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Swimming and flying animals rely on their ability to home on mobile targets. In some fish, physiological
handedness and homing correlate, and dolphins exhibit handedness in their listening response. Here, we
explore theoretically whether the actuators, sensors, and controllers in these animals follow similar laws of
self-regulation, and how handedness affects homing. We find that the acoustic sensor (combined
hydrophone-accelerometer) response maps are similar to fin force maps—modeled by Stuart-Landau
oscillators—allowing localization by transitional vortex-propelled animals. The planar trajectories of bats in
a room filled with obstacles are approximately reproduced by the states of a pair of strong and weak
olivo-cerebellar oscillators. The stereoscopy of handedness reduces ambiguity near a mobile target, resulting
in accelerated homing compared to even-handedness. Our results demonstrate how vortex-propelled
animals may be localizing each other and circumventing obstacles in changing environments. Handedness
could be useful in time-critical robot-assisted rescues in hazardous environments.

H
andedness, called dissymétrique by Louis Pasteur, is widely present in the universe, being found in all
matter from atoms to human beings1. The predominant right-handedness in man seen today is evidenced
in the use of uni-manual tools or weapons in 5000 years of art, irrespective of geography2. While a weak

force acting on elementary particles causes handedness in atoms and molecules, it is not known how this conveys
to the macroscopic scale and what the manifestations are. In man, left-handedness correlates with lower lon-
gevity3. In another example, right-handed scale-eating cichlid fish of Lake Tanganyika approach prey from the
rear and snatch scales from their left flank, and left-handed fish do likewise from the right flank4. Dolphins also
exhibit handedness in their listening response5,6. Despite widespread evidence of handedness, theoretical under-
standing is relatively lacking.

Here, we consider theoretically whether the propulsion aspects of swimming and flying animals—namely, the
force production, sensing, and control—are related dynamically and whether they exhibit handedness, and if they
do, does that produce any advantage in the goal of homing on a target. We take an approach where subjective
social or environmental factors are absent.

Consider the preferential property of force fields and acoustic response in swimming animals. Fig. 1 shows the
instantaneous vectors of the oscillatory force fields due to a pair of 10 cm span pectoral fins7,8 and handedness in
the acoustic response of a dolphin to 120 kHz transmitted beam patterns5,6. The fins are rigid and have penguin-
like planform, section, and low aspect ratio. The force data is for a large range of fin kinematic parameters (roll and
pitch amplitudes and pitch bias angle), and perhaps represents all possible ranges in typical penguins. At any
instant of time, the net fin force acts at a distance of Ravg (defined later in eqn. 2) from the roll axis at the fin hinge
location which is c/3 from the fin leading edge, where c is fin chord7. The force and sensor maps have directional
preference and are not spherical. The global distribution of instantaneous force vectors in the laterally placed pair
of flapping fins is disk-like, as is also the acoustic response (see Figs. S1c and S1d in Part A of the Supplementary
Information (SI)). The behavioral measurements on captive dolphins show several differences in the receiving
beam patterns between the lateral and dorsoventral planes, and between the left and right sides in the lateral
plane5,6. For example, at 120 kHz, in the polar map, the receiving sensitivity extends to 630u in the dorsoventral
plane, but it extends to more than 640u in the lateral plane. In the lateral plane of a dolphin, the receiving response
is clearly asymmetric between the left and right sides. For example, between the 0 dB and 210 dB circular arcs,
the receiving response is weaker on the left azimuthal side and stronger on the right azimuthal side, while between
the 210 dB and 220 dB arcs, the sensitivity is reversed. In the present work, the consequence of similar more
detailed handedness in the force field is examined.

To understand optimal organization, consider the systemic properties of self-regulation. The propulsion of
swimming and flying animals is an organized process because it involves the flapping of fins in a narrow range of
Strouhal (St) numbers9,10, St being defined non-dimensionally as fA/U, where f is the flapping frequency, A is the
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stroke (arc) length, and U is the forward speed. The animals’ pro-
pulsion is a self-regulating process that is tuned for maximizing
efficiency11,12, which can be modeled by van der Pol-like oscillators8.
The parameters of the oscillator (the bifurcation properties) vary
with the physical mechanism—such as vortex-based propulsion, vec-
tor sensing, or ion flow in the inferior-olive neurons of motion con-
trol (see Fig. 2a).

To understand self-regulation, consider a linear system such as
€xz2fv _xzv2x~0, where x is the state variable, dots represent time
derivatives, f is a damping parameter, and v is the frequency of
oscillation of the system. The solution converges when fw0; the
solution diverges when fv0; and the solution oscillates when
f~0. All of the behavior is scaled proportionate to the initial condi-
tions; that is, a perturbation in the initial conditions is transmitted

directly to the amplitude of the resulting dynamics. In contrast,
consider a nonlinear system such as €xzf (x) _xzv2x~0, where the
nonlinear function f (x)~a0x2{2f0v, such that the constants
a0w0 and f0w0. For small values of x, f approximates the negative
constant; for large x, nonlinearity dominates. If x starts small and
increases, the solutions increase; but as x becomes large, the solutions
decrease. The result is a sustained periodic set of oscillations that is a
nonlinear process where all solutions, in the limit, converge to the
periodic cycle (a so-called limit cycle). Irrespective of the value of x, v
remains in a narrow band. When the system is disturbed, it auto-
matically introduces corrective actions by way of its nonlinear com-
ponents causing it to maintain the oscillations, exhibiting auto-
catalytic properties. This is called self-regulation. (An experimental
demonstration of the disturbance rejection behavior of the single

Figure 2 | Schematic of the hypothesis of how vortex-propelled animals remain in persistent synchrony with their surroundings. The controller,

actuator, and the sensors follow similar nonlinear oscillator dynamics. (a) Shows the dependence of fin force maps on Reynolds number Rec in a low-

aspect ratio hinged-fin, optimally twisting at constant optimal Strouhal number of 0.308. (b) The unsteady force fields of the fins (actuators) radiate

acoustic maps characteristic of their fin Reynolds number and Strouhal number. The sensors detect these acoustic maps. The vector match of one’s own

sensor (subscript p) to the other’s actuator is shown by the Coptic letters shei ( ) and sampi ( ). The brain provides olivo-cerebellar dynamic motion

control.

Figure 1 | Preferential distributions of actuator force field and acoustic response in the lateral and dorsoventral planes in swimming animals.
(a) Instantaneous force vectors due to a pair of pectoral fins based on biorobotic penguin fin model measurements7. (b) Dolphin beam pattern response in

the lateral (solid red line) and dorsoventral (solid blue line) planes due to transmitted (chained red and blue lines, respectively) beam forms; adapted from

Au5,6. The dolphin origin in the lateral plane measurements is not shown but is similar to that shown for the dorsoventral measurements.
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flapping fin is given in Bandyopadhyay et al13. (see Animations 1a
and 1b in the SI).

If we assume that it is advantageous for swimming and flying
animals to remain in persistent synchrony with the environment
then the question is, how do they do that? We hypothesize that

vortex-propelled swimmers, for example, are in persistent synchrony
with their surroundings in the manner depicted in Fig. 2b where the
elements (namely, the actuators, sensors, and controllers) are each
self-regulating. Consider a large and a small animal. Their optimally
operating unsteady force actuators produce force fluctuation (Fx9)

Figure 3 | Theoretical modeling of the sensitivity of force production to the precision of Strouhal number showing the loss of lock-in when St is
changed at the third decimal place. (a 2 o) U 5 0.60 m/s, Rec 5 39,684. Flapping frequency: f 5 (a) 0.39 Hz, (b) 0.40 Hz, (c) 0.41 Hz, roll amplitude

w0 5 42u, pitch amplitude h0 5 (a) 21u, (b, c) 22u; Strouhal number St 5 (a) 0.2109, (b) 0.2163, (c) 0.2217; f 5 (d) 0.49 Hz, (e) 0.50 Hz, (f) 0.51 Hz;

w0 5 42u, h0 5 (d) 26u, (e) 27u, (f) 28u; St 5 (d) 0.2649, (e) 0.2703, (f) 0.2757; f 5 (g) 0.59 Hz, (h) 0.60 Hz, (i) 0.61 Hz; w0 5 42u, h0 5 (g, h) 32u, (i) 33u; St

5 (g) 0.3190, (h) 0.3244, (i) 0.3298; f 5 (j) 0.66 Hz, (k) 0.67 Hz, (l) 0.68 Hz; w0 5 42u, h0 5 (j, k) 36u, (l) 37u; St 5 (j) 0.3568, (k) 0.3623, (l) 0.3677;

f 5 (m) 0.74 Hz, (n) 0.75 Hz, (o) 0.76 Hz; w0 5 42u; h0 5 (m) 40u; (n, o) 41u; St 5 (m) 0.4001, (n) 0.4055, (o) 0.4109. Twist amplitude and phase are held

the same in (a 2 o).
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maps ((F0x{ _F0x): , , respectively)) appropriate to their fin chord (c)
Reynolds number Rec (5 Uc/u, where U is the forward speed and u is
the kinematic viscosity of the medium) (see force field in Fig. 1a)8.
Fig. 2a shows how the wake vortex dynamics changes with Rec. The
unsteady propulsive surfaces and their wake vortices remain coupled,
having reciprocal exchanges of energy that maximize efficiency. The
wake vortex train can be represented by a nonlinear oscillator whose
bifurcation properties depend on St and Rec. The force maps produce
similar pressure fluctuation maps p, p, respectively. The lateral line
sensors are assumed to measure pressure and tri-axial acceleration
(or equivalent vectors in the case of Lorenzian sensors), which allows
them to read these pressure maps. Behavioral experiments show that
in fish schooling, lateral lines—not vision—are more important for
determining neighbor’s speed and direction14. The large animal reads
the map of its target, p, and similarly, the small animal reads p. In
this manner the animals locate the noise source and the Rec of the
source. The motion control neurons have similar dynamical prop-
erties. In other words, the same types of nonlinear equations apply to
the actuators, the sensors, and the controllers. Handedness is defined
as small differences in amplitude and sensitivity between the port and
starboard directions. We examine the elements of this hypothesis
theoretically and investigate how handedness affects homing. In
the ensuing sections, the oscillators of the force actuator are modeled,
the sensor response is given, the animal motion path is modeled, and
the effect of handedness on the animal motion path to a target is
modeled.

Results
It has been suggested by von Kármán & Burgers11, and echoed by
Lighthill12, that fish swimming (due to their caudal fins) is a self-
regulating process that can occur only at transitional Reynolds num-
bers; a reverse Kármán jet is present, and optimal efficiency is a
measure of this process. Swimming and flying animals cruise by
flapping their caudal fins (or pectoral fins/wings) in a narrow St
range (0.20 to 0.40). Within that range, each species selects a more
or less characteristic value of St. When all flapping and flow para-
meters in St are held to high precision (considered below), nonlinear
oscillators that describe the fluctuation in (thrust) force production
to the lowest order produce characteristic locked-in maps (Fig. 3).
Different vortex-based swimming and flying animals with their char-
acteristic Rec and St select transitional regimes of wake having typical
lock-in phase maps that also define the trajectories they are capable
of undertaking. (A phase map is said to be ‘‘locked-in’’ if each cycle of
the fin’s oscillation produces initial conditions that produce the same
phase map over the next cycle.) Laboratory measurements show that
the constancy of St is a tuning process8. Put simply, each vortex-
propelled animal is constantly broadcasting its detailed motion his-
tories to friend and foe alike. The process is deterministic but not
precisely predictable due to sensitivity to initial conditions.

The tuning process can be understood in the framework of non-
linear oscillators8. It is known that to leading-order approximation
the vortex shedding instability of a rigid cylinder can be described as
a van der Pol oscillator15. This oscillatory description has been
extended to a cylinder undergoing vortex-induced vibration16, and
it has been suggested that the description might also apply to thrust-
producing flapping wings17. Experiments8 with flapping fins show
that the lowest order of thrust force fluctuation can be described by
the equation €F0x{vsG(F02xo{4F02x ) _F0xzv2

s F0x~vsTRavg
_j, and the

maps of force fluctuation versus its time (t) derivative systematically
vary with Rec (Fig. 2a). Here, j(t)~w(t)zh(t), where roll w~w0
sin (2pft), pitch h(t)~h0 sin vtzyð ÞzhBias, flapping frequency
(v~2pf ) is expressed as vs~2pStU=A, flapping amplitude
A~2woRavg , F0x is the fluctuation in force, F0xois the amplitude of
F0x(t), and G (5 0.02) and T (5 0.5) are constants; the subscript o
denotes amplitude, y is the phase difference (90u 6 10u due to
optimal fin twisting), and Ravg is the radial distance at which the disk

blockage area created by the fin’s spanwise flapping can be divided
equally (the net fin force at any instant t can be assumed to act at this
roll distance at the point on the fin where the hinge is pitched—this
being at a distance of c/3 from the leading edge)7,18; hBias is a bias angle
applied to the pitch angle for yawing. The referenced experiments
were carried out for a realistic (in terms of planform, fin section,
aspect ratio, and Reynolds number), penguin-scale, hinged fin that
is being optimally twisted while also rolling and pitching (optimal
twisting makes the leading edge vortex uniform along the span, and
the Coriolis force due to the rolling of hinged fins pins the vortex
onto the fin19). In twisting and flapping fins, both the efficiency and
the product of the efficiency and the thrust coefficient reach high
values in narrow combinations of St and h0

8.

Precision of tuning of force oscillators. The following theoretical
analysis can be carried out to understand how precisely swimming
and flying animals are tuning their characteristic Strouhal number
for maximization of efficiency at a given Reynolds number. This
analysis leads to an internally consistent deterministic oscillatory
modeling of actuators, sensors, and controllers.

In a fin optimally twisted along the span8, the force fluctuation
map (F0x{ _F0x) is given by the self-regulation equation €F0x{vs

G(F02xo{4F02x ) _F0xzv2
s F0x~vsTRavg

_j. The sensitivity of the map’s
lock-in to the precision of St can be determined. This precision
affects both the tuning and efficiency of the oscillator and indicates
how low the structural damping is16. Consider the lowest order fin
force fluctuation maps. Figure 3 shows examples of maps of (F0x{ _F0x)
where St is varied nominally from 0.21 to 0.40 (note in the captions
that St and ho are coupled8). Time increases from blue to red in the
figures. Sharks, dolphins, and large fish have St near 0.30 (approxi-
mately), insects are near 0.28, bats have St $ 0.30, and birds have St
near 0.209. (For the large animals, Rec should be $ 40,000, where we
expect stable shed vortex-vortex interaction and effects on fin force8

and acoustic radiation—see Fig. 2a.) Therefore, even within the nar-
row St range of 0.20–0.40, each swimming and flying animal is built
for preferred values of St and, roughly speaking, birds are near 0.20
while the large swimmers are near 0.30.

In Fig. 3, for the same value of Rec and within the range 0.21 to
0.40, St is varied with a precision of four decimal places slightly below
and slightly above the nominal St values of 0.21, 0.27, 0.32, 0.36, and
0.40. The maps lock in at those values in the (b, e, h, k, n) portions of
Fig. 3 only when St is held to at least three-decimal-place precision.
The parameters have to be held to high precision for perfect tuning.
With St, the lock-in map varies. Lock-in occurs when the same initial
condition is produced in each half of flapping. We predict that each
swimming and flying type of animal, therefore, is likely to have its
own characteristic locked-in map where hydrodynamic efficiency
reaches its maximum value and structural damping is at a minimum.
In view of this orderliness, it would not be surprising if swimming
and flying animals in fact hold their St to an accuracy of greater than
or equal to four decimal places—a remarkable feat.

Similarity of unsteady force field and sensor response. Near the
onset, reverse Kármán vortex shedding acts like a supercritical Hopf
bifurcation, and the van der Pol, Stuart-Landau (SL), and Ginzburg-
Landau (GL) oscillators are equivalent15,20. The GL model is appli-
cable to a band of wave vectors near the bifurcation point. We model
the higher order force fluctuations using the SL oscillator, which
applies to a single wave vector. If the fin and the wake are
uncoupled, the SL equation for the evolution of wake circulation A
is given as _A~sA{lA2A�, where A* is the complex conjugate.
Here, s and l are complex constants of the wake; see Albarède &
Monkewitz15 for the estimation procedure. Assume that the
downstream circulation affects the angle of attack a (a~agz
f (A)), which alters the force Fx (Fx(a)~Fx(agzf (A)). The angle ag

is the geometric angle of attack obtained from the forward velocity
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and spanwise fin flapping velocity (see Methods). If the fin and the
wake are coupled, the wake evolution is also dependent on lift (L)

evolution as _A~
d
dt

g(L)

� �
zsA{lA2A�and _L~ _L(A, _A) and,

g(L)~
kL

{rUS
L, where the coefficient kL scales the coupling

between the wake and the fin. To account for fractals of
unsteadiness, we assume that higher-order equations include
lower-order equations (forces are affected by their higher-order

gradients) €A~
d
dt

(g( _L)zsA{lA2A�): The model results are

compared with measurements in Figs. 4a and 4b at identical
Reynolds numbers and fin flapping parameters, including optimal
twisting (see Methods for the method of calculation). Twist
amplitude and phase have been accounted for at Ravg; each8 is 10u.
They compare well.

Figure 4b depicts a locked-in response for the second-order model.
While each cycle is the same, each half of the cycle does not precisely
match the other half, giving rise to the double loop centered near
(0.5 N, 0 N/s). One half of the cycle gives rise to the initial conditions
that produce the shape of the other half of the cycle, and vice versa.
This difference between the half-cycles is related to the initial con-
ditions—an initial condition with higher magnitude gives rise to a
larger difference between the half-cycles.

The notable difference between Figs. 4a and 4b is that in the
experiments St is nominally 0.30, while in the model it had to be

taken to be 0.2999075 to lock in the loop. If St 5 0.3008, the two
halves don’t lock in perfectly and they slightly oscillate (see
Animation 2 in the SI). Therefore, the flapping fins are nonlinear
oscillators, where the fin and the shed vortices are coupled. It is
known that swimming and flying animals cruise at St numbers of
0.20 to 0.409,10. From the above modeling, it is concluded that they
cruise near bifurcation points where the conditions are slightly non-
linear and slightly unstable. An unstable platform is amenable to
maneuverability. Due to its self-regulating nature, the platform will
reject disturbances (Animation 1), making it robust.

We now explore another property that helps homing, namely, the
relationship between the sensors—more specifically, the relationship
between the combined hydrophone-accelerometer sensor and the
actuator. We suggest that the lateral line sensors are not just hydro-
phones but are vector sensors because they combine hydrophones
with tri-axis accelerometers and essentially solve Euler and wave
equations.

Consider the response (b(hs,ws)) of a single acoustic (combined
hydrophone-accelerometer) sensor (h and w are the polar and azi-
muthal angles, respectively, and the subscript s is for steering). For a
unit velocity V, applying equation (2.29) of Psaras21 to his equation
(2.24) yields the expression b(hs,ws)~Wx cos (hs) cos (h)zWy sin
(hs) sin (h) cos (ws) cos (w)zWz sin (hs) sin (h) sin (ws) sin (w){Wp cos
(h0{hs), where Wx, Wy, and Wz are the weighting factors for the
accelerometers in the orthogonal x, y, and z directions, respectively.
These weights have been made independent of each other, a general-
ization of Psaras’ equation (2.29). The weight for the pressure sensor is
given by Wp, and it is understood that the ‘‘pressure-velocity’’ Vp 5 P/
rc is equal to the velocity V. The equation above yields a three-dimen-
sional response in h and w, dependent upon the ‘‘steering angles’’ hs

and ws. The ‘‘null angle’’ h0 is the angle in the domain 0ƒhƒp at
which b 5 0 (in Fig. 4c, h is zero in the vertical axis and positive in the
clockwise direction; the steering angle is the angle h where the max-
imum absolute value of the response b occurs.)

The above trigonometric relationship can be simplified to include
only the information for the plane w 5 0, such that b(hs,0)~
Wx cos (hs) cos (h)zWy sin (hs) sin (h){Wp cos (h0{hs): Restrict-
ing to the condition where h0 2 hs 5 p, at which point the null angle
is directly opposite the steering angle, yields b(hs,0)~Wx cos (hs)
cos (h)zWy sin (hs) sin (h){Wp: Depending on the remaining

Figure 5 | Modeling of bat trajectories using orthogonal olivo-cerebellar
oscillators. (a) Trajectories of the brown bat (named ‘‘Poe’’) in the

horizontal plane approaching an insect in a room filled with hanging

chains23. The red circle denotes the location of a chain that was removed

and then put back to see the effect on the trajectories. (b) Modeled

trajectories using two olivo-cerebellar Ca oscillators.

Figure 4 | Similarity of force production fluctuation and acoustic sensor
response. (a) Measurements of fin force fluctuation maps8 (N-N/s) and

(b) second-order Stuart-Landau equation model (N-N/s) of fin force

fluctuation in optimally twisted hinged fin at Rec 5 49,121; (c) model of

acoustic combined hydrophone-accelerometer sensor response b for Wx 5

Wy 5 1, Wp 5 1/2, hs 5 p/8; (a) The fin force measurements are in the

range 39,923 # Rec # 70,895 where the map is stable. Time increases from

blue to red in (a).
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weights Wx , Wy , and Wp , the resulting limaçon may be given a
dimpled, cusped (cardioid), or looped character (see Part C of the SI
for the results when hs 5 0) as in force fluctuation measurements8

with Rec. The result for hs 5 p/8 is shown in Fig. 4c and is compared
with measurements of force fluctuation. The maps in Figs. 4a, 4b, and
4c are similar. The map is slightly slanted to the right in Fig. 4a.
Figure 4c reproduces the slant in the null-steering angle. (The force
maps and the sensor response can be three-dimensional.) Therefore,
the sensor response is similar to the bifurcation point response of the
force actuator.

Modeling of animal motion path using orthogonal olivo-
cerebellar oscillators. We now explore the relationship of animal
motion path, which is the result of force actuation and sensing, to
olivo-cerebellar dynamics. For an inferior-olive neuron i, the states
are given by _ui~k(eNa){1(piu(ui){vi), _vi~k(ui{zizICa{INa),
_zi~piz(zi){wi, and _wi~eCa(zi{ICa){eCaIexti(t), and the nonli-
near functions are given by piu(ui)~ui(ui{a)(1{ui) and
piz(zi)~zi(zi{a)(1{zi)

22. Here, zi and wi are associated with sub-
threshold oscillations and low-threshold (Ca-dependent) spiking,
and ui and vi represent the higher threshold (Na1-dependent)
spiking. The constant parameters eCa and eNa control the oscill-
ation time scale; ICa and INa drive the depolarization levels; and k
sets a relative time scale between the uv- and zw-subsystems. The Ca
oscillator can be written as €zizF(zi) _zizkzizeI~0, where F is a
cubic polynomial function, k is a constant, and the extra-cellular
impulse Iexti(t) 5 013. This control oscillator is similar to the fin
force fluctuation oscillator mentioned earlier, where Iexti(t) is non-
zero and is the forcing term due to roll, pitch, and twist oscillation.

The states of two inferior-olive (IO) neurons were calculated using
an analog circuit13 whose validation is shown in Part B of the SI.
Figure 5a shows the flight path of a trained brown bat (named
‘‘Poe’’) through a maze of chains in a room as it approaches an insect
offering23. Figure 5b shows an example of the map of states z1 and w2
from two IO analog neurons—one strong and one weak (they have
the large and small limit cycles, respectively, shown in Figs. S2d and
S2e). The maps have a basic similarity—less curved paths extending
over the room, with large loops to one side. The paths do not repeat,
which may aid avoidance of dynamic obstacles. Two other bats
(named Frosty and George) have tracks23 similar to those in
Fig. 4a—which are due to Poe—consisting of segments of similar,
mainly very long, less-curved, and rounded paths.

Figures 4 and 5 show that in animals with flapping fin actuators,
the actuator, sensor, and controller follow similar dynamical system
relationships.

Handedness and homing. The motion of a 1-m-scale platform
propelled by a pair of flapping pectoral fins was modeled (see Part
D of the SI for details). Two hydrophones were placed at the mid-
span locations. The initial location and orientation of the platform
with respect to a moving target were chosen arbitrarily. The target is
an acoustic source that the platform tracks and approaches. The
flapping fin force is known to be proportional to the square of the
flapping fin frequency if the roll and pitch amplitudes and the phase
difference between roll and pitch are held constant7. The flapping
frequency versus range relationship is assumed to be similar to the
characteristic chirp pulse intensity versus range of bats approaching
target insects24. This intensity trend decreases as the target is
approached (Fig. S6 in the SI). (The drop in echo location pulse
amplitude as target distance is halved is 6 2 6.5 dB in bats24 and
6 dB in free ranging dolphins6). Initially, the platform loiters
aimlessly with random speed and orientation, while the mobile
target is quiet. Then, the target turns on the noise source at a
random instant (note the hook in the starting trajectory of the
platform). The subsequent trajectories of the platform and the
target are shown in Fig. 6 when the target has a lemniscates path of
arbitrary frequency. The platform constantly ranges the target sound

source. In one case, the two pectoral fins of the platform have equal
span (even-handed). In the other, one of the spans is short. In Fig. 6,
the results for even-handedness and 10% right-handedness (left hand
is 10% shorter) are compared. The target is not reached even in 250 s
when the fins have even-handedness, while it is reached in 170 s when
the fins have 10% right-handedness. The 10% right-handed case
reaches the target earlier by taking a shorter path. (See Fig. S8 of the
SI for the case when the target is static—heading and bearing oscillate
as the target is reached, unlike in the even-handed case.) Handedness
alters the global path. If its degree varies, it can be a means for path
control to accommodate an unstructured environment.

Discussion
The present results indicate that fish lateral line sensors are combin-
ing the measurements of the sound pressure level and fluid accelera-
tion vector to calculate the direction and range of other vortex-
propelled animals in their surroundings. While the fluctuations in
the wake vorticity due to the reverse Kármán vortex trains produce
pressure waves that help to close the loop between the wake and the
fin Kutta conditions25, these pressure waves also broadcast the pres-
ence of the flapping fin source and its Reynolds number to both
friend and foe, who use the information for ranging. In open waters,
smaller swimming animals are most vulnerable due to the cumulat-
ive threats from larger animals, who listen to the acoustic broadcast.
We speculate that in the face of a pursuer, small fish form a school
using their lateral lines and vision. By forming a school of parallel
individuals (called polarization)14, the smaller animals synchronize
their acoustic radiation and try to appear larger (lateral lines allow
fish to maintain a larger distance in a school than vision does and fish
use both of these senses to school). Other strategies employed by
small fish include hiding in background acoustic clutter near the
bottom or surface to mask their weak acoustic radiation.

The force fluctuation and sensor response maps for Wx 5 Wy 5 1,
Wp 5 1 are topologically similar to the central bulb of the
Mandelbrot fractal set. Fractals appear on the central bulb of the
force maps when higher harmonics in the time series are included8.
Bats use higher chirp harmonics for target detection in ground clut-
ter26. Similarly, the fractals of the noise map can be used by a fish to
detect smaller fish in the cluttered bottom.

Handedness may be likened to the forked tongues of snakes, which
are stereoscopic olfactory sensors for source ranging. The potential
exists that the fast C-start escape response to an alarm in fish may be
handed. The external pinnae of vertebrates such as cats, dogs and
bats are obliquely truncated which raise the maximum pressure gain
above that of a horn truncated normally with the same minimum
throat-to-mouth distance27. In addition, particularly at low frequen-
cies, the oblique truncating bends the axis of maximum acoustic
response away from the geometric axis. Thus, inclining the pinnae
differently, a differential sensing sensitivity between the left and right
ears can be created to control handedness.

Further, the following observations suggest a link between (1) the
macro-scale animal acoustics for detection of other fish and avoid-
ance of predators and (2) the micro-scale ciliary fluid mechanics and
ionic mechanisms in gene expression; this link leads to handedness in
animals. First, as compared to their sighted counterparts, blind
Mexican cave fish28 have larger neuromasts protruding into their
boundary layers. Some blind fish population from the Granada
Caves have asymmetrical degeneration of the eyes, where one eye
is normal, while the other is slightly reduced in size and complexity29.
Zebrafish neuromasts have clusters of approximately 20 mm long
cilia protruding from their skin pores, allowing the external flow to
stimulate the hair cells. Cilia are now seen as interconnected molecu-
lar machines with many components of signaling cascades30. Second,
the ability of cilia to produce unidirectional flow plays a key role in
the mechanism of how left-right symmetry is broken in the place-
ment of internal organs and associated vasculature in mammalian
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Figure 6 | Modeling of the effects of handedness on homing. (a, b): Position of the platform (blue) and the target (red) when the target has a lemniscates

trajectory and the source is (a) even-handed, or (b) 10% right-handed. The platform is indicated by a triangle. The contours indicate constant

sound pressure level (SPL) around the source; the SPL changes versus time with the motion of the source. The indicated contours pertain to the last

location of the source. (c, d): Range to target with time for even-handedness (c) and 10% right-handedness (d).

Figure 7 | Schematics of angles of attack showing fin-wake coupling. (a) Physical origin of the geometric angle of attack ag as it appears to a fixed

observer. (b) Angle of attack a in fin-centered coordinates. Circulation in the wake yields a 5 ag 1 aw; if the contribution of the wake is ignored, a 5 ag.
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early embryos31. This unidirectional flow drives asymmetries in gene
expression and Ca21 signaling in cells32.

The nonlinear control basis for the paths in Fig. 5a shows that the
proverbial straight crow’s flight is a fiction, and that swimming and
flying animals are built for chaotic nonlinear trajectories, which
allows them to circumvent unfamiliar obstacles. Our modeling
reproduces the observations of the experiments23; namely, it shows
how the bats undertake a global change in path, cycle to cycle, to
accommodate smaller scale changes in the structure of the envir-
onment. The chaotic nature of the z-w oscillator makes this possible
by utilizing two oscillators along two orthogonal axes, the larger
oscillator making global changes in the path and the smaller oscil-
lator making local smaller scale changes. The paths are smooth and
there are no kinks in any higher derivatives.

In robotics, by incorporating handedness with the nonlinear,
oscillatory co-directivity of sensors, actuators, and controllers, one
would reproduce animal-like gait and homing ability. Rapid homing
due to handedness would be beneficial in time-critical robot-assisted
rescue missions. In another application, handedness could shorten
the data search path in large networks.

Because homing is important to life with regard to food and repro-
duction, the present work shows an origin of handedness independ-
ent of social pressure, although we do not see any advantage in right-
handedness over left-handedness. However, the bat path simulations
show that a preferred type of handedness is rooted in weak-strong
oscillator interaction in membrane ion-flow, which the actuators and
the sensors mirror (the weak-strong ratio of state levels is 0.03 in
Fig. 5b; see Fig. S9 and Animation 3 in the SI for an example of the
interaction when the state level ratio is 0.001). Near the Hopf bifurca-
tion, the weak oscillator provides a tiny bias to sway the system
preferentially to one of the branches, giving rise to macroscopic
handedness.

The motion of vortex-propelled animals has been modeled using
analytical theories of nonlinear oscillators. In particular, it has been
shown that handedness in fish/fish-like interaction accelerates hom-
ing of the pursuer on the target; handedness removes ambiguity near
a target and acts as a useful bias. The fish habitat emerges as a
’’cocktail party filled with cacophony.’’ And yet, inexorably, both
the pursuer and the target are cognizant of each other through the
din. While handedness is ubiquitous, to obfuscate detection and
capture, the target animal employs numbers, schooling14, and acous-
tic clutter to live for another day, while the pursuer carries out com-
plex harmonic signal processing26 in an attempt to close the deal.

Methods
Stuart-Landau modeling of the flapping fin forces. The function f(A) appearing in
the main paper has been assumed to be linear such that

f (A)~kA
{rUS

rAplU2=2
A~kA

{2S
UApl

A, ð1Þ

where S and Apl refer to the fin’s span and planform area, respectively. The coefficient
kA scales the contribution of the wake to the angle of attack, and is understood to be a
constant between 0 and 1. The fin forces can be assumed to be acting at a distance of
Ravg from the roll axis8. Considering the radii at the root and tip of the fin, the velocity
U(t) is the instantaneous velocity at

Ravg~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r2

tipzr2
root )=2

q
, ð2Þ

Uy~ _wRavg{
3
4
{xo

� �
c _h cos h, ð3Þ

Ux~U?{
3
4
{xo

� �
c _h cos h, ð4Þ

U~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

y zU2
x

q
, ð5Þ

where c and x0 represent the chord length and the distance, respectively, from the
leading edge to the pitch axis (5 c/3); x is the forward axis; y is the spanwise axis; and
h is the temporal pitch angle.

The function

Fx agzf (A)
� �

~Fx agzf (awake)
� �

~Fx(a), ð6Þ

where

CLo~k cos2 (a) sin (a), CTo~k cos að Þ sin2 að Þ, ð7Þ

L~CLo
rU2Apl

2
, ð8Þ

T~CTo
rU2Apl

2
, ð9Þ

Fx~{L sin ({azh)zT cos ({azh): ð10Þ
Here, T is the thrust and a is the temporal angle of attack at the span of Ravg. The

coefficient k is the slope of the CL versus a curve at a approaching 0, which is taken
from our past non-flapping single fin measurements7. St is the Strouhal number of the
flapping fin obtained from the flapping frequency, roll excursion amplitude at Ravg,
and forward fin velocity8.

Note that the angle of attack that will be applied to the lift model in equation (7) will
be our estimate of the ‘‘true’’ angle of attack a 5 ag 1 awake, where awake 5 f(A), per the
main paper (angles a and ag are depicted in Figs. 7a and 7b, respectively).

The second-order model with results shown in Fig. 4b was run using the para-
meters given in Table 1 (w0 is the roll amplitude; h0 is the pitch amplitude; the sub-
script t is for twist; y is the phase difference between roll and pitch; the subscript r is
real and the subscript i is imaginary).

The wake frequency (Strouhal number) for a non-flapping foil vwake is derived
from a relationship in Yarusevych et al.33,

Stwake~
(2pvwake)d�

U?
<0:17: ð11Þ

The width of the wake d* has been approximated here by the expression

d�~2Ravg ag, max, ð12Þ

where ag,max 5 12.97u is the largest instantaneous geometric angle of attack seen by
the fin. Note that in this work, we have used a slightly higher value of Stwake (0.1752)
based on our interpretation of Yarusevych et al.’s Fig. 21, in which the data ‘‘scatter’’
for Rec , 130,000 appears to be non-random, with higher angles of attack being
associated with higher Stwake.

The amplitude of circulation oscillation for a non-flapping foil A0 is related to the
amplitude of lift oscillation for a non-flapping foil L0 by

Ao~
L0

karAplU2=2

����
����, ð13Þ

where L0 has been estimated from our experimental data8, such that

L0~0:351
rAplU2

?

2

� �
z0:0259: ð14Þ

Experimental data source.

Fig. 1b: sourced and adapted from refs. 5 and 6.
Fig. 4a: sourced from ref. 8.
Fig. 5a: sourced from ref. 23.
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