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Abstract: In the era of precision medicine, targeted therapies have been implemented for various
diseases. Genomic information guides decision-making in cancer treatment. The improvements in
next-generation sequencing and polymerase chain reaction have made it possible to access the genetic
information using circulating-tumor DNAs (ctDNAs). Molecular characteristics of individual tumors
can be obtained by analysis of ctDNAs, thus making them excellent tools to guide decision-making
during treatment. In oncology, the use of ctDNAs in clinical practice is now gaining importance.
Molecular analysis of ctDNAs has potential for multiple clinical applications, including early diagnosis,
prognosis of disease, prognostic and/or predictive biomarkers, and monitoring response to therapy
and clonal evolution. In this paper, we highlight the applications of ctDNAs in cancer management,
especially in metastatic setting, and summarize recent studies about the use of ctDNAs as predictive
biomarkers for the therapeutic adaptation/response in lung cancer, breast cancer, and colorectal cancer.
These studies offer the evidence to use ctDNAs as a promising approach to solve unmet clinical needs.

Keywords: biomarker; breast cancer; circulating-tumor DNA; colorectal cancer; lung cancer; precision
medicine; targeted therapy

1. Introduction

Precision medicine is an emerging approach for both prevention and treatment of disease [1–3]. It
is important to develop more precise diagnostic tools in precision medicine for a variety of diseases
including cancer. In oncology, precision medicine aims to select effective treatment based on the
molecular characteristics of individual tumors. Genomic information is important for treatment
strategy, since targeted therapy is directed against key signaling pathways involved in cancer growth
and malignant progression [4–14]. Recently, improvements in the next-generation sequencing (NGS)
and polymerase chain reaction (PCR)-based approaches have enabled the identification of genomic
information by using biomarkers such as circulating tumor cells, cell-free DNAs (cfDNAs), circulating
RNA including mRNA and secreted microRNAs in peripheral blood, and other body fluids, collectively
termed liquid biopsies [15–20]. Applications of liquid biopsy include early diagnosis, prognosis
of disease, prognostic and/or predictive biomarkers for the therapeutic adaptation/response, and
monitoring response to therapy and clonal evolution.

Among liquid biopsies, cfDNAs are of particular interest [19,21,22]. The first publication on the
presence of cell-free nucleic acid in the blood of healthy individuals was attributed to Mandel et al. in
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1948 [23]. The next impressive study was the report published in 1977 that demonstrated increasing
levels of cfDNAs in the blood of cancer patients in comparison with healthy individuals [24]. Molecular
analysis of cfDNAs has been actively researched in cancer management since previous studies
confirmed that elevated levels of cfDNAs were detected in various kinds of solid tumors regardless of
tumor progression [25]. As cancer progresses, the levels of cfDNAs increase and cfDNAs from tumor
cells are likely to have genomic alterations corresponding to the tumor tissues [25–36]. Since cfDNAs
can be an alternative to the tumor tissue, their utility has been exploited in the management of cancer,
especially for lung cancer, breast cancer, and colorectal cancer (Figure 1).
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Figure 1. Proportion of the publication numbers reporting the use of circulating DNA in cancer
types. This is a modification of Figure 4 in Reference [21], web of science citation reports showing 5800
records for the cancer circulating DNA up to the end of 2018. The most studied cancer subtypes are
lung cancer, breast cancer, and colorectal cancer, in that order.

On the other hand, the actual mechanism of secretion of cfDNAs has not yet been elucidated [17].
At present, cfDNAs are thought to be released from cells, mostly through apoptosis and necrosis,
and possibly also by active secretion [19,37]. In this review, we use the term circulating-tumor DNAs
(ctDNAs) instead of cfDNAs since we focused on circulating DNA fragments directly derived from
tumor cells. In oncology, the use of ctDNAs in clinical practice for diagnosis/prognosis is gaining
importance. For instance, EGFR (epidermal growth factor receptor) mutation testing using ctDNAs
was approved as a companion in vitro diagnostic, while ctDNA testing has been required for the
pre-analytical and analytical phase in the other cancer [38–40]. The approval of molecular analysis of
cfDNAs should open the door for the approval of other tests, not only for the prediction of therapeutic
responses, but also to monitor tumor burden [21]. In our review, we will highlight the applications of
cfDNAs in cancer management (Figure 2), especially in a metastatic setting, and summarize recent
studies about use of cfDNAs as promising biomarkers for lung cancer, breast cancer, and colorectal
cancer. These studies offer evidence in favor of cfDNAs to be used as reliable tools to solve unmet
clinical needs.
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information can be provided by analysis of genetic variants of ctDNAs. In particular, specific genetic
alterations and the volume of ctDNAs can be used for the detection of the minimal residual disease. In
metastatic setting, analysis of ctDNAs might be an alternative to tissue analysis for the identification
of predictive biomarkers for the therapeutic adaptation/response. This schema suggests its clinical
application to guide decision-making in cancer treatment.

2. ctDNAs Are Promising Biomarkers in Oncology

ctDNAs can be advantageous among liquid biopsies owing to improvements in sensitivity of the
techniques to capture ctDNAs. The ctDNAs are at low levels in cfDNAs, and thus highly sensitive
technologies are required for their detection [17,27,41]. The presence of specific mutations in cancer
helps to distinguish ctDNAs from normal cfDNAs. At present, digital-PCR has enabled the detection
of rare mutations in cfDNAs with allele fractions as low as 0.001% in a wild-type background [42].
NGS provides simultaneous characterization of somatic mutations such as single-nucleotide variants,
insertions/deletions, structural rearrangements, and copy-number alterations. Aside from mutational
alteration, epigenetic alterations such as methylation of promoter/enhancer can be measured by
using ctDNAs. The increasing availability and reliability of these techniques has been facilitating
novel, high-sensitivity applications for ctDNAs [19]. It has been reported that molecular analysis
of ctDNAs can guide treatment decision, however, ctDNA concentration values are biased in the
literature, since in most cases, ctDNAs are determined from mutations of a few or a panel of
genes [12,16,17,19,21,26,29,43–45].

Genomic information decides adaptations for targeted therapy. Examples of targeted therapies
include amplification of human epidermal growth factor receptor2 (HER2) for HER2 antibody in breast
cancer and in gastric cancer and activating EGFR mutations for EGFR tyrosine kinase inhibitors (TKIs)
in non-small cell lung cancer (NSCLC) [5,11,13,38,46,47]. In metastatic colorectal cancer (mCRC), KRAS
proto-oncogene, GTPase (KRAS) mutation is responsible for primary resistance to EGFR blockage [6–9].
Genotyping of tumors is recommended as routine practice in clinical oncology. While tissue biopsy is
the gold-standard for genotyping, the feasibility of genotyping of ctDNAs in various kinds of cancer
has been demonstrated [36,48–50].

An advantage of ctDNA testing compared with a tissue biopsy is that it is less invasive and
allows sequential blood sampling. In a metastatic setting, ctDNAs are better diagnostic samples
than single-site biopsied tissue since ctDNAs originate from multiple tumor sites [16,17,25,30,51].
For example, in the diagnosis of lung cancer, the lack of available tissues for molecular profiling,
inaccessible tumor location, and the risk of complications in case of adverse events with image-guided
biopsies are serious limitations for a tissue biopsy [52]. Delays often occur in tissue biopsy. In a
prospective study of EGFR genotyping in advanced lung cancer, the median test turnaround time for
tissue biopsy was 12 (1–53) days for a new diagnosis of non-squamous, non-small cell lung cancer. In
contrast, the median time was 3 (1–7) days for ctDNA testing for the same [53]. ctDNA testing is cost
effective as compared to tissue biopsy, which has the added risk of complications [52].

The alteration of ctDNAs reflect real time information which occurs in vivo. The half-life of
ctDNAs in circulation has been estimated to be between 16 min and 2.5 h [19]. It has been reported
that ctDNAs are ideal biomarkers to monitor response to therapy and emergence of secondary
mutations associated with resistance to therapy, revealing heterogeneity and clonal evolution in cancer
progression [12,16,25,26,29,39,40,45,51,54–78]. Thus, ctDNA testing is an appealing approach for the
genotyping of individual tumors. Quantitative and molecular analysis of ctDNAs enables assessment
of the dynamic changes like a ‘real-time’ snapshot of the disease.
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3. Use of ctDNAs in Cancer Management

3.1. Lung Cancer

EGFR mutations are commonly observed in NSCLC and present in almost 50% of patients with
advanced NSCLC [79,80]. Activating EGFR mutations are mainly the exon 19 deletions (Del19) and
the L858R point mutation in exon 21, which are known to be the most important predictive factors for
sensitivity to EGFR TKIs and are used for selection of EGFR TKIs in NSCLC [5,81]. First-generation TKIs,
such as erlotinib and gefitinib, target the receptor via reversible binding of tyrosine kinase domain, while
second-generation TKIs, such as afatinib, covalently bind the target [70]. Response and progression-free
survival (PFS) with EGFR TKIs are superior to standard chemotherapy in NSCLC with activating
EGFR mutations [39,46]. Detection of activating EGFR mutations for NSCLC by ctDNA testing shows
high concordance with those by tissue biopsy, especially in specificity [39,40,49,53,60,65,82–86]. A
meta-analysis examining 27 studies conducted between the years 2007 and 2015 demonstrated a pooled
sensitivity of 0.62 (95% confidence intervals (CI), 0.51–0.72) and 0.96 (95% CI 0.93–0.98) for specificity
in EGFR genotyping in NSCLC [49]. While tissue biopsy often provides limited and low-quality
material for genotyping at the time of progression, monitoring of active EGFR mutation is described
as a potential prognostic marker for the efficacy of EGFR TKIs [39,76,78,86]. High performance of
characteristics of EGFR mutation by ctDNA testing was demonstrated in a real-world setting.

The substitution of threonine to methionine at amino acid position 790 (T790M) in exon 20 of
EGFR gene reduces binding of first- and second-generation EGFR TKIs to the ATP-binding pocket
of EGFR, thereby reducing response. T790M mutations account for approximately 50%–60% of the
acquired resistance mechanisms [80]. Detection of T790M mutation by ctDNA testing has proved to
be challenging due to low abundance in blood before the beginning of the treatment [87,88]. On the
other hand, it has been reported that T790M mutations by ctDNA testing are observed in the course
of treatment [59,66]. The third generation TKIs such as rociletinib (CO-1686, previously known as
AVL-301) and osimertinib (previously known as AZD9291) target both activating EGFR mutations
and T790M mutations [47,67,89–91]. Osimertinib was approved for patients with acquired T790M
mutations, and the detection method for acquired T790M mutation includes both a tumor-tissue biopsy
and ctDNA testing while testing the tumor tissue is the recommended method. Molecular analysis
of ctDNAs allowed ongoing genomic analysis for patients on third-generation TKIs [62,70,92]. For
instance, C797S mutation was identified as a novel key driver of resistance to osimertinib, while L798I
mutation was reported in the resistance to rociletinib [62,70]. These studies showed that ctDNA testing
could reveal clonal evolution and resistance to therapies, suggesting further implementation of ctDNA
testing in clinical practice for lung cancer therapy in the near future.

3.2. Breast Cancer

Breast cancer is a heterogeneous disease [93]. Breast cancer is clinically categorized into
three major subtypes, which show distinct characteristics and reflect patient prognosis: hormone
receptor (HR)-positive type (oestrogen receptor [ER]+, progesterone receptor [PgR]+/−, and HER2-),
HER2-positive type (ER-, PgR +/−, and HER2+), and triple-negative (TN) type (ER-, PgR-, and
HER2-) [94]. Interestingly, it was reported that variations of somatic mutations across molecular
subtypes are observed by molecular analysis of ctDNAs [95].

Endocrine therapy (ET) for breast cancer was the first ever targeted therapy used in any type of
cancer. ET-based regimens form the backbone of the treatment for HR-positive type, while anti-HER2
treatment works for HER2-positive type [13,96]. ET includes a variety of agents like selective ER
modulator (e.g., tamoxifen), selective ER down-regulator (e.g., fulvestrant), and aromatase inhibitors
(AIs) (e.g., exemestane, letrozole, anastrozole). Today, combinations of additional drugs to ET have been
developed to overcome resistance to acquired ET, for example, phosphatidylinositol 3-kinase (PI3K)
inhibitors (e.g., buparlisib, alpelisib, taselisib), mammalian target of rapamycin (mTOR) inhibitors (e.g.,
everolimus, temsirolimus), and cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors (e.g., palbociclib,
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ribociclib, abemacilib) [97]. However, no specific biomarkers for the use of these new agents have
been identified.

AIs are the current recommended first-line choice for ET [97]. One of the mechanisms of resistance
to AIs is the activating mutations in the ligand-binding domain of ESR1, the gene coding for the ERα [98].
While ESR1 mutations rarely occur in primary breast cancer, enrichment of ESR1 mutations is observed
in metastatic breast cancer (MBC) [98,99]. Notably, ESR1 mutations (e.g., Y537C/S/N, D538G) are
frequently sub-clonal with high levels of polyclonality [100–102]. Several groups observed the existence
of ESR1 mutations in MBC by ctDNA testing, suggesting that ctDNAs are a good substrate for detection
of ESR1 mutations [99,101–104]. On the other hand, ESR1 epigenetic silencing potentially affects
response to AIs. It was reported that ESR1 methylation in ctDNAs could be a potential biomarker for
response to everolimus/exemestane treatment [105]. With regards to patient outcome, it was reported
that ESR1 mutations in ctDNAs are associated with inferior outcomes [106–108]. Contrary to these
studies, a phase III PALOMA-3 study for the assessment of palbociclib and fluvestrant efficacy reported
that prediction of clinical outcome is limited by using ESR1 mutations in plasma samples [109,110].

Together with ESR1, PIK3CA, the p110 isoform of PI3K, is regarded as a promising biomarker.
PIK3CA mutations are frequently observed in HR-positive MBC and are associated with activation of
PI3K pathway [111]. In a phase III study that was the first randomized clinical trial involving PI3K
inhibitors in MBC, detection of PIK3CA mutation by ctDNA testing showed improvement in PFS with
buparlisib plus fluvestrant compared with fluvestrant alone (4.6 month vs. 1.5 month; hazard ratio (HR)
0.58, 95% CI 0.32–1.05, log-rank p = 0.036), while there was no significant difference in PFS between the
PI3K pathway activated group and non-activated group identified by tissue sample sequencing [112].
While prognostic value of PIK3CA has not been elucidated in ET including new developing drugs,
O’Leary et al. showed that PIK3CA ctDNA levels after 15 days’ treatment with palbociclib and
fluvestrant strongly predicts PFS (HR 3.94, 95% CI 1.61–9.64, log-rank p = 0.0013) [109,113].

HER2 amplification is a critical biomarker conferring sensitivity in combination with anti-HER2
therapy [13]. It was demonstrated that the molecular analyses of ctDNAs could reveal the existence of
amplified HER2 in ctDNAs [114]. However, sensitivity for HER2 detection in ctDNAs was relatively
low [114]. On the other hand, it was reported that longitudinal gene-panel ctDNA sequencing could
reveal the mechanism of resistance to pyrotinib, a TKI which has been developed for HER2-positive
tumors [61]. In a phase II clinical trial that aimed to assess clinical benefits of neratinib, pan HER
inhibitor in HER2-mutated non-amplified MBC, ctDNA HER2 mutant variant allele frequency was
predictive of response to neratinib [115].

Unfortunately, effective targeted therapy for TN breast cancer has not been investigated yet.
Majority of the TN type has mutations in breast cancer susceptibility gene (BRCA) 1/2. Response and
PFS with olaparib, a poly adenosine diphosphate-ribose polymerase (PARP) inhibitor, is superior to
standard chemotherapy in MBC with BRCA germline mutations (7.0 month vs. 4.2 month; HR 0.58,
95% CI 0.43–0.80, log-rank p < 0.001) [116]. One of the mechanisms of resistance to PARP inhibitor is
from somatic reversion mutations or intragenic deletions that restore the functions of BRCA [117]. It
was reported that BRCA1/2 reversion mutations could be detected by ctDNA sequencing analysis in
patients with ovarian and breast cancer [118].

At present, most of the studies have failed to develop workable criteria of ctDNA testing for
clinical practice in MBC [61,119]. However, molecular analysis of ctDNAs is an appealing alternative
approach for the characterization of tumor molecular heterogeneity and its evolving biology [22,26].
Thus, ctDNA testing may provide important clues to investigate dedicated predictive biomarkers for
new drugs since a wide range of agents are being developed for MBC.

3.3. Colorectal Cancer

Monoclonal EGFR antibodies such as cetuximab and panitumumab are standard agents of
treatment regimens for mCRC, either alone or in combination with chemotherapy. Addition of EGFR
antibodies has improved patient survival [6–9]. In clinical practice, the identification of RAS mutations
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is required before initiating treatment since RAS mutations are regarded as critical biomarkers of innate
resistance to EGFR inhibitors [6]. Currently, determination of RAS mutation status is performed using
formalin-fixed paraffin-embedded tumor tissues. Molecular analysis of ctDNAs can be used as an
alternative to tissue analysis. A meta-analysis examining 31 studies conducted between the years 2000
and 2017 demonstrated a pooled sensitivity of 0.64 (95% CI, 0.61–0.67) and 0.94 (95% CI 0.93–0.96)
for specificity in RAS mutations in CRC [50]. Previous studies have demonstrated RAS mutations
by ctDNA testing as an early marker of therapeutic response [34,45,120]. In addition, the emergence
and the progressive increase of detectable RAS mutations prior to subsequent progression by ctDNA
testing have been demonstrated [25,45,54,71–74].

A treatment strategy for patients who respond and then relapse due to resistance to EGFR
inhibitors is urgently required. Most frequent secondary mutations occur in KRAS and NRAS, which
are presently untreatable as the corresponding proteins are fractious to pharmacological blockage [121].
There are only very few available treatment strategies based on molecular rationale in mCRC after
failure of EGFR blockage. HER2 amplification is an emerging biomarker in colorectal cancer that
confers to combination anti-HER2 treatment and predicts resistance to EGFR blockage, although the
frequency of HER2 amplification is relatively low. It was reported that clinically validated ctDNA
testing could be a reliable diagnostic of HER2 copy number in plasma that predicted response rates to
trastuzumab and lapatinib in mCRC [122]. Upon failure of chemotherapy plus EGFR antibodies, CRC
patients usually stop additional EGFR antibodies, while re-challenge of EGFR antibodies could provide
clinical benefits in molecularly selected patients beyond second line [123]. Interestingly, Parseghian et
al. demonstrated clinical benefits of re-challenge of EGFR blockage by capturing the mutant minimal
drop of RAS levels in blood and reinitiating treatment [77].

Recently, Russo et al. reported that the profile of the LMNA-NTRK1 rearrangement in ctDNAs
paralleled tumor response and resistance to entrectinib (RXDX-101, previously known as NMS-E628), a
potent pan tropomyosin-related kinase (TRK), ALK, and ROS1 inhibitor [124]. It was demonstrated that
molecular analysis of ctDNAs in CRC patients could provide new information of mutation status during
the course of treatment and reveal resistance mechanisms [20,25,45,54,71–74]. These studies suggested
the usefulness of application of ctDNAs for guiding treatment decision in CRC [20,34,54,71,74,77,125].

4. Conclusions and Future Perspectives

In oncology, ctDNAs are promising biomarkers to guide clinical decision-making. Several clinical
studies have been designed to further explore the utility and feasibility of this approach. Currently,
there is an unmet need for predictive biomarkers of response to immune check point inhibitors such
as the programmed death ligand 1 (PD-L1) inhibitors, programmed death 1 (PD1) inhibitors, and
CTLA-4 antibody. High alterations in cfDNAs were related to the favorable outcomes with checkpoint
inhibitor-based immunotherapy across various histologies [126]. For instance, tumor mutational
burden (TMB) from cfDNAs was reported as a predictive biomarker for PFS in patients receiving
atezolizumab (an anti PD-L1) in NSCLC [127]. ctDNA testing is used to accurately and reproducibly
measure TMB, suggesting that ctDNAs can be a predictive biomarker in deciding the adaptation of
immunotherapy. Although we focus on the use of ctDNAs in cancers with advanced stages in this
review, the utility and feasibility of ctDNAs have been demonstrated in cancers at early stages as
well. Further applications of ctDNAs in clinical practice require optimization, standardization, and
validation of measuring ctDNAs for each purpose. Broadening our knowledge of ctDNAs, including
prior knowledge of actual kinetics, will offer opportunities for non-invasive cancer management that
opens new avenues for clinical practice in the near future.
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