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Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian repro-
ductive function in both males and females. It acts via G-protein coupled receptors on
gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteiniz-
ing hormone and follicle-stimulating hormone. These receptors couple primarily via G-
proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH
effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH
causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects
on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl
cyclases that generate cGMP. Here we provide an overview of these pathways.We empha-
size mechanisms underpinning pulsatile hormone signaling and the possible interplay of
GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide
signaling.

Keywords: GnRH, G-proteins, phospholipase C, adenylyl cyclase, guanylyl cyclase, ERK, PACAP, natriuretic peptide

GONADOTROPIN-RELEASING HORMONE RECEPTORS AND
EFFECTORS
Gonadotropin-releasing hormone (GnRH) (pGlu-His-Trp-Ser-
Tyr-Gly-Leu-Arg-Pro-Gly-NH2), also known as luteinizing
hormone-releasing hormone (LHRH) or GnRH I, is a hypothal-
amic neuropeptide that mediates central control of reproduction
in both males and females. It is synthesized in hypothalamic neu-
rons and secreted from the hypothalamus into the hypophyseal
portal circulation in pulses which are most often of a few minutes
duration. It acts via GnRH receptors (GnRHRs) on gonadotropes
within the anterior pituitary, stimulating the synthesis and secre-
tion of luteinizing hormone (LH) and follicle-stimulating hor-
mone (FSH), thereby controlling gametogenesis and steroido-
genesis (1–6). GnRH is absolutely required for reproduction as
demonstrated by mutation of the genes encoding GnRH or its
receptor (7–9).

Molecular phylogeny of GnRH ligands shows that there are
three distinct forms, GnRH-I, GnRH-II, and GnRH-III that arose
from a common origin which predates vertebrates (10). Most
vertebrate classes have GnRH-I and GnRH-II (1, 3, 11), whereas

Abbreviations: Ca2+, calcium; cAMP, cyclic adenosine 3′,5′-monophosphate; EFP,
emerald fluorescent protein; EGF, epidermal growth factor; ERK, extracellular
signal-regulated kinase, here used to denote ERK1 and ERK2; FAK, focal adhesion
kinase; FSH, follicle-stimulating hormone; GFP, green fluorescent protein; GnRH,
gonadotropin-releasing hormone also known as GnRH I; GnRHR II, gonadotropin-
releasing hormone II, also known as chicken GnRH; GnRHR, GnRH receptor;
GPCR, G-protein coupled receptor; GRK, G-protein coupled receptor kinase; IP,
inositol phosphate; JNK, c-Jun N-terminal kinase; LH, luteinizing hormone; MAPK,
mitogen-activated protein kinase; MEK, MAPK/ERK kinase; NFAT, nuclear factor
of activated T-cells; NO, nitric oxide; PKC, protein kinase C; PLC, phospholipase C.

GnRH-III has only been found in teleosts (12–23). Interestingly,
the GnRH-I sequence has diverged in the vertebrate lineage,
whereas the sequences of GnRH-II and GnRH-III are completely
conserved across vertebrates (3, 10, 24).

CLINICAL USES
Gonadotropin-releasing hormone analogs are used clinically,
either to mimic its stimulatory effects, such as the treatment of
infertility with pulsatile administration of a natural sequence
of GnRH to induce ovulation or spermatogenesis (3, 25), or
to block its effects. The latter can be achieved either using
GnRH antagonists (1–6, 26, 27), or, paradoxically, with sus-
tained exposure to GnRH (or metabolically stable GnRH agonists),
which causes stimulation followed by desensitization of GnRHR-
mediated gonadotropin secretion (3, 25). In both cases blockade
or desensitization of GnRHR-mediated gonadotropin secretion
ultimately reduce circulating levels of gonadotropins and gonadal
steroids, and in this fashion GnRH analogs can be used to treat
sex hormone-dependent neoplasms such as those of the prostate,
ovary, endometrium, or mammary glands (1–6, 28).

GONADOTROPIN-RELEASING HORMONE
GnRH receptors belong to the rhodopsin-like G-protein coupled
receptor (GPCR) family, and are thus characterized by a seven
trans-membrane α helical domain structure (3, 29, 30). GnRHRs
can be classified into three groups based on sequence homology.
All of the cloned mammalian GnRHRs are in groups I or II (3,
24) and the type I GnRHRs of humans, rats, mice, pigs, sheep, and
horses have >80% amino acid sequence homology (31). Except in
certain primate species, notably the marmoset, rhesus, and green
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monkey, the type I receptor is the functional and predominant
form expressed in the mammalian gonadotrope, and in some
species it is also expressed in extra-pituitary tissues including
breast, gonads, prostate, and uterus (32, 33). This extra-pituitary
expression is also evident in numerous cancers, including breast,
prostate and ovary, and on in vitro or in vivo tumor models GnRH
analogs or cytotoxic derivatives show promise as anti-proliferative
and/or pro-apoptotic agents (34–40).

In common with many other GPCRs,GnRHRs of gonadotropes
and gonadotrope-lineage cells act primarily via Gαq/11 to activate
phospholipase C (PLC), thus elevating cytoplasmic [Ca2+] and
activating protein kinase C (PKC) isozymes, both of which are
important for GnRHR-mediated effects on gonadotropin synthe-
sis and secretion (Figure 1) (2–6, 29, 31, 41–46). The mammalian
type I GnRHR is a structurally and functionally unique member
of the GPCR family in that it lacks an intracellular cytoplasmic
C-terminal tail (3, 47, 48). For many GPCRs, the C-tail plays a key
role in desensitization and trafficking (49, 50). The C-terminal
tail of typical GPCRs is phosphorylated on Ser and Thr residues

following activation, generating a docking site for non-visual
arrestins (arrestins 2 and 3) that prevent G-protein activation,
a process termed homologous receptor desensitization. The phos-
phorylated tails also act as adapters targeting the desensitized
receptors for internalization, a process that can lead to receptor
down-regulation, or recycling and resensitization (49, 51). The
absence of a C-terminal tail would therefore imply an inability of
the type I mammalian GnRHR to undergo agonist-induced phos-
phorylation or bind arrestins, with relatively slow internalization
and resistance to rapid desensitization, all of which have been con-
firmed experimentally (51–61). In addition, fusing the C-terminal
of various GPCRs to the type I mammalian GnRHR causes rapid
desensitization and internalization (51, 54, 62–65). Both the rat
and human GnRHR internalize in a clathrin-dependent man-
ner, and colocalize with transferrin, which is internalized via
clathrin-coated structures (54, 56, 59). The rat GnRHR internal-
izes in a dynamin dependent manner (64), whereas the human
internalizes independently of dynamin (47). Contrastingly, upon
activation type II GnRHRs do undergo rapid agonist-induced

FIGURE 1 | GnRH receptor signaling networks. (A) Illustrates a generic
signaling network in which a GPCR activates two heterotrimeric G-proteins
(G1 and G2) which activate their cognate effectors (E1 and E2). These directly
or indirectly activate down-stream effectors that influence a range of target
proteins including transcription factors (TF1-4). The transcription factors then
act (typically in combination) to influence expression of numerous target
genes. Note that the network has multiple sites for divergence and
convergence. (B) Shows a GnRH signaling network with the same
architecture; The GnRHR activates Gs and Gq leading to activation of adenylyl
cyclase (AC) and phospholipase C (PLC). AC generates cAMP, stimulating PKA
which activates the transcription factor CREB. PLC leads to activation of PKC,
driving activation of ERK and of ERK-dependent transcription via Sf-1 and
Egr-1. It also elevates the cytoplasmic Ca2+ concentration, driving activation of
calmodulin and its targets, including calcineurin which leads to activation of
the Ca2+-dependent transcription factor NFAT. This cartoon is clearly a vast
oversimplification as important effectors (including calmodulin-dependent
kinases, JNK, p38, and nitric oxide synthase) are not included. Perhaps more

importantly, it also excludes signal dynamics and heterologous regulation,
both of which are important for control of gonadotropes. A simple example of
the latter is given in (C) which includes the PAC1 receptor as a mediator of
PACAP-stimulated AC activation, and the NPRB receptor as a mediator of
CNP-stimulated cGMP accumulation and consequent protein kinase G (PKG)
activation. GnRH can cause PKC-mediated inhibition of PACAP-stimulated
cAMP accumulation and of CNP-stimulated cGMP accumulation (as indicated
by the dashed red lines), raising the possibility that its predominant effect is
actually inhibition of these pathways in gonadotropes exposed to autocrine or
paracrine stimulation of PAC1 and NPRB. Finally, when considering signal
dynamics, it is important to recognize: (a) that GnRH is secreted in pulses, (b)
that the responses illustrated have distinct kinetics, (c) that the kinetics of
convergent pathways are important determinants of GnRH pulse
frequency-response relationships, and (d) that GnRH influences the
expression of many genes encoding components of the GnRHR signaling
pathways, with transcription-dependent feedback loops supporting an
adaptive signaling network.
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phosphorylation, recruit arrestins, and internalize via clathrin-
coated pits (47). The requirement for arrestins and dynamin is
species specific (3, 66, 67), but the presence of the C-terminal tail
is crucial for rapid agonist-induced internalization (60).

Non-mammalian GnRHRs may also activate extracellular
signal-regulated kinase (ERK) in an arrestin-mediated manner.
Arrestins can act as adaptors for signaling molecules, for example
cRaf1 and the ERK mitogen-activated protein kinase (MAPK),
both of which can bind to MAPK/ERK kinase (MEK), and
could therefore participate in MAPK activation (68–72). Arrestin-
mediated ERK signaling appears specific for non-mammalian
GnRHRs; in cells either expressing a mouse type I or a Xenopus
laevis GnRHR, both caused G-protein-dependent ERK activation
but arrestin-mediated ERK activation was only seen with the C-
tail expressing Xenopus GnRHR (73, 74). An interesting possibility
is that the C-terminal tail was lost through evolution because the
GnRH pulses that gonadotropes are exposed to would be too short
to evoke desensitization of a C-tailed receptor, such that there was
no selective advantage for retention of the structure. Alternatively,
its loss may be related to the pre-ovulatory gonadotropin surge
that is driven by GnRH pulses of increasing frequency and possi-
bly also increased amplitude and a failure to return to basal levels
between frequent pulses. Receptor desensitization under such con-
ditions could conceivably prevent the pre-ovulatory gonadotropin
surge, providing a positive adaptive advantage for loss of the rapid
homologous receptor desensitization mechanism.

HETEROTRIMERIC G-PROTEIN COUPLING
In pituitary gonadotropes, GnRHR signaling is primarily mediated
by Gαq/11 subunits, although GnRHR coupling to Gαi and Gαs, as
well as Gαq/11 have also been reported (75–78). Agonist binding
is associated with GTP loading of Gαq/11, which activates phos-
pholipase C β (PLCβ), elaborating the second messengers inositol
1,4,5-trisphosphate (IP3), and diacylglycerol (DAG). IP3 mediates
Ca2+ release from intracellular stores, and DAG causes activation
of PKC isozymes (Figure 1). A more sustained rise of intracellular
Ca2+ occurs via the opening of L-type voltage gated channels and
subsequent Ca2+ influx (1–6, 79). Progressively increasing GnRH
concentrations cause three different Ca2+ responses, subthresh-
olds, baseline oscillations, and biphasic responses (80–82). The
initial spike phase is due to mobilization of Ca2+ from intracellular
stores,which is involved in early GnRH-stimulated LH release (83),
whereas the plateau corresponds to Ca2+ entry through voltage-
dependent Ca2+ channels. The oscillatory responses are generated
through a cytoplasmic Ca2+ oscillator model (84). Rapid effects of
GnRH on exocytotic gonadotropin secretion are mediated by ele-
vation of cytoplasmic Ca2+ and modulated by activation of PKC.
These signaling intermediates, and effectors including calmodulin
and calmodulin-dependent protein kinases (CaMKs),also mediate
chronic effects of GnRH on gene expression.

Gonadotropin-releasing hormone effects on gonadotropin
synthesis are largely mediated through stimulation of MAPK cas-
cades, particularly the ERK pathway (Figure 1) (85), which is
PKC dependent in αT3-1 and LβT2 gonadotrope-derived cells
(79). PKC and ERK mediate the transcriptional effects of GnRH
on the common α-gonadotropin subunit (αGSU) (86–89), as
well as LHβ (90–93) and FSHβ (93–96) subunits. However, there

are conflicting reports that GnRH-mediated LHβ (88) or αGSU
expression (97, 98) are independent of ERK and mediated solely
by Ca2+. There are also gender specific difference in mice with
pituitary specific knockout of ERK1 and 2; females are infertile
due to LH deficiency, and ERKs may play a partial role in FSHβ

transcription in these mice, however male reproductive function
was normal (99).

In addition to activation of ERK, GnRH can activate the JNK
(c-Jun N-terminal kinase), p38, and ERK5 (also known as Big
MAPK; BMK) cascades in different cell models with varying kinet-
ics. GnRH stimulates JNK activity in rat pituitaries, αT3-1 and
LβT2 cells (79, 100, 101). JNK has been reported to be involved in
transcription of the αGSU subunit (102, 103), and the LHβ and
FSHβ subunits (94, 101, 104, 105). JNK-mediated LHβ transcrip-
tion is independent of PKC in LβT2 (90, 105) and COS (106) cells,
with conflicting reports for PKC involvement in αT3-1 cells (85,
107). GnRH also activates p38 in rat pituitaries, αT3-1 and LβT2
cells (91, 94, 103, 104, 108). A role for p38 in gonadotropin sub-
unit transcription is controversial, with no effect being reported
on LHβ, FSHβ, and αGSU subunits (91, 103, 104), although an
effect on FSHβ transcription in LβT2 cells was reported by oth-
ers (94, 108). GnRH has also been shown to activate ERK5 and
stimulate FSHβ transcription in LβT2 cells (109).

GnRH receptors can also activate a number of other pathways in
pituitary gonadotropes, including the adenylyl cyclase (AC)/cyclic
adenosine monophosphate (cAMP)/protein kinase A (PKA) path-
way (79, 110, 111). Borgeat et al. (112) demonstrated that GnRH-
stimulated cAMP production in the rat pituitary, which was later
confirmed by Naor et al. (113). GnRH also stimulates cAMP pro-
duction in LβT2 cells (77, 111, 114), and several heterologous
systems including HeLa, GH3, and COS-7 cells (115–117). How-
ever, this was not replicated in αT3-1 cells or in later studies using
rat pituitaries (45, 118, 119). The coupling mechanism between
the GnRHR and the cAMP pathway has yet to be elucidated. The
GnRHR has been reported to couple to Gαs in rat pituitary cells
(76), and activate cAMP production via Gαs recruitment (77).
However, in αT3-1 cells the GnRHR exclusively coupled to Gαq/11

(120), and activation of Ca2+/calmodulin sensitive AC isoforms
independent of Gαs was proposed as the mechanism of GnRHR-
induced cAMP elevation. In addition, the PKC δ and ε isoforms
were reported to mediate cAMP elevation by GnRH via activation
of AC5 and 7 in LβT2 cells (111). However, a more recent study
using a biosensor to monitor cAMP mobilization in living cells
has demonstrated that GnRH increases cAMP production in αT3-
1 cells, and that the GnRHR directly interacts with SET protein,
which inhibits receptor coupling to calcium and increases cou-
pling to the cAMP pathway, possibly by interfering with Gαq/11

binding to the GnRHR (121). In LβT2 and mouse pituitary cells,
GnRH activates AMP-activated protein kinase (AMPK) via mul-
tiple pathways involving Egr-1 and JNK, and AMPK inhibition
suppresses GnRH-stimulated LHβ transcription (122).

Gonadotropin promoter subunits contain cAMP response ele-
ments (CREs) and this provides a mechanism by which the
cAMP/PKA pathway might activate gonadotropin subunit tran-
scription (Figure 1). αT3-1 cells demonstrate a four- to fivefold
increase in phospho-CREB (CRE-binding protein) in response to
GnRH (123). cAMP stimulates transcription of the mouse, rat,

www.frontiersin.org November 2013 | Volume 4 | Article 180 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Pituitary_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Perrett and McArdle GnRH signaling

and human αGSU genes (124, 125), and a cAMP analog increased
αGSU mRNA levels in rat pituitary cells, but not that of LHβ or
FSHβ (126). However, it appears the MAPK cascade, rather than
the cAMP pathway, is responsible for gonadotropin promoter CRE
activation (90, 100, 107, 127, 128). Here it is important to recog-
nize that CREB can be regulated by MAPKs, CaMKs, and PKC as
well as by PKA (129). c-Jun and ATF-2, which are known sub-
strates of JNK, were shown to bind to the CRE domain of the
αGSU promoter (130). GnRH phosphorylates ATF-2 via p38 and
JNK, and upon phosphorylation ATF-2 binds the CRE element
within the c-Jun proximal promoter and interacts with nuclear
factor Y. Functional ATF-2 is necessary for both GnRH-mediated
induction of c-Jun and FSHβ (131). In addition, GnRH treat-
ment increases expression of ATF-3, which is recruited along with
c-Jun and c-Fos to CREs on the αGSU promoter, and GnRH-
induced αGSU gene expression was completely abolished upon
mutation of these CREs (132). MAPK signaling and ATF-3 CRE
binding are essential for secretogranin II promoter activation by
GnRH (133).

GnRH receptors activate a large number of important signal-
ing pathways, notably, they mediate activation of phospholipases
A2 and D as well as PLC (41). GnRH-mediated intracellular Ca2+

mobilization, acting through calmodulin, also activates kinases
such as Ca2+/CaMKs, phosphatases such as calcineurin and tran-
scription factors including nuclear factors of activated T-cells
(NFATs) (79, 134). GnRHR-induced elevation of intracellular
Ca2+ also activates the nitric oxide synthase (NOS I) cascade (NOS
I/NO/soluble guanylate cyclase) resulting in a rapid increase of
cGMP (135–137). However there is no evidence that cGMP is
involved in GnRH-induced gonadotropin synthesis or secretion
(135) (see subsequent section). GnRH also activates the Wnt/β-
catenin signaling pathway as well as diacylglycerol kinase, proline
rich tyrosine kinase-2, and inhibition of glycogen synthase kinase
(1, 6, 41, 138–140).

In addition to directly activating a number of intracellular
signaling pathways, in some models GnRHRs can also cause a
PKC-dependent proteolytic release of membrane bound epider-
mal growth factor (EGF) receptor ligands, thereby activating EGF
receptors (1, 41), whereas in others GnRHRs induce protein phos-
phatases that apparently inhibit the trophic effects of EGF (78).
Moreover, in HEK293 cells stably expressing the type I GnRHR,
GnRH causes cytoskeletal remodeling, which correlates with sig-
nificant increases in the tyrosine phosphorylation status of a
series of cytoskeletal associated proteins, including focal adhesion
kinase (FAK), c-Src, and ERKs (139). ERK activation is dependent
on formation of a complex with FAK and c-Src at focal adhe-
sion complexes, and induction of the cell remodeling event is
mediated by activation of the monomeric G-protein Rac, reveal-
ing a novel monomeric G-protein-mediated pathway for GnRHR
signaling (139).

PULSATILE GnRH SIGNALING
Gonadotropin-releasing hormone is released from hypothalamic
neurons as pulses causing pulsatile gonadotropin release (141,
142), and these pulses are essential for normal reproduction;
constant GnRH suppresses LH and FSH secretion, and this can
be restored by pulsatile administration (143). GnRH pulses are

typically a few minutes in duration, every 30–120 min according
to the species.

It is well established that the frequency of such pulses is
extremely variable. For example, GnRH pulse frequency varies
over the menstrual cycle with pulses on average every 6 h in mid-
to late-luteal phases and every 90 min during follicular and early
luteal phases (144). Low or intermediate pulse frequencies (pulses
every 30–120 min) cause a greater increase in expression of rodent
LHβ, FSHβ, and the GnRHR as compared to high frequencies
(pulses every 8–30 min) or sustained stimulation (145–151). The
expression of αGSU does not exhibit this bell-shaped frequency-
response relationship and is maximally stimulated by high pulse
frequencies or continuous stimulation (148, 149, 152, 153).

The ability of the gonadotrope to interpret varying pulses of
GnRH has been the focus of much research, given that differ-
ential responses of LH and FSH occur with varying GnRH pulse
frequency,both in vivo and in vitro. In ovariectomized rhesus mon-
keys bearing hypothalamic lesions which reduced circulating LH
and FSH to undetectable levels, hourly pulses of GnRH favored LH
secretion over FSH, whereas pulses every 3 h favored FSH secre-
tion and caused a decline in LH levels (154). Additional in vivo
studies with GnRH deficient men recapitulated this observation
(155, 156), as do in vitro studies using pituitary cultures (145–
151, 157), with intermediate pulse intervals (30 min–1 h) favoring
LHβ transcription and low frequencies (every 3 h) that of FSHβ.
Although most work on GnRHR signaling has involved sustained
stimulation, similar signaling mechanism appear to be involved
in response to pulsatile stimulation, including activation a num-
ber of key effectors including Gαq/11, Gαs, and Gαi (41, 79, 158).
Downstream of Gαq/11, the Ca2+/calmodulin/calcineurin/NFAT
and Raf/MEK/ERK signaling modules are both activated (159,
160) (see below), and gonadotrope ERK has been shown to be
essential for reproduction (99) consistent with its role as an effector
of pulsatile GnRHR activation in vivo.

The mechanisms by which gonadotropes decode GnRH pulse
frequency are largely unknown,despite the fact that this frequency-
encoded signal is crucial for the physiology and therapeutic manip-
ulation of the reproductive system (2, 27, 99, 109, 159–162). A key
feature of this system is that maximal responses to some effects
of GnRH occur with sub-maximal pulse frequencies. In essence
this means that there is a bell-shaped frequency-response curve
for some effects of GnRH, behavior that has been termed “genuine
frequency decoding”(163) to distinguish it from the simpler situa-
tion where increasing pulse frequencies elicit increasing responses
up to the maximal pulse frequency (i.e., constant stimulation). The
bell-shaped frequency-response curve is thought to require more
complex systems involving feed-forward or feedback regulation
(163) and is exemplified by the non-monotonic relationships seen
for effects of GnRH on LHβ or FSHβ expression (as measured
using luciferase reporters). However the nature of the negative
feedback loop is unclear. It could lie at the level of upstream com-
ponents of the GnRHR cascade; GnRH causes down-regulation of
cell surface GnRHRs (164) and a recent mathematical model of
GnRH signaling predicts desensitization due to down-regulation
of cell surface GnRHRs, which is more pronounced at higher pulse
frequency (165). It cannot however be due to rapid homologous
receptor desensitization as type I mammalian GnRHRs do not
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show this behavior (58). Alternatively, transcription-dependent
negative feedback on upstream inputs could occur at high GnRH
pulse frequency. This could include GnRHR-mediated induction
of regulator of G-protein signaling (RGS)-2 which displays GTPase
activating protein activity and is known to inhibit Gαq/11 sig-
naling (166, 167), direct interaction of the GnRHR with SET
protein which may inhibit Gαq/11 binding (121), or induction
of MAPK phosphatases (MKPs) which would modulate GnRHR-
mediated ERK signaling (109). GnRH also causes down-regulation
of IP3 receptors (168, 169), and induces expression of calmodulin-
dependent small G-protein Kir/Gem (kinase-inducible Ras-like
protein/GTP binding protein over-expressed in skeletal muscle),
which is known to inhibit Ca2+ channels (145). Finally, the feed-
back or feed-forward regulatory loops could lie further down-
stream, within the nucleus. Low pulse frequency causes transient
Egr-1 expression, causing expression of co-repressor Nab-2, thus
inhibiting LHβ expression. With high GnRH pulse frequencies
there is a more sustained increase in Egr-1, which increases LHβ

transcription by quenching Nab-2 (162). However, neither upreg-
ulation of Nab-1 and Nab-2, or differential expression of Egr-1,
were observed in vivo (101). The proteasome has been proposed
to play a role in cyclical hormonal responses, by targeting tran-
scription factors for degradation and thus freeing the promoter to
enable it to respond to the next pulse of hormone (170) GnRH-
mediated LHβ gene expression is dependent on protein degrada-
tion via the proteasome, and Egr-1 and SF-1, two key transcription
factors for LHβ, are targets of the ubiquitin-proteasome system
(171). Targeting transcription factors for degradation would pro-
mote gonadotrope sensitivity, allowing more rapid transcriptional
responses to changes in GnRH concentration.

There appears to be selective interplay of factors at the Fshb pro-
moter according to pulse frequency: mutation of a CRE site within
the FSHβ promoter resulted in loss of preferential GnRH stimu-
lation at low pulse frequencies (161), and low pulse frequencies
stimulated PKA activity and levels of phospho-CREB compared
to high pulse frequencies (172). AP-1 family members FOS and
JUN positively regulate the Fshb promoter and are induced at low
GnRH pulse frequencies, whereas SKIL and TGIF1 corepressors
negatively regulate the Fshb promoter, and are induced at higher
frequencies (173), along with ICER, which antagonizes the stim-
ulatory action of CREB to attenuate FSHβ transcription (161).
As well as inducing c-Fos expression, low GnRH pulse frequencies
act via the ERK1/2 pathway to cause c-Fos phosphorylation, which
extends its half-life, thereby enhancing FSHβ transcription (174).

In order to test for upstream feedback mechanisms during pul-
satile GnRH signaling, we have used live cell imaging reporters
including an NFAT1c-emerald fluorescent protein (NFAT-EFP)
and ERK2-GFP (159, 175). Nuclear translocation of NFAT-EFP
provides a readout for elevation of intracellular Ca2+ because
the Ca2+/calmodulin-dependent activation of calcineurin causes
dephosphorylation of cytoplasmic NFAT that exposes a nuclear
localization sequence (176). Similarly, activation of ERK causes it
to be released from cytoplasmic scaffolds and facilitates protein-
protein interaction necessary for nuclear entry, such that the
redistribution of ERK2-GFP from the cytoplasm to the nucleus
can provide a readout for activation of the Raf/MEK/ERK cascade.
In HeLa cells transduced to express type I GnRHR, pulsatile

GnRH caused rapid NFAT-EFP and ERK2-GFP nuclear translo-
cation, but with markedly different response kinetics. With 5 min
GnRH pulses, ERK2-GFP translocated rapidly to and from the
nucleus and the nuclear:cytoplasmic (N:C) ERK2-GFP mea-
sure returned to basal values between stimuli, whereas the N:C
NFAT-EFP response was slower in onset and offset so that at
high pulse frequency the response had not returned to the pre-
stimulation value before a subsequent stimulus was added (159,
175). This led to “saw-tooth” or cumulative response, thought to
increase signal efficiency with pulsatile stimuli (177). Irrespec-
tive of these differences, there was no evidence for desensitization
of responses to pulsatile GnRH using these readouts (175) and
maximal responses were seen at maximal GnRH pulse frequency.
In contrast, maximal effects were seen with sub-maximal pulse
frequencies when luciferase reporters containing LHβ or FSHβ

promoters were used as experimental readouts. Thus, the bell-
shaped frequency-response curve or“genuine frequency decoding”
of GnRH pulses is not a specific feature of gonadotropes and can
occur in the absence of the negative feedback previously thought
to explain it.

The studies outlined above focused on the Ca2+/calmodulin/
calcineurin/NFAT and Raf/MEK/ERK pathways because both
mediate transcriptional effects of GnRH and both decode pulse
frequency in other models (178–183). The promoter regions of
gonadotropin genes contain response elements likely to medi-
ate the effects of ERK (i.e., Egr-1 sites) and NFAT (181), and
the Raf/MEK/ERK and Ca2+/calmodulin/calcineurin/NFAT cas-
cades are known to act as co-dependent modules in other systems,
notably in the control of cardiac myocyte proliferation where ERK
and NFAT converge on composite AP-1/NFAT response elements
in a number of genes (180, 182). In spite of this, the empirical data
provided no explanation for the observed bell-shaped frequency-
response relationships so a mathematical approach was taken to
explore this further.

We have developed a mathematical model for GnRHR signal-
ing based on a series of ordinary differential equations describ-
ing GnRHR occupancy and activation and downstream effectors
(27). This differs from earlier models (109, 163, 165, 184–186)
in that it incorporates Ca2+/calmodulin/calcineurin/NFAT and
Raf/MEK/ERK modules, includes cellular compartmentalization
(i.e., nuclear versus cytoplasm) and importantly, lacks upstream
negative feedback. This model accurately predicts wet-lab data for
activation and nuclear translocation of ERK2-GFP and NFAT-EFP
as validated by modeling responses to GnRH pulses at a range of
concentrations and frequencies, and therefore these two could be
used as inputs to the transcriptome. Using this model we con-
sidered the possibility that two transcription factors (TF1 and
TF2) act at distinct sites on a common gene promoter named
gonadotropin subunit (GSU), a generic term used because this is
likely the case for the αGSU, LHβ, and FSHβ gonadotropin sub-
unit genes, as it is for many other ERK and NFAT target genes
(178–183). We tested three distinct logic gates for the nature of
the action of TF1 and TF2 at the promoter (27). The first is a co-
operative GATE that in biological terms could reflect the action of
one TF to mediate the interaction between the other TF and the
cells transcriptional machinery, or alternatively, the requirement
of physical interaction between the two TFs to orientate distant
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promoter sites and bring them to close proximity for transcrip-
tion activation. The second is the AND GATE in which both TFs
are needed for transcription activation but there is no functional
interaction between them, and the third is the OR GATE where
either or both TFs can drive transcription but there is again no
functional interaction between the two.

This model predicted bell-shaped frequency-response relation-
ships when two TFs act co-operatively. The characteristic feature
of maximal response at sub-maximal frequency was never seen
with the AND-gate or with the OR-gate, and this behavior was
predicted in the absence of negative feedback which is often
assumed to underlie it. This modeling also implied that GnRH
pulse frequency-response relationship may be plastic, as varying
rate constants for transcription factor activation and inactivation,
or varying balance of signaling via NFAT and ERK-dependent
transcription factors, influenced the pulse frequency predicted to
give a maximal response (27).

The importance of the modeling outlined above is that a
bell-shaped frequency-response relationship is predicted to be an
emergent feature of co-operative and convergent signaling of two
signaling pathways. It requires that the pathways have distinct
response kinetics and occurs in spite of the fact that individual
pathways and pathway components cannot generate this com-
plex relationship (27). It does not, however, establish that the
bell-shaped frequency-response relationships seen for transcrip-
tional effects of GnRH are necessarily mediated by convergence of
NFAT and ERK-dependent transcription factors. In reality, multi-
ple pathways converge to mediate GnRH effects on transcription,
with the relative importance and integration of these inputs being
specific for the promoter/enhancer studies (187). In this context,
it is of interest that a recent study explored the contribution of
Gαs and Gαq signaling for pulsatile GnRH signaling. In this work
FRET reporters were used as live cell readouts for activation of
the PKA and PLC signaling pathways via the endogenous mouse
GnRHR of LβT2 cells (188). This revealed that pulses of GnRH
cause pulses of cAMP elevation and PKA activation that are rapid
and transient, and do not show measurable desensitization from
pulse to pulse (188). This is in accord with the lack of upstream
adaptive mechanisms seen with live cell imaging of ERK2-GFP
and NFAT-EFP (above). However, the FRET readouts for eleva-
tion of Ca2+ and DAG (measures for PLC activation) desensitized
rapidly from one pulse to the next (188). This raises the intriguing
possibility that co-operative convergent effects of the Gαs and Gαq

pathways could mediate GnRH pulse frequency decoding and also
that the balance of PKA to PLC signaling varies through a series of
GnRH pulses. However, the PLC data are puzzling as desensitiza-
tion of PLC responses with repeated pulses would be expected to be
coupled with desensitization of downstream responses, yet repeat
pulses of GnRH can elicit comparable effects on cytoplasmic Ca2+

(189, 190), on gonadotropin secretion (5, 191), and on NFAT-
EFP translocation (above). It is also unclear why GnRH-mediated
PLC activation would desensitize with repeat GnRH pulses, when
PLC-mediated [3H]IP accumulation does not show desensitiza-
tion with up to 60 min of sustained stimulation (47, 53, 57, 192).
Using siRNA and bacterial toxins to specifically perturb individ-
ual G proteins in LβT2 cells, Choi et al. demonstrated that FSHβ

expression was dependent on Gαq, whereas Gαs-mediated LHβ

transcription and suppressed that of FSHβ (193). Inhibinα was
identified as a Gαs dependent GnRH-induced autocrine/paracrine
factor which suppresses FSHβ transcription. Its transcriptional
profile contrasts with that of FSHβ, being induced by high pulse
frequencies, and therefore its absence at low pulse frequencies may
explain the preference for FSHβ transcription.

AUTOCRINE AND PARACRINE REGULATION OF
GONADOTROPES
Given the crucial role of GnRH in reproduction, it is not sur-
prising that most work on gonadotrope cell signaling has focused
on its mode of action. However, gonadotropes are receptive to
various other extracellular stimuli, including the gonadal steroids
estrogen, progesterone, and testosterone, which as well as acting
centrally to influence GnRH secretion, also act directly on the pitu-
itary to modulate GnRH effects on gonadotropes. In addition to
GnRH, gonadotropes are targets for a large number of GPCR-
activating ligands (194). These include oxytocin, endothelin-1,
galanin, β-endorphin, neuropeptide Y, nucleotides, and pituitary
adenylyl cyclase activating polypeptide (PACAP), a highly con-
served member of the vasoactive peptide (VIP)-secretin-glucagon
peptide superfamily.

Here we highlight some additional signaling pathways key to
cyclic nucleotide signaling in the gonadotrope.

PITUITARY ADENYLYL CYCLASE ACTIVATING POLYPEPTIDE
Pituitary adenylyl cyclase activating polypeptide was originally iso-
lated from sheep hypothalamic extracts based on its ability to
stimulate cAMP production by rat pituitary cell cultures (195).
It is widely distributed in the nervous, immune, gastrointesti-
nal, cardiac, and endocrine systems (195, 196). Two isoforms
have been identified, a 38 amino acid form (PACAP38) and
C-terminally truncated 27 amino acid form (PACAP27), with
PACAP38 accounting for 90% of the protein in most tissues (194–
198). The PACAP peptides have 68% amino acid homology with
VIP but are 1000 times more potent in their ability to stimulate
cAMP (196).

Three receptors are activated by PACAP; VPAC1, and VPAC2

which have similar affinity for VIP and PACAP, and PAC1, which
is highly selective for PACAP (197–200). PAC1 receptors have the
potential to couple directly to both Gαs and Gαq/11 and exist as
multiple splice variants due to alternative splicing of two exons in
the third intracellular loop (hip and hop) and are named null (nei-
ther hip nor hop), hip, hop1, hop2, hiphop1, and hiphop2 (194,
198, 200–202). Early work showed that (for most PAC1 variants)
PACAP38 and PACAP27 had comparable potency for stimulation
of cAMP production, whereas PACAP38 was much more potent
than PACAP27 for stimulation of IP accumulation (203).

Within the anterior pituitary, the major secretory cells and
folliculo-stellate cells all express at least one type of PACAP recep-
tor (200, 204). Various PAC1 receptor forms predominate in the
rat pituitary and gonadotrope cell lines (205), and in these cells
PACAP activates PAC1, causing a Gαs-mediated stimulation of
cAMP production and a Gαq/11-mediated increase in [Ca2+]i (194,
197, 200, 206–211). PACAP regulates gonadotropin secretion and
expression of signature genes in gonadotropes either acting alone,
or by modulating GnRH effects (194, 197, 200, 210, 212–218).
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PACAP can act alone or synergistically with GnRH to stimulate
LH and FSH production (216, 219), although the effect of PACAP
on LH secretion is modest compared to that of GnRH (215). Low
pulse frequencies of GnRH promote PACAP and PAC1R expres-
sion compared to high pulse frequencies (220). In LβT2 cells, high
frequencies of PACAP pulses increase LHβ transcription, whereas
low frequencies promote that of FSHβ (as seen with GnRH pulses)
(221). In addition PACAP and PAC1R expression increase with
lower frequencies of PACAP pulses (221, 222). The action of GnRH
in the regulation of gonadotropin subunit expression is enhanced
by the presence of PAC1Rs (223). At present the mechanisms by
which PACAP and its receptor contribute to FSHβ and LHβ expres-
sion are unknown, it may act to increase GnRHR expression via a
cAMP mediated pathway (224).

Pituitary adenylyl cyclase activating polypeptide increases fol-
listatin expression by gonadotropes and folliculo-stellate cells (211,
225, 226), and therefore may modulate activin signaling in the
pituitary (197). PAC1 receptor activation causes much greater ele-
vation of cAMP than GnRH does in gonadotrope-derived cell lines
(200, 208, 209), and GnRH actually causes a PKC-mediated inhi-
bition of PAC1-mediated cAMP elevation (208, 227). Therefore, if
gonadotropes are exposed to stimulatory concentrations of (local
or hormonal) PACAP in vivo, GnRH pulses could actually inhibit
rather than stimulate cAMP production (208).

NATRUIRETIC PEPTIDES, NITRIC OXIDE, AND GUANYLYL
CYCLASES
The natriuretic peptides atrial-, B-type, and C-type natriuretic
peptides (ANP, BNP, and CNP respectively) act via cell surface
guanylyl cyclase containing receptors to stimulate cGMP accu-
mulation, which causes activation of protein kinase G (PKG)
and cyclic nucleotide gated ion channels (Figure 1) (199). These
are single trans-membrane enzymes which are thought to act as
homodimers (199, 228). There are three subtypes of receptor,
NPRA (GC-A) which has high affinity for ANP and BNP, NPRB
(GC-B), which is selective for CNP, and the NPRC (GC-C) recep-
tor which binds all three peptides and acts predominantly as a
clearance receptor (229). The effects of ANP and BNP on hemo-
dynamic and cardiovascular regulation are well documented (229,
230). The physiological roles of CNP are less clear, although a
critical role in endochondral ossification is evident (231). CNP is
expressed in LH positive cells of the anterior pituitary (232, 233),
and female mice with either the CNP (Nppc) or GC-B (Nprb)
genes deleted are infertile (231, 234).

CNP stimulates cGMP accumulation in GnRH neurons (235),
pituitary gonadotropes (236), and endocrine cells of the testis,
ovaries, placenta, and uterus (237–244), implying widespread
roles of CNP in the hypothalamo-pituitary–gonadal (HPG) axis.
In gonadotrope-derived cell lines, CNP activates the αGSU pro-
moter (233), however it has no effect on LH secretion or GnRH-
stimulated LH secretion (228, 233, 245). GnRH causes rapid
PKC-mediated inhibition of CNP-stimulated cGMP accumula-
tion in αT3-1 cells (228, 236), and may stimulate CNP expression,
by transcriptional regulation of the Nppc gene (233). However,
little is known about the actions of cGMP in the pituitary, so the
physiological relevance of pituitary CNP/NPRA signaling remains
unknown.

Gonadotropes also express the enzyme responsible for the gen-
eration of nitric oxide (NO), NO synthase (NOS) (246). The
NOS enzyme family is composed of three major isoforms, neu-
ronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS
(eNOS). These enzymes convert l-arginine to l-citrulline, pro-
ducing NO, an important signaling molecule involved in a vari-
ety of physiological and pathological processes (247). It exerts
physiological effects by activation of soluble guanylyl cyclases to
generate cGMP (248). nNOS and eNOS are expressed constitu-
tively and activated by Ca2+/calmodulin, whereas iNOS is Ca2+-
independent (129, 194). In the anterior pituitary, nNOS has been
specifically detected in the folliculo-stellate cells and gonadotropes
(137, 249). GnRH stimulates the activity and expression of nNOS
in gonadotropes (136,137, 250) and this likely explains the increase
in nNOS expression and activity observed at proestrous (136).
GnRH may activate the nNOS promoter via cAMP-dependent
activation of a CRE in the GnRH-responsive region of the nNOS
promoter (251, 252). Alternatively it may act via SF-1, which acts
on a nuclear hormone receptor binding site on the nNOS promoter
in pituitary gonadotropes to stimulate transcription (253).

Nitric oxide itself inhibits GnRH-stimulated LH secretion, with
the NOS inhibitor MeArg markedly potentiating GnRH-induced
LH secretion, and the NO donor SNP significantly reducing it
(246, 254, 255). GnRH, LH, and FSH release are decreased in
chronic NO deficiency (256, 257), and in humans treatment with
an NOS inhibitor can reduce GnRH-stimulated LH and FSH
release (258). The effects of NO on gonadotropin secretion remain
rather controversial [see Ref. (194) for discussion of stimulatory
and inhibitory effects]. Intriguingly, NO donors stimulate LH and
FSH release in a cGMP-independent manner (254, 259) imply-
ing that these effects reflect regulation of NO targets other than
soluble guanylyl cyclases.

CONCLUSION
Type I mammalian GnRHRs of pituitary gonadotropes signal
primarily via Gq/11. Uniquely, they have no C-terminal tail and
therefore do not elicit the C-tail dependent and heterotrimeric
G-protein independent signaling seen with many other GPCRs.
These features could ensure that the type I mammalian GnRHR
of pituitary gonadotropes (e.g., the receptors that mediate cen-
tral control of reproduction in humans) faithfully transduce the
portal blood GnRH signal into PLC activation in the target cells,
and this could arguably confer selective advantage by (i.e., facili-
tating the pre-ovulatory gonadotropin surge). Nevertheless, there
is ample evidence that GnRHRs can activate other heterotrimeric
G-proteins and that they do so in a cell context-dependent manner
(44, 77, 111, 112, 115, 120, 208, 260–262). Notably, they apparently
activate Gi in some hormone-dependent cancer cell models and
activate Gq/11, Gs, and Gi in GT1-7 neurons. Early work in primary
cultures of pituitary cells revealed that GnRH increases cAMP
production (112,113) but this would not necessarily reflect Gs acti-
vation and could even involve regulated cAMP production in cells
other than gonadotropes. Subsequent work revealed little or no
effect of GnRH on cAMP production in the gonadotrope-derived
αT3-1 cell line (120, 208, 216) as opposed to the stimulatory
effects seen in the more mature LβT2 gonadotrope cell line (77,
111). Such studies do not really address the fundamental question
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of physiological role. Thus, although it is well established that
PLC-mediated effects on cytoplasmic Ca2+ and PKC influence
exocytotic secretion of gonadotropins and transcriptional effects
of GnRH, the relevance of GnRH effects on cAMP (and cGMP)
production are much less clear. In this review we have highlighted
two areas that may prove important in resolving this issue. The
first is that paracrine or autocrine mechanisms exist for regulation
of cyclic nucleotide production. Notably, PACAP has pronounced
effects on cAMP production in gonadotropes and gonadotrope-
derived cell lines, and the possibility exists that the modest stim-
ulatory effects of GnRH pale into insignificance in gonadotropes
exposed to PACAP. The second is that GnRH is secreted in pulses
and very little is known about signaling of pulsatile GnRH via
anything other than Gq/11. Here, a key feature is that maxi-
mal effects of GnRH are often elicited at sub-maximal GnRH
pulse frequency and mathematical modeling has revealed that
such non-monotonic frequency-response curves could reflect co-
operative activity of two (or more) convergent signaling pathways.
This was explored for the Ca2+/calmodulin/calcineurin/NFAT and
Raf/MEK/ERK pathways but the same logic could equally apply
to either (or both) of these pathways acting together with the
Gs/AC/cAMP/PKA pathway. In this regard it is of interest that
GnRHR activation actually reduces PACAP-stimulated cAMP pro-
duction and CNP-stimulated cGMP production in αT3-1 cells
(208, 236) raising the question of whether GnRH pulses are stim-
ulatory or inhibitory for these pathways in vivo. Clearly, a great
deal is yet to be learned about cyclic nucleotide signaling in
gonadotropes and how the signaling network integrates inputs
via PLC, AC and GC.
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