see any effect. For lag to
have any population-level impact on an immune host population,
a substantial portion of the immune population must be exposed
to phages. Thus, in the case of an already-immunized host popu-
lation, lag is probably irrelevant because viruses have no way to
reach sufficiently high titres to suppress the immune host.

However, in natural systems, host populations are rarely
completely immune to their viral pathogens. CRISPR spacers
can be lost [15,22,36–39], and viral escape mutants with point
mutations in protospacer regions frequently emerge [40,41],
both leading CRISPR-Cas to be a somewhat transient form of
immunity [31]. In natural communities, entirely new species of
virus, to which the host lacks pre-existing immunity, may
migrate into the system via dispersal [42]. Thus, to fully charac-
terize the role of immune lag in natural systems, we must assess
its impact on non-equilibrium systemswith viral coevolution or
migration.We combined experiments andmathematicalmodels
to investigate how lag transiently alters the costs of CRISPR-Cas
during a viral outbreak, and found that when viruses invade a
primarily susceptible host population with a small sub-popu-
lation of CRISPR-immune host even the CRISPR-immune cells
face a large virus-induced reduction in fitness. Importantly, the
costs of lag are only revealed by examining the dynamics of
the system that occur immediately after viral challenge.
v0 virus concentration in

reservoir

100 viruses ml

ϕ recovery rate from immune

lag

10 h−1 [29,30], 1000 h−1

(estimated)

ζ downregulation rate 0.1 h−1
2. Models
(a) Model framework
Tomodel CRISPR-Cas immunity in a simple host-phage system,
we built on classical host-phage chemostat (or ‘virostat’, see Dis-
cussion) models [43–46], where resources (R) are modelled
explicitly as being supplied by some constant reservoir (r0),
and there is constant flow (w) of fresh media into the system
(for a discussion of model construction and assumptions, see
electronic supplementary material, Text S1). At the same time,
the contents of the system (cells, viruses, resources) are removed
at the same rate (w) in order tomaintain a constant volume. For a
detailed discussion of this class of models, see Weitz [46]. Our
model consists of a system of ordinary differential equations
with equations for resources, host and virus populations:

_R
z}|{resources

¼ wðr0 � RÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{flow

� evR
zþ R

ðSþ CÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{resource uptake by cells

_S
z}|{susceptible host

¼ vR
zþ R

zfflffl}|fflffl{growth

� dV
z}|{infection

� w
z}|{flow

0
BBB@

1
CCCAS

_C
z}|{immune host

¼ vR
zþ R

zfflffl}|fflffl{growth

� w
z}|{flow

0
BBB@

1
CCCACþ mdVS

zfflffl}|fflffl{immunization

_I
z}|{infected host

¼ ð1� mÞdVS
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{infection

� gI
z}|{lysis

� wI
z}|{flow

and _V
z}|{viruses

¼ wðv0 � VÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{flow

þ bgI
z}|{lysis

� dðSþ CÞV
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{adsorption

:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð2:1Þ
Specifically, we equipped our host population with a CRISPR-
Cas system, so that there is a population of naive, unde-
fended-but-CRISPR-encoding host (S) that may become
infected (I) by viruses (V). Each time a susceptible host is
infected, it may undergo immunization with probability μ to
become defended (i.e. spacer-possessing) host (C). This formu-
lation is similar to other minimal models of CRISPR-Cas
immunity (e.g. [39,47–50]). For some analyses, we also included
a virus-resistant surface mutant (SM) strain in the model (M):

_M
z}|{SM host

¼ ð1� kÞvR
zþ R

zfflfflfflfflfflffl}|fflfflfflfflfflffl{growth

� w
z}|{flow

0
BBB@

1
CCCAM, ð2:2Þ

with growth cost κ associated with its surface mutation, and
appropriate changes to our equation for resource dynamics. For
a list of parameter and state variable definitions, see table 1 and
for a discussion of model construction and assumptions, see the
electronic supplementarymaterial, TextS1. See theelectronic sup-
plementarymaterial, figure S1 for a schematic of this basemodel.

Observe that in a small departure from the classical che-
mostat model we allow constant immigration of viruses
into the system from some environmental pool (v0). This is
an entirely experimentally tractable modification (e.g. by
adding set concentrations of virus to the resource reservoir),
and better represents natural systems which are not closed
and where hosts probably face constant challenges in the
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form of newly arriving viruses. Note that this basic model
only considers a single viral genotype, so that immune
hosts will also be immune to immigrating viruses (though
see outbreak simulations discussed later for simulations in
which this is not the case). For traditional continuous culture
without viral inflow simply let v0 = 0.

Ourmodel of CRISPR-Cas immunity is intentionally simple
in that it neglects: (i) details of the spacer acquisition process,
(ii) autoimmunity, (iii) spacer diversity, and (iv) viral coevolu-
tion. CRISPR-immune strains are modelled as a single,
homogeneous pool of immune host (C) and viruses are not
able to coevolve to overcomeCRISPR-Cas immunity. Neverthe-
less, this model is a suitable scaffold on which to build a more
complex model of immune lag. We provide detailed explora-
tions of the spacer acquisition process in the electronic
supplementary material, Text S2,S3 and figures S2–S4 (includ-
ing acquisition from collapsed replication forks [52,53],
acquisition from defective phages [54], and primed acquisition
[10,11]), and show that the details of spacer acquisition are
largely irrelevant for assessing the fitness cost of lag in a
CRISPR-immune host. Furthermore, a careful analysis of auto-
immunity, with rates estimated based on a realisticmodel of self
versus non-self recognition (electronic supplementary material,
Text S2), predicted that there should be essentially no impact of
autoimmunity on the hosts’ fitness (electronic supplementary
material, figure S2), which is consistent with experimental
efforts that have not detected any constitutive cost of CRISPR-
Cas immunity [29–31]. We address spacer diversity and viral
coevolution in our simulations of repeated viral outbreaks
(see Results; electronic supplementary material, Text S8).
(b) Immune lag
Meaden et al. [31] provide strong evidence that the inducible
cost of CRISPR-Cas is associated with transient expression of
viral genes and possible virus-induced reprogramming of
cellular transcriptional networks. Because CRISPR-Cas
immunity does not remove viral genetic material from the
cell instantaneously, Meaden et al.’s [31] results suggest that
even immune hosts face a temporary growth setback
during infection while viruses transiently reprogramme the
cell (figure 1). Virus-resistant surface mutants do not experi-
ence this growth setback, as viruses are unable to adsorb to
the cell in the first place. We built a model of lagged
CRISPR immunity (figure 1b). Consider the simple model
described above. We added an equation for transiently
infected but immune host (L):

_L
z}|{lagged

¼ dCV
zffl}|ffl{enter lag

� fL
z}|{clearance

� wL
z}|{flow

, ð2:3Þ
which are able to clear an infection at rate ϕ via cleavage of
viral nucleotides, and modified the equation for immune
host accordingly:

_C ¼ vR
zþ R

zfflffl}|fflffl{growth

� dV
z}|{enter lag

� w
z}|{flow

0
BBB@

1
CCCAC

þ mdVS
zfflffl}|fflffl{immunization

þ fL
z}|{clearance

: ð2:4Þ

We also found that lag can be modelled in an even simpler
four-parameter system with qualitatively similar results
(electronic supplementary material, Text S4 and figure S5).
Thus, for completeness and comparison with experimental
results, we present a parameter-rich model, but our results can
be replicated with minimal models of host–phage interactions.

(c) Upregulation of the CRISPR locus
The cas genes and CRISPR arrays of many hosts are transcrip-
tionally upregulated in response to infection [55,56], or in
situationswhere there is a high riskof infection (e.g. in a biofilm;
[57–61]). The specific regulatory cues used by the CRISPR locus
are diverse [56], and newmethods are being developed to probe
them [62]. Consider the case where the CRISPR locus is specifi-
cally upregulated in response to infection. The initial time-to-
clearance of infection is unaffected by upregulation, but for
some time after this first infection the host will be on ‘high
alert’, producing many Cas proteins and crRNAs. We consider
the case where this overproduction of CRISPR-Cas defence
complexes allows the host to degrade viral genetic material
before it can be expressed, thus avoiding any immune lag. We
implemented this scenario (electronic supplementary material,
figure S6) by letting recently immunized and lagged cells pass
into a ‘fast’ immunity (CF) state where the CRISPR-Cas system
does not experience immune lag because the cas targeting genes
are upregulated:

_CF ¼ vR
zþ R

zfflffl}|fflffl{growth

� w
z}|{flow

0
BBB@

1
CCCACF

þ mdVS
zfflffl}|fflffl{immunization

þ fL
z}|{clearance

� zCF

z}|{downregulation

, ð2:5Þ
and modified the equation for immune host accordingly:

_C ¼ vR
zþ R

zfflffl}|fflffl{growth

� dV
z}|{enter lag

� w
z}|{flow

0
BBB@

1
CCCACþ zCF

z}|{downregulation

ð2:6Þ

Note that we do not include any cost of increased transcription/
translation in this model, as we have no empirical estimate or
intuition for the scale of this cost, though one almost certainly
exists (because in the absence of a cost the expression of
CRISPR-Cas would be expected to be constitutively high).
Also, observe thatwemodelled an upregulation of the cas target-
ing genes, which will reduce or eliminate immune lag (in our
case eliminate), rather than the cas acquisition machinery,
which would possibly increase autoimmunity (though both
may be upregulated during infection because the cas genes are
often transcribed as an operon). Finally, here we assume that
cells return from the transcriptionally upregulated state (CF) to
the baseline state (C) at a constant rate (ζ), though relaxing this
assumption has little effect on the qualitative results of the
model (electronic supplementarymaterial, Text S5 and figure S7).
3. Results
(a) A tipping point between CRISPR and surface

mutant strategies at high viral titres
We found the equilibria of our lag model and determined
their stability via linear stability analysis in order to charac-
terize the ultimate outcome of competition between a laggy
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CRISPR-immune strain and a costly SM strain (see the elec-
tronic supplementary material, Text S6 for equations
describing equilibria and analysis details). Over a wide
range of parameter values the model yielded a single stable
CRISPR-immune equilibrium with an extinct SM strain
(figure 2). Only when there was extremely high flow of
viruses into the system (high v0) did we see an alternative
outcome where the only stable equilibrium was an SM-only
state with an extinct CRISPR strain. For short lag times (ϕ≥
103 h−1, (1/ϕ) < 4 s), the ‘tipping point’ from an all-CRISPR
to all-SM state occurred as the external viral pool (v0)
exceeded concentrations of 109 PFU ml−1 (figure 2). At inter-
mediate lag times and viral densities, there was a region of
bistability in which the initial conditions of the system deter-
mined whether or not it would end up in an SM- or CRISPR-
only state, with both equilibria being stable. This bistability is
a byproduct of CRISPR’s ability to clear viruses from the
environment and in doing so reduce the impact of lag when
cells are at a high density (electronic supplementary material,
S7 Text and figures S8,S9). In no case did the two strains,
CRISPR and SM, coexist stably over the parameter regimes con-
sidered. Thus, our model predicts a sharp transition from a
CRISPR strategy being favoured to an SM strategy being
favoured at high viral titres. This is consistent with previous
work on inducible immunity that saw a steep decrease in the
relative fitness of a CRISPR-Cas immune strainwhen competed
against an SM strain at very high viral titres [29].

However, previous experiments appear to disagree on the
severity of the inducible cost of CRISPR-Cas immunity. In the
original work on the topic, Westra et al. [29] observed a steep
transition from high relative fitness (greater than 1) to a
relative fitness of essentially zero for a CRISPR strategy com-
peted against an SM strategy in competition experiments
with increasing multiplicity of infection (MOI), consistent
with our model’s predictions (electronic supplementary
material, figure S10). More recently, Alseth et al. [30] did
not observe this steep fitness decrease while performing
nearly identical experiments. We suspected that these later
experiments failed to capture the transition from high to
low relative fitness seen in our model because they were
not carried out to a sufficiently high viral titre. Therefore,
we replicated the Alseth et al. [30] experiments with the
same host-phage system, P. aeruginosa UCBPP-PA14 and
its lytic phage DSM3vir, out to a higher viral titre
(1010 PFU ml−1) and were able to capture the steep decrease
in fitness of the CRISPR-immune strain at high MOI
(figure 3), confirming our model predictions. We matched
these competition experiments to model predictions by solv-
ing our model numerically (see the electronic supplementary
material, Text S8 ‘Simulating competition experiments’) to
more precisely illustrate this point (figure 3, solid red line).
Our lag model captures the major shift from CRISPR-to-SM
strategy that happens at high viral densities as seen by
Westra et al. [29], consistent with the idea that immune
lag causes the inducible cost of CRISPR-Cas immunity
(figure 3; electronic supplementary material, figure S10).
Importantly, the original work by Westra et al. [29], showed
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that the inducible cost of CRISPR-Cas immunity was not
owing to virus-induced mortality, as even less-fit CRISPR-
immune cells survived at high viral titres.

Finally, we note that while the qualitative results of these
competition experiments are highly reproducible, with a
steep decrease in the fitness of CRISPR-Cas immune strains
occurring at high MOI, where exactly this transition occurs
and the baseline relative fitness of the CRISPR-immune
strain in the absence of virus appear to be quite variable
between replicates and experiments (figure 3; electronic sup-
plementary material, figure S10, and see figure S11 for a
direct comparison between the two). Viruses and host cells
were quantified using serial dilutions, introducing the possi-
bility of multiplicative errors and perhaps making cross-
experiment variability less surprising. This cross-experiment
variability prevented us from obtaining precise lag estimates
(we estimate that 10−3 h−1≤ 1/ϕ≤ 0.1 h−1, in other words that
3.6 s≤ 1/ϕ≤ 6 min; electronic supplementary material, figure
S11). Initial host density in particular can strongly affect
model expectations (electronic supplementary material,
figure S12). On the other hand, given large starting densities
of host (approx. 107 cells ml−1), this variability is unlikely to
arise from demographic stochasticity. For model results
reported below, we include an analysis of both short
(ϕ = 103 h−1, 1/ϕ = 3.6 s) and long (ϕ = 10 h−1, 1/ϕ = 6 min)
lag times to capture the full range of experimental variability.

(b) Immune lag is extremely costly during an outbreak
of novel virus

Interestingly, the lags estimated in the last section are quite
short, ranging from 3.6 s (ϕ = 103 h−1) to 6min (ϕ = 10 h−1).
This short length in part explains why such high viral titres
(often greater than 109 PFU ml−1) are required to observe
any effect of lag on the host population. The cost of lag
seems to only be revealed when immune hosts are facing
multiple subsequent viral infections. When will such high
viral titres be achieved? We suspected that during a viral out-
break where only a small fraction of the host population is
initially immune, viral titres might greatly exceed immune
host densities and lead to a clear cost of lag.

We simulated an outbreak of ‘novel’ virus to which
pre-existing CRISPR-Cas immunity did not exist in the popu-
lation, or to which only be a very small proportion of the
population was already immunized (see the electronic sup-
plementary material, S8 ‘Simulating outbreaks’). In practice,
this was achieved by initializing the system with a dense sus-
ceptible population (108 cells ml−1) and a very small CRISPR
immune population (100 cells ml−1), both exposed to a small
environmental viral pool (v0 = 100 viruses ml−1), and solving
numerically. We found that during outbreaks of novel viruses
immune lag can be extremely costly, leading to selection for
an SM defence strategy over a CRISPR strategy, even when
the SM strategy comes with a growth cost (figure 4a–c). The
cost of lag was only apparent when we examined the early,
transient dynamics of our model and is relevant to natural sys-
tems where outbreaks of novel or mutant viral strains may
occur at moderate to high frequency. Unlike our results
described above for systems at equilibrium, even a very low
rate of immigration of novel viruses into the system can lead
to a massive reduction in the fitness of a CRISPR-Cas relative
to an SM strategy early on if most hosts are not already
immunized.
During our simulated outbreaks, as the viral population
spikes early it suppresses the initial growth of the CRISPR-
immune host, leading the SM population to dominate
(figure 4a–c; electronic supplementary material, figure S13).
This initial dominance of SM even occurs when the cost of an
SM strategy is very high, up to a 20% cost with a short lag
andwell over a 40% cost with a long lag (electronic supplemen-
tarymaterial, figure S14). The onlyway for theCRISPR-immune
host to dominate during an outbreak is for the duration of
immune lag (1/ϕ) to approach zero (figure 4a), but even short
lags (ϕ = 103 h−1, 1/ϕ = 3.6 s) result in a substantial initial expan-
sion of the SM population (figure 4b).

Even though an SM strategy will dominate immediately
after an outbreak, if the SM strategy is sufficiently costly,
then the system will eventually return to a CRISPR-domi-
nated equilibrium. How long will this return to CRISPR-
dominance take, and what happens if the system is perturbed
again before then? In natural communities, novel viral strains
to which the host lacks pre-existing immunity may emerge
via mutation or immigrate into the system via dispersal.
We found that even moderately frequent outbreaks can lead
to selection against a CRISPR-based defence strategy.

We simulated our system’s dynamics under repeated out-
breaks at set intervals (see the electronic supplementary
material, S8 ‘Simulating intermittent outbreaks’), correspond-
ing to either the emergence of an escape mutant in the viral
population or the arrival of a novel viral species into the
system against which the host lacks a pre-existing spacer. We
observe that for long lags (ϕ = 0.1 h−1, 1/ϕ = 6 min), if outbreaks
occur even with moderate (monthly) frequency, immune lag
will prevent a CRISPR strategy from rising to dominance
(figure 4d). These results agree with empirical observations
that the repeated addition of susceptible host into a host-
phage system promotes the evolution of an SM strain over a
CRISPR-immune strain [32]. Note that we assume that out-
breaks affect both CRISPR and SM strains, so that novel virus
can overcome both defence strategies, in order to compare strat-
egies on an equal footing and calculate the precise cost of lag. In
reality, the probability of a viral mutant escaping spacer target-
ing versus the probability of a viralmutant being able to target a
new or modified host receptor are likely to be quite different,
which would alter the frequency of outbreaks that host popu-
lations employing these two strategies would experience. In
all likelihood, the respective rates of coevolutionary dynamics
for hosts with CRISPR and SM strategies will vary a great
deal across systems in complexways that are difficult to capture
with simple models.

CRISPR-Cas systems have one important advantage that
our model neglects—different hosts may have different
spacers, leading to a great deal of immune diversity in the
population. This diversity is protective, as it makes it much
more difficult for viral escape mutants to gain a foothold
[63–65]. To account for host immune diversity, we varied
the fraction of the host population susceptible to each novel
viral outbreak (figure 4e). Even daily outbreaks affecting
less than 10% of the host population will prevent the domi-
nance of a CRISPR-Cas defence strategy when lags are long
(ϕ = 10 h−1, 1/ϕ = 6 min). The spacer frequency distribution
in host populations is often highly skewed, so that a few
spacers are found among a large fraction of hosts [66–68].
Given that viral outbreaks are generally expected to affect
the most abundant host sub-populations [69], in the presence
of small, frequent outbreaks, such a skewed distribution of
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immune variants would make it very difficult for a lagged
CRISPR-immune host to out-compete an SM population.

(c) Inducible defences can mitigate the effects of
immune lag

The cas operon, or a subset of cas genes, are often transcription-
ally upregulated in response to infection or to conditions that
indicate a high risk of infection [56]. We found that if strong
upregulation occurs after infection, so that the resulting ‘fast
immune’ cells with an upregulated CRISPR locus do not
experience lag, the overall effects of immune lag can largely
be mitigated during an outbreak (figure 4d,e). This result is rela-
tively robust to variations in the rate at which cells return to
normal expression levels (ζ), though high rates of return will
ameliorate lag less than lower rates (electronic supplementary
material, figure S15).

(d) Laggy immunity is less costly in slow growing hosts
It has been suggested that slow growing and less dense host
populations will favour CRISPR-Cas immunity, whereas fast
growing, dense populations will favour alternative defence
strategies (e.g. SM; [27,28]). Consistent with growth affecting
the evolution of host defence strategy, Westra et al. [29]
showed that high resource environments favoured an SM strat-
egy over a CRISPR strategy in direct competition experiments.
We wondered if lag could partially explain this phenomenon.
Using our lag model, we found that in host populations with
a high maximal growth rate the cost of immune lag was
much greater than in slower growing populations (electronic
supplementary material, figure S16). Thus, if CRISPR-Cas
immunity is laggy, it is much more likely to be favoured over
an SM strategy if the host has a slow maximal growth rate.
The opposite is true when CRISPR-Cas has no lag (electronic
supplementary material, figure S16). Intuitively, the temporary
slow down in growth for hosts with a laggy immune systems is
felt less strongly if growth is already slow,whereas the impact is
much greater in a highly competitive system with fast growers.
4. Discussion
We built a biologically motivated model of CRISPR-Cas
immunity that links population-scale host–virus dynamics
to molecular-scale changes within the cell. In doing so, we
were able to demonstrate that immune lag can strongly
impact the evolution of immune strategy in some prokaryotes
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[29,31]. Immune lag’s effect is felt most severely during an
outbreak of novel virus. We showed that for even moderately
frequent outbreaks of novel viruses that are unrecognized by
the CRISPR-Cas immune system, immune lag will lead to
selection against CRISPR-Cas in favour of other defence strat-
egies (e.g. surface modifications). Note that we are making an
argument here about selective forces acting on immune
strategy—the rate and mechanics of how CRISPR-Cas func-
tionality might be lost in natural settings, as well as the
implications of this loss, are outside the scope of this study
and have been explored elsewhere [22,39].

Even considering the beneficial effects of priming seen in
many systems [10,11], where partial spacer-protospacer
matches stimulate rapid spacer acquisition thus allowing
hosts to ‘update’ their immune memory against viral escape
mutants, it is not unreasonable to expect wholly novel out-
breaks on a daily or weekly timescale for natural systems
with high viral migration. That being said, primed adaptation
can still help overcome short lags in the special case where
outbreaks of novel virus affect the entire population
of defended hosts (electronic supplementary material,
figure S4). Our results emphasize the benefits of having mul-
tiple redundant spacers towards the same target, as even
temporary loss of immunity in a subset of the population
can lead to strongly negative fitness effects for the entire
immune host population owing to lag induced by the result-
ing high-density viral bloom.

Immune lag has strong negative fitness effects even when
CRISPR-immune strains are competed against very costly SM
strains. In culture, SM strategies may occasionally be essen-
tially cost-free, but in natural systems surface molecules that
act as viral receptors often play an important role in host fit-
ness, which can prevent the emergence of SM strains [30,70].
Nevertheless, during an outbreak in a primarily susceptible
population very costly SM strains still rise to dominance
(electronic supplementary material, figure S14). Thus, lag is
likely to be relevant even in natural systems where surface
modifications are very costly. Phage DMS3vir uses the host
pilus as a receptor, meaning that SM mutants are defective
in terms of motility, though we saw no great difference in fit-
ness between SM and CRISPR strains in the absence of phage
in our experiments (figure 3; [29–31]).

Some immune host strains may be able to partially avoid
the effects of lag. The impact of lag can be mitigated by tran-
scriptional upregulation of the cas locus (figure 4). Thus, lag
may help explain why expression of the cas genes is tightly
regulated in many systems [30,31], in combination with other
explanations such as avoidance of autoimmunity [71].
Additionally, lag seems to have less of an impact on slow grow-
ing host populations, perhaps explaining in part the suggested,
though not yet systematically demonstrated, pattern in which
CRISPR-Cas is more common among slow growing and low
density taxa ([27,28]; though of course many organisms capable
of fast growth, including P. aeruginosa, also have CRISPR-Cas).
These variations may perhaps explain why the prevalence of
CRISPR-Cas immunity varies so widely between different
groups of organisms (e.g. between anaerobes and aerobes
[72], between bacteria and archaea [8,73]).

We emphasize that expression of viral genes and/or
changes in host expression are not the only phenomena that
could lead to a slowdown in the growth of immune host
upon infection. For example, membrane depolarization
owing to viral injection could lead to a transient growth
slowdown. Our model is agnostic to the mechanism causing
lag, and only requires that two criteria be satisfied: (i) the
virus-induced fitness reduction is owing to growth inhibition
rather than increased mortality (based on Westra et al. [29]),
and (ii) the virus-induced fitness reduction is felt only by
cells that allow for viral entry (i.e. not SM cells). That being
said, in the experimental system we consider, Meaden et al.
[31] provide strong evidence that the transient expression of
viral genes leads to a reduction in the fitness of immune host.

Similar to theuncertainty surrounding themechanisms caus-
ing lag, we do not have a good estimate for the length of the lag
period. Our estimated lag durations from different experiments
ranged over two orders of magnitude (from seconds tominutes;
figure 3; electronic supplementary material, figures S10, S11),
even though the same strains were used across experiments
[29,30]. The competition experiments we used to parametrize
ourmodel probably lack the precision for an accurate estimation
of lag duration (electronic supplementary material, figure S12).
Alternative experimental approaches that more directly assess
growth slowdowns (e.g. single-cell analyses using microfluidic
devices [74]) may be required to obtain accurate parameter esti-
mates. We analysed the population-level implications of
immune lag, but much is left to be done in order to characterize
the cellular-level mechanisms and effects of lag.

Finally, it is clear that the severity of immune lag is a shared
trait determined by both host and virus. Different viruses repro-
gramme the cell in different ways and to different degrees (e.g.
[35]). Similarly, hostswill probably vary in their susceptibility to
reprogramming. Our overall conclusions are relatively insensi-
tive to this variability, as even short lags can have a severe
impact on host fitness during an outbreak (electronic sup-
plementary material, figure S14). Nevertheless, this variability
makes it difficult to put realistic bounds on our lag parameters,
and as we show in figure 4, upregulation of the CRISPR locus
may mitigate immune lag for the host [56]. For other types of
intracellularly acting defence, such as abortive infection systems
in which infected host cells do not recover, lag may be irrele-
vant. In any case, we highlight an important parameter of
virus–host dynamics, the recovery rate of defended cells to
viral infection (ϕ), that is not typically measured or considered
in theoretical treatments of host-phage systems. This parameter
is probably universal to all intracellularly acting DNA- or RNA-
degrading defence systems, including restriction–modification
systems, which are nearly ubiquitous [75]. Immune lag is
quite possibly a widespread phenomenon common to many
classes of defence systems acting within the cell (e.g. [76–78]),
and deserves consideration in any population-level study of
prokaryotic antiviral defences.
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