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Abstract: Poisoning is a significant cause of injury-related death worldwide. Dialysis is usually
ineffective in removing the toxin once it has been absorbed because of drug protein binding and high
volumes of distribution. In this work, we explore whether the addition of liposomes to peritoneal
dialysate could extract protein bound amitriptyline. Liposomes were prepared using the thin film hy-
dration method. In the in vitro experiment, 3 mL of 20% albumin with a concentration of 6000 nmol/L
amitriptyline in a proprietary dialysis cartridge was dialysed against 125 mL of phosphate-buffered
saline with and without 80 mg 1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPG) liposomes. In
the in vivo arm, peritoneal dialysis was undertaken in 6 rats with pH gradient liposome augmented
dialysate after intravenous amitriptyline injection. Peritoneal blood flow was estimated by CO2

extraction. Total amitriptyline extracted was compared to freely dissolved (non-protein bound)
and total amitriptyline perfusing the membrane during the peritoneal dwell. Mean liposome size
for DOPG and acidic centre pH gradient liposomes was 119 nm and 430 nm, respectively. In the
in vitro experiment, more amitriptyline was extracted into the liposome containing dialysate than
the control dialysate (40 +/− 2 nmol/L vs. 27 +/− 1 nmol/L). In the in vivo experiment, the total
amitriptyline in dialysate was 5240 +/− 2750 nmol. Mean total free amitriptyline perfusing the
peritoneal membrane was 93 +/− 46 nmol. Mean total blood amitriptyline perfusing the peritoneal
membrane was 23,920 +/− 6920 nmol. Two of the six animals were excluded due to overestimation
of peritoneal blood flow. This exploratory work suggests the addition of liposome nanoparticles to
peritoneal dialysate extracted protein bound amitriptyline from blood.

Keywords: liposomes; poisoning; peritoneal dialysis

1. Introduction

Poisoning is a significant cause of injury related death worldwide [1,2]. There are few
specific antidotes, and treatment often consists of supportive care while toxins are cleared
endogenously. Extracorporeal treatments in poisoning involve removing blood from the
body, then applying a therapy to augment removal of the toxin from the externalised blood.
While such therapies are theoretically attractive, it is not usually possible to meaningfully
augment removal with extracorporeal therapy once a toxin has been absorbed. Currently,
extracorporeal treatments are used in only 0.1–0.5% of exposures in the United States [3,4].
The most commonly used extracorporeal therapy is haemodialysis, where blood is dial-
ysed in an extracorporeal circuit across a semipermeable membrane. Haemodialysis is
recommended for only a few specific intoxications [5], and peritoneal dialysis is not recom-
mended for any intoxications. Dialysis is explicitly proscribed in tricyclic antidepressant
intoxication [6].

Two main factors limit the usefulness of dialysis in poisoning. Firstly, blood concen-
trations of toxins are often low relative to whole body toxin load. This means neither the
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extracorporeal dialysis circuits nor the peritoneal membrane cannot remove meaningful
amounts of toxin at the blood flows presented to them. The volume of distribution of a
drug or toxin is the apparent volume a given amount of a drug is dissolved in, given its
blood concentration; the higher the volume of distribution, the less of that drug is in blood
relative to the total body load. Dialysis is suggested to be ineffective for intoxication for
toxins with volumes of distribution greater than 2 L per kilogram of body weight [7].

Secondly, free concentrations in blood are frequently low relative to total blood con-
centration due to blood protein binding. During dialysis only freely dissolved toxin can
move across the dialysis membrane. Protein binding of toxin in blood reduces the freely
dissolved concentration and decreases the usefulness of dialysis. Dialysis is suggested to
be ineffective when >80% of the toxin in blood is bound to proteins [7].

Preclinical investigations have evaluated three strategies to mitigate the effect of
protein binding in poisoning:

(a) Introducing a nanoparticle toxin scavenger into dialysate. This reduces dialysate toxin
concentrations, thus maintaining the gradient across the membrane, driving toxin
removal [8].

(b) Introducing a competitor for blood protein binding sites, often at the point of blood
flowing into the dialysis circuit. This increases free toxin concentrations on the blood
side of the dialysis membrane, increasing the gradient driving removal [9].

(c) Increasing the dialysate flow rate relative to blood flow rate haemodialysis circuits.
This reduces dialysate toxin concentrations thus maintaining the gradient across the
membrane, driving toxin removal.

This paper presents exploratory work to investigate whether the first of these strategies
could mitigate the effect of protein binding for a highly bound toxin using amitriptyline as
a model drug. Amitriptyline was chosen as it has a high volume of distribution, is highly
bound to protein in plasma [10], and as a lipophilic weak base is sequestered effectively
both by acidic centre pH gradient liposomes and liposomes which bind by electrostatic
interaction in the membrane.

1.1. Liposomes

Liposomes are nano-sized spherical vesicles of phospholipid bilayer with aqueous
cores. Liposomes have been widely used in the pharmaceutical industry for drug delivery.
The use of liposomes as agents of detoxification is a modification of this traditional use.
Rather than being loaded with drug in vitro for drug delivery, administration of in vitro
“empty” liposomes aims to create an avid toxin binding sump. Liposomes can to bind the
toxin through lipophilic or electrostatic interactions in the membrane, or in a pH-controlled
liposome core via the ion trapping phenomenon whereby the extra-liposomal unionised
drug molecules can enter the liposomes and become entrapped in the aqueous centre.
For a weakly basic drug, once in the liposome core with a low pH the drug will become
ionised and thus cannot diffuse out from the lipid bilayers. Polyethylene glycol is often
attached to a small proportion of phospholipids to decrease protein binding in vivo. These
mechanisms are demonstrated in Figure 1 [11].

1.2. Liposomes in Dialysis

Protein bound uraemic toxins (PBUTs) are gastrointestinal bacterial metabolites of
tyrosine and tryptophan that accumulate in patients treated with long term dialysis for
renal failure. Dialysates containing liposomes have been demonstrated to extract PBUTs
from binding proteins in blood and modelled blood compartments [8].

Liposome supported peritoneal dialysis (LSPD), where peritoneal dialysate is enriched
with acidic centre pH gradient liposomes, has ameliorated poisoning in several animal
models [12,13]. Markedly increased dialysate drug concentrations for LSPD compared with
non-augmented peritoneal dialysate in rat models have been demonstrated for haloperidol,
verapamil and amitriptyline [12,13]. Previously estimated median extraction rate for
amitriptyline from blood into LSPD dialysate is 33% in a rat model [13], significantly more
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than the reported single figure free fraction of amitriptyline in blood. This work generated
the hypothesis explored in this experiment.
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Figure 1. Mechanisms by which liposomes interact with drugs of varied physicochemical proper-
ties: (1) electrostatic interactions, (2) lipid-lipid interaction, and (3) ion-trapping of lipophilic weak 
bases or acids driven by transmembrane pH-gradients. Reproduced with permission from Ref. [11]. 
Copyright 2018 Elsevier Inc. Cambridge, MA, USA. 
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Figure 1. Mechanisms by which liposomes interact with drugs of varied physicochemical properties:
(1) electrostatic interactions, (2) lipid-lipid interaction, and (3) ion-trapping of lipophilic weak bases or
acids driven by transmembrane pH-gradients. Reproduced with permission from Ref. [11]. Copyright
2018 Elsevier Inc. Cambridge, MA, USA.

1.3. Hypotheses Explored in This Work

A peritoneal dialysis model was used to further this hypothesis both as it was the
model used in our initial work and the proximity of liposome augmented peritoneal
dialysis to clinical use [14]. First, an in vitro experiment with liposome enriched dialysate
measuring total and free drug concentrations was used to evaluate feasibility, prior to
an animal experiment. Next, a rat peritoneal dialysis experiment was adopted, where
CO2 clearance into dialysate was used to estimate peritoneal blood flow. If the product of
free drug concentration and peritoneal blood flow is less than the amount extracted into
peritoneal dialysate, then protein bound drug must have been extracted. A calculation
of the percentage of the total drug delivered to the peritoneal membrane extracted into
dialysate can also be made.

2. Results
2.1. Liposome Characteristics

After manufacture, the mean acidic centre pH gradient liposome size was 430 nm with
a polydispersity index (PDI) of 0.48 and a mean zeta potential of −14.5 millivolts (mV).
The mean DOPG liposome size was 119 nm, with a PDI of 0.1 and a mean zeta potential of
−33.0 mV.

2.2. In Vitro Experiment

Concentrations were measured 3 times for each sample. The initial concentration of
amitriptyline in 3 mL of 20% albumin was 6007 +/− 551 nmol/L. Free concentration in
3 mL 20% albumin was 160 +/− 10 nmol/L.

More amitriptyline was extracted into the liposome containing dialysate than the
control dialysate. The free concentration of amitriptyline in the liposome containing
dialysate was approximately half that of control. Concentration at the end of the dwell in
control dialysate was 27 +/− 1 nmol/L. Concentration at the end of the dwell in liposome
augmented dialysate was 40 +/− 2 nmol/L. A further 10% of the 18 nmol of amitriptyline
placed in the dialysis cartridge was extracted into liposome enriched dialysate, relative to
control. Free concentration in liposome augmented dialysate was 14 +/− 1 nmol/L.

These results are demonstrated graphically in Figure 2.
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Figure 2. Amitriptyline concentrations by group, in vitro experiment.

2.3. In Vivo Experiment

2 animals were excluded based on estimated PBF > 5.4 mL/min. For the remaining
4 animals, mean PBF was measured as 3.6 +/− 1.2 mL/min. After five minutes, a greater
amount of amitriptyline was in dialysate, compared to freely dissolved amitriptyline perfus-
ing the peritoneal membrane. The total amitriptyline in dialysate was 5240 +/− 2750 nmol.
Mean total free amitriptyline perfusing the peritoneal membrane was 93 +/− 46 nmol. Mean
total blood amitriptyline perfusing the peritoneal membrane was 23,920 +/− 6920 nmol.
These concentrations are shown graphically in Figure 3. The mean percentage of total
amitriptyline perfusion to the peritoneal membrane that was extracted into dialysate was
23.3 +/− 13.1%.
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3. Discussion

Our results represent promising exploratory work suggesting protein bound tox-
ins may be made more dialysable by introducing an appropriate nanoparticle binder in
dialysate. To move a bound toxin from the blood compartment into a binding nanoparti-
cle in dialysate, it must first dissociate from blood protein. Then, in the freely dissolved
phase in blood, the toxin must move down a concentration gradient across the dialysis
membrane into the freely dissolved phase in dialysate. Throughout this process, the
dialysate free toxin concentration is maintained at a low level as it binds to nanoparticles in
dialysate [15]. Our results support this sequence on two points. In the in vivo experiment,
a much greater amount of amitriptyline was extracted into dialysate than simply perfused
the dialysis membrane as freely dissolved amitriptyline. This is consistent with protein
bound amitriptyline (the great majority of amitriptyline perfusing the membrane) in blood
dissociating from proteins, then moving across the peritoneal membrane into dialysate. In
the in vitro experiment, more amitriptyline was extracted into liposome enriched dialysate,
while the freely dissolved amitriptyline concentration in dialysate was lower relative to
control, consistent with liposome enrichment decreasing free dialysate concentrations.

Liposome enrichment of dialysate is a growing field. In poisoning, previous work
has demonstrated improved blood pressure and verapamil extraction in verapamil toxic
rats managed with liposome enriched peritoneal dialysate [12]. No estimation of whether
verapamil extraction exceeded free toxin delivery to the peritoneal membrane was made
in this study. Liposome enrichment has increased dialytic extraction of the endogenous
protein bound uraemic toxins which accumulate in renal failure in both in vitro and in vivo
models [15–18]. Clinical study is most advanced in the management of hyperammon-
aemia secondary to liver failure. The use of acidic centre pH gradient liposomes to extract
ammonia into peritoneal dialysate in this setting is currently in phase 2 studies [14]. Devel-
opments in the use of liposomes for this nascent indication may precipitate further work
into potential use in poisoning.

While these results are positive with for the limitation of protein binding on dialysis,
there is no mitigation on the limitation of high volume of distribution. Attempts by our
group to mitigate this limitation by introducing toxin binders into the vascular space have
thus far been unsuccessful [19]. Further work in this regard is planned.

Our work is preliminary and holds many limitations. Small numbers in the in vivo
arm and a small number of observations in the in vitro experiment make these findings
exploratory rather than hypothesis confirming. Numbers were small in the in vitro ex-
periment as we wished only to confirm presence of a signal before progressing to in vivo
work. We initially planned to show a large effect and report a p value with the in vivo work.
Excluding subjects based on overestimates of peritoneal blood flow led to a reduction in
numbers and confidence interval reporting being more appropriate.

Our method to calculate peritoneal blood flow has a systematic tendency to overes-
timate, given the potential for anaerobic CO2 production from bicarbonate in dialysate.
We excluded values for PBF > 100% over those previously described and accepted other
values on the basis that an overestimate of PBF would bias against the effect of interest.
Different liposomes were used in the in vitro and in vivo experiments. While acidic centre
pH gradient liposomes have been demonstrated to have a higher binding capacity for
amitriptyline [12], the long dwell time in the in vitro experiment was thought to potentially
degrade this binding capacity. DOPG liposomes which bind amitriptyline via electrostatic
attraction in the membrane [20] were thus used. While there was no control arm to lipo-
some enriched dialysate in the in vivo experiment, liposome augmented dialysates have
previously been demonstrated increase amitriptyline extraction [12]. Much longer dwell
times are used clinically for peritoneal dialysis than in the present experiment. Any future
work may use longer dwell times, particularly given the potential for saturation of liposome
toxin binding.
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4. Materials and Methods
4.1. Liposome Preparation

1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPG) liposomes and acidic centre pH
gradient liposomes were prepared using the thin film method as described previously [13].
In brief, phospholipids and cholesterol were dissolved in an organic solvent, then this
solvent was evaporated off under hypoxic conditions. The resultant thin film was then
hydrated in an aqueous medium. The tendency of the system toward lowest Gibbs free
energy results in the formation of spherical bilayers of phospholipid in suspension. The
suspension was then ultrasounded and filtered to yield liposomes of an appropriate size.
Liposome size and charge were measured using a Malvern Nano ZS Zetasizer, (Malvern
Instruments, Malvern, UK).

4.2. In Vitro Experiment

3 mL of 20% albumin with an estimated concentration of 6000 nmol/L amitriptyline
was placed in a proprietary dialysis cartridge (Slide-A-Lyzer, Thermo Fisher Scientific,
Waltham, MA, USA) which was then placed in a 125 mL of phosphate-buffered saline
(control) or 125 mL phosphate-buffered saline with 80 mg DOPG liposomes. Dwell time
was 12 h. DOPG liposomes were chosen as the electrostatic mechanism via which these
liposomes bind amitriptyline, as it would not be expected to degrade over the dwell time.
At the end of the dwell, total and unbound concentrations were measured in both the
cartridge and liposome augmented dialysate. Total concentration only was measured in
control dialysate.

4.3. In Vivo Experiment
4.3.1. Animals

6 Female Sprague Dawley rats were studied with an age range of 119–222 days and
weight range 310–435 g. Animals were kept in single gender enclosures with no chance
of pregnancy. Twelve-hour light-dark cycles (lights on/off at 07:00/19:00 h) and climate
control were maintained. Access to feed and water was allowed ad libitum until the day of
animal utilization.

4.3.2. Animal Manipulations

Ethical approval for all animal manipulations was given by the Ruakuara Animal
Ethics Committee. On the day of study animals were sedated with ketamine at 50 mg/kg
(Mayne Pharma Ltd., Auckland, New Zealand), and xylazine at 4 mg/kg (Bayer Health-
Care, Leverkusen, Germany) via intraperitoneal injection. Animals were then placed on a
warming board at 38.5 ◦C. An intravenous cannula was placed in the tail vein using a nee-
dle over catheter technique (24G × 0.75 in Insyte, BD, Switzerland). Following dissection
of the anterior neck, a tracheostomy tube (14G × 1.77 inch Insyte, BD, Switzerland) was
placed under direct vision. Mechanical ventilation using a small animal ventilator (Inspira
ASV, Harvard Apparatus, Holliston, MA, USA) was then undertaken with oxygen as the
inspired gas admixed with 2% isoflurane (Merial, Auckland, New Zealand) via a vaporizer
(Somnosuite Small Animal Anesthesia System, Kent Scientific Corporation, Torrington,
CT, USA) to maintain anaesthesia. ECG electrodes (MLA1213 Needle Electrodes, AD
Instruments, Bella Vista, Australia) were placed in 3 limbs of the rat for continuous ECG
monitoring (Animal Bio Amp, AD Instruments, Bella Vista, Australia).

A carotid arterial line was placed under direct vision using a catheter over needle
technique and tied off proximally and distally (24G × 0.75 inch Insyte, BD, Switzerland)
allowing for arterial blood sampling and monitoring of arterial pressure (BP Amp, AD
Instruments, Bella Vista, Australia). Anaesthesia, mechanical ventilation, and BP and ECG
monitoring were continued for the duration of the experiment.

A 1 cm incision was made in the ventral midline 2 cm below the xiphisternum for
placement of a peritoneal dialysis catheter. The abdominal muscles were grasped and
elevated with subsequent dissection into the peritoneal space. A 10 cm fenestrated catheter
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was directed into the right lower quadrant and the incision in the abdominal wall, then the
peritoneal space was sealed via a clamp over the incision.

4.4. Experimental Protocol

Following completion of animal manipulations and collection of baseline metrics
amitriptyline (Sigma Aldrich, Sydney, Australia) dissolved in 0.9% NaCl (2.5 mg/mL) was
injected into the tail vein over 2.5 min at a dose of 5 mg/kg. The end of amitriptyline
injection was nominated time 0 (T0).

At 10 min following drug administration (T10) blood was drawn for arterial blood
gas evaluation, and blood amitriptyline concentration. Simultaneously 20 mL of dialysate/
liposome suspension was injected into the peritoneal cavity over 30 s and manually agitated.

At T 15 min (T 15) a further blood sample was drawn for arterial blood gas analysis,
and blood amitriptyline concentration measurement. Peritoneal dialysate was likewise
drawn for measurement of PCO2 and dialysate amitriptyline concentration.

After the manipulations undertaken at T15, mechanical ventilation was ceased and
a terminal bleed was taken from the carotid arterial line. Death was confirmed by absent
respiratory efforts and examination of the ECG trace.

4.5. Amitriptyline Assay/CO2 Measurements

Amitriptyline concentrations were measured using an LCMS method (Sciex 3200 MSD
Aglient 1200 series LS, Sciex, (Redwood City, CA, USA)) with isotope matched internal
standards. The whole blood sample was prepared by a protein crash with acetonitrile,
followed by centrifugation after which an aliquot was presented to the instrument for
analysis. A four-point matrix-matched standard curve was used to calibrate the analyser
for each run with two levels of quality control. The coefficient of variation on this measure-
ment was 6.6% and the assay had linear correlation with amitriptyline concentration up to
40,000 nmol/L. Free fraction was measured as that in solution after centrifugal ultrafiltra-
tion of a pre-acetonitrile sample for 30 min at 37 degrees Celsius at 2000× g. The exclusion
membrane was rated to exclude molecules >30,000× g/mole.

Blood and peritoneal partial pressure of CO2 was measured using the iSTAT Alinity
device and CG4+ cartridges (Abbott Point of Care, Princeton, NJ, USA).

4.6. Measurement of Peritoneal Blood Flow

Carbon dioxide (CO2) clearance into peritoneal dialysate over the initial 5 min of
dialysis has been demonstrated to have a correlation with other measures of peritoneal
blood flow (PBF) in the rat model [21]. It was assumed there was no change in dialysate
volume (20 mL) over the 5 min dwell period, and that all CO2 present in dialysate was the
result of transfer of dissolved CO2 across the peritoneal membrane. Equation (1) is taken
from Grzegorzewska et al. and was used to calculate peritoneal blood flow.

PBF = (volume in dialysate/time) × [ln (mean blood pCO2) − ln (mean blood pCO2 − dialysate pCO2 at 5 min)] (1)

A limitation of using pCO2 to calculate PBF is the potential for overestimation when
bicarbonate diffusing into dialysate is metabolised to CO2. While reported not to occur
if dialysate pH is >7, Grzegorzewska noted evidence of anaerobic CO2 production over
longer dwells, with dialysate pCO2 exceeding that of blood in some subjects. Given the
short dwell time we chose to deal with this by excluding subjects where the estimation of
PBF was >5.4 mL/min, greater than twice that measured in previous work.

Total and free amitriptyline delivery were calculated as the mean total and free blood
concentrations over the time of the peritoneal dwell multiplied by PBF. Total amitriptyline
in dialysate was calculated as the end concentration in dialysate times dialysate volume.
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4.7. Statistics

This is exploratory work on small numbers and as such no p values are reported.
Values are reported as means +/−95% confidence intervals.

5. Conclusions

Exploratory work suggests addition of liposome nanoparticles to dialysate extracted
protein bound amitriptyline from blood into peritoneal dialysate.
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