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Abstract Although great effort is being expended in the
development of cancer immunotherapies, it is surprising that
global lymphopenia and its various dimensions are not
being systematically assessed in cancer patients. The inci-
dent pathologies associated with various immunosuppressed
conditions such as those found in HIV infection have taught
us that measuring various T cell populations including CD4
provides the clinician with a reliable measure for gauging
the risk of cancer and opportunistic infections. Importantly,
recent data emphasize the key link between lymphocyte T
cell counts and overall survival in cancer patients receiving
chemotherapy. Treatment of immunocompromised patients
with interleukin-7 (IL-7), a critical growth and homeostatic
factor for T cells, has been shown to produce a compelling
profile of T cell reconstitution. The clinical results of this
investigational therapy confirm data obtained from numer-
ous preclinical studies and demonstrate the long-term sta-
bility of this immune reconstitution, not only on CD4 but
also on CD8 T cells, involving recent thymic emigrants as
well as naive, memory, and central memory T cells. Further-
more, IL-7 therapy also contributes to restoration of a broad-
ened diversity of the T cell repertoire as well as to migration
of these cells to lymph nodes and tissues. All these proper-
ties support the initiation of new clinical studies aimed at
reconstituting the immune system of cancer patients before
or immediately after chemotherapy in order to demonstrate a
potentially profound increase in overall survival.

Keywords IL-7 . Immunotherapy . Cancer . Immune
reconstitution

Introduction

Numerous articles have been devoted to reviewing the im-
mune properties of interleukin-7 (IL-7) and this molecule's
potential for therapeutic use. The most recent of these
articles provides a comprehensive review of these therapeu-
tic avenues along with the supportive immune rationale [1].
Taking a more focused approach, we here intend to delve
into the specific problem of lymphopenia in the oncology
patient, first analyzing its major aspects and pathological
consequences and then demonstrating how recombinant IL-
7 represents a potentially effective therapy for treatment of
this condition and a solution to a longstanding medical
problem.

The immune status of cancer patients: poorly monitored
and often ignored

Although it might seem obvious that tracking immune sys-
tem status is crucial to inhibiting carcinogenesis and main-
taining cellular homeostasis [2], many cancer patients are
surprisingly more immunocompromised than suspected by
their treating physician. In fact, with the exception of
patients receiving hematopoietic stem cell transplants
(HSCT) for treatment of hematologic malignancies, the
immune status of cancer patients is rarely evaluated and
when attempted, is frequently done poorly.

When oncologists do measure absolute lymphocyte
counts, they do not usually evaluate T cell (CD3) numbers,
rarely measure T cell helpers (CD4), and only exceptionally,
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evaluate the other T cell subpopulations and the breadth of
the T cell receptor (TCR) repertoire. As a result, until
recently, the potential consequence of lymphopenia and its
association with overall patient survival was poorly docu-
mented. In fact, this is often the case when a biomarker is
not expected to change with an approved therapeutic inter-
vention. If neutrophil counts are monitored, it is partly due
to the fact that corrective measures can be undertaken
through G-CSF administration with the same being true
for platelets with blood transfusion and red blood cells
utilizing therapy with erythropoietin.

Although the deficit of specific or local anti-tumor re-
sponse had been intensively explored, prior to 2003 most
data aimed at evaluating the global immune deficit of cancer
patients came from Mackall's team in the USA and the Blay/
Ray-Coquard's team in France. In two landmark papers,
Mackall et al. [3, 4] explored the immune reconstitution of
young patients who had undergone intensive chemotherapy
for cancer. In their published studies, the Mackall team
demonstrates that CD4 T cell reconstitution occurs primarily
in children while young adults exhibit deficiencies in this
pathway. This suggests that rapid T cell regeneration requires
residual thymic function in these patients, while CD8 recovery
is much faster and less dependent of thymic activity. Between
1996 and 2004, Blay et al. conducted various studies demon-
strating a relationship between early lymphopenia (absolute
lymphocyte count (ALC) <700/mm3) from days 1 to 5 fol-
lowing chemotherapy and the risk of febrile neutropenia. In
another study, they were also able to identify a direct link
between CD4 lymphopenia, febrile neutropenia, and early
death after cytotoxic chemotherapy [5–7]. Since
lymphopenia-inducing cytotoxic drugs are the mainstay of
cancer treatment, a better understanding of the immune sys-
tem's ability to restore a depleted T cell pool is clearly of
critical importance.

The various aspects of lymphopenia:
a multi-dimensional problem

Cell counts and intensity of response

The combined use of monoclonal antibodies and
fluorescence-activated cell sorting now allows for easy
tracking of changes in peripheral blood T cells and enables
the quantification and analysis of immune deficit or immune
reconstitution by cell function (helpers and cytotoxic T
lymphocytes (CTLs)), recent history (RTEs, naïve, and
memory), or status (functional, activated, or exhausted).
In the clinical setting, these convenient tools are used as
key biomarkers in following the immune status of patients
and the effects of drug therapy. Due in part to greater
awareness of the importance of measuring CD4 levels as a

consequence of the HIV epidemic, absolute CD4 lympho-
cyte counts though readily obtained by the clinician are not
often requested by oncologists. Multiple large cohort studies
of HIV patients have documented the medical value of
tracking CD4 T cell counts for monitoring health status.
These studies clearly indicate that only those patients with
CD4 counts above 500/μl have a life expectancy compara-
ble to the HIV naive population [8–10]. And, in a study
which holds great significance for cancer patients, the strat-
ification of these HIV patients according to their CD4 count
demonstrates a clear link with the incidence of AIDS and
non-AIDS-related malignancies [11].

Cell variety and coordination of response

Unlike anemia, immune deficit is not a single-cell-type
deficit and thus requires a full evaluation encompassing
the measurement of T and B cell counts as well as the main
subpopulations including naive, effector, memory, and cen-
tral memory cells along with the biomarkers of their func-
tionality. Each subpopulation has a specific function and it is
the coordination of these functions that makes up the im-
mune response. A deficit in a specific subpopulation will
abrogate the response. Investigations of HIV disease have
demonstrated the importance of CD4 help and vaccine stud-
ies have emphasized the role of long-term central memory T
cells. Other T cells like Tγδ and NKT also appear critical for
triggering or enhancing anti-tumor responses, an attribute
primarily associated with their ability to articulate innate and
adaptive immunity.

The distribution of T cell subpopulations differs substan-
tially between patients with and without cancer, increasingly
so at more advanced stages of disease and in those patients
who have undergone treatment. Heavily treated patients
show a relative shrinkage of the naïve and central memory
T cell populations but with increased proliferation and dif-
ferentiation in the direction of effector memory T cells, a
state described as T cell exhaustion [12].

The complete coordination of the immune response
requires the production and homeostasis of these subpopu-
lations indicating that a good immune reconstitution must
encompass most if not all of these cell phenotypes.

Cell polyclonality and breadth of response

B and T cells represent a vast array of immune competent
cells, each with a specific receptor (BCR or TCR) restricting
its activation to a specific antigen presented in the context of
MHC molecules. This specificity implies that to confer
sufficient immune protection against infectious agents and
malignant cells, a T cell population must include enough
diversity in the TCR repertoire to ensure a broad range of
response to various pathogenic antigens. This is particularly
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important in controlling viruses and malignant cells which
have the ability to mutate and thereby escape control of the
immune system. Similarly, in the treatment of cancer
patients, tumors are known to escape control of the immune
system by mutation. For example, under a concept known as
immunoediting [13] which is directed towards tumor elim-
ination, the relative level of control by or escape from T cells
is determined by the relative pressure from the immune
system. Not surprisingly, the broader the repertoire of T
cells the better the control.

Through modern PCR-based technologies, it is now pos-
sible to measure the diversity of the TCR repertoire. Immu-
nID Technologies (Grenoble, France), a company focused
on the development of this technology, has proposed the
word “divpenia” to refer to the low diversity of the TCR
observed in pathologies such as those represented by chron-
ic viral disease and cancer [14]. The company has accumu-
lated data showing that although divpenia is frequently
associated with low CD4 or CD3 counts, this is not a
systematic relationship and patients with reasonable T cell
counts can present with a very narrow repertoire, most likely
reflecting insufficient thymic function. Interestingly, in var-
ious cohorts of HIV patients, when the latest CD4 count
does not appear as a good prospective or retrospective
indicator of patient health status, the nadir CD4 count clear-
ly reflects this status, indicating the extension of past thymic
and mucosal damage produced by HIV infection [15].

The extensive literature on cancer immunoediting sup-
ports the importance of analyzing the breadth of T cell TCR
repertoire and the inherent breadth of T cell responses and
control. This also emphasizes the need for a therapeutic
agent able to protect and/or regenerate thymic functions.

The local deficit in the deep compartment and the need
for trafficking in lymphoid cells

Although counts and analysis of peripheral T cells can
reflect the status of T cells in the deeper lymphoid organs
and tissues, this is not a systematic relationship. Many of the
T cell dysfunctions seen in liver biopsies of chronic hepatitis
B virus (HBV) and hepatitis C virus (HCV) patients are not
readily discernible in peripheral T cells. In HIV infection, it
took almost 20 years for the medical community to under-
stand the significance of severe lymphopenia in the gut and
its key role in the persistence of T cell activation [16, 17].
Even more recently, fibrosis in the lymph nodes of HIV
patients has been shown to be connected to poor immune
reconstitution [18].

The immune system is largely composed of mobile cells
which need to traffic and interact in order to recognize
pathogenic antigens, emit an elimination message, trigger
a response, and then target and eliminate the pathogen. The

coordination and final outcome of these cellular functions
implies the trafficking of cells from the pathogen recogni-
tion site to the lymphoid organ and back to the pathogen
elimination site. Homing of T cells to lymphoid organs,
tissues, and tumors requires the critical expression of che-
mokines and integrins. In the absence of this expression, T
cells will not migrate according to their programmed func-
tions and the immune response will stop due to a lack of
good trafficking to condition their interactions and coordi-
nate the sequence of their functions.

These data seen in the context of chronic viral infection
have considerable consequences for cancer treatment and
serve to further emphasize the need to assess the “local
lymphopenia” within the tumor or its immediate vicinity.
Neutralization of TGFβ to control fibrosis, which blocks
access to the tumor, is the key to driving the anti-tumor
immune response and providing T cells full access to ma-
lignant cells. Multiple preclinical models have demonstrated
that T cell infiltration is critical to tumor elimination, includ-
ing T cell mucosal infiltration in the area surrounding the
tumor.

Due to the variety of T cell populations and functions,
lymphopenia is not a single-dimensional problem. Accord-
ingly, immune reconstitution should encompass all these
dimensions in order to guarantee the intensity, breadth,
rapidity, and stability of the immune responses as well as
the quality of immune reconstitution.

The critical consequences of lymphopenia in assessment
of cancer risk and prognosis

Lymphopenia and an increased risk of cancer

Clinical conditions associated with immune deficit show
that this condition is indicative for patient health status and
incidence of malignancies. In a landmark meta-analysis
study, Grulich et al. compared the incidence of cancers in
two populations of immunosupressed patients, HIV-infected
patients, and the transplant recipients [19]. The study
showed an increased incidence and similar distribution pat-
tern of cancers in both populations, underscoring the high
incidence of cancers known to have an infectious cause: the
three AIDS defining malignancies, all HPV-related, Hodg-
kin's lymphoma, liver, and stomach cancers [19]. The
authors go on to conclude that it is immune deficiency rather
than any other risk factor that drives the incidence of cancer
in these two populations.

With more than 10 years of experience in treating HIV
patients with highly active antiretroviral therapy (HAART),
a therapy which affords recovery of CD4 T cell counts in
most patients after 2 to 4 years of treatment (>60%), figures
now also show that HIV patients have an increased risk of
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non-AIDS defining malignancies (NADM), most likely due
to the poor quality of their immune reconstitution. This was
recently illustrated in a cohort study by Dauby et al. who
found that age (>45) and nadir CD4 counts (<200/mm3) are
associated with an increased incidence of NADM [20].

Lymphopenia and poor overall survival in cancer patients

Oncologists have now started to more systematically mea-
sure ALC and to explore the link with disease progression.
In 2009, Ray-Coquard et al. published a multi-cohort anal-
ysis of patients with breast cancer (BC), soft tissue sarcoma
(STS), and non-Hodgkin lymphoma (NHL). The study
found that lymphopenia (ALC <1,000/μl/L) was present in
approximately 25% of the patients and was associated with
markers of disease progression and poor overall survival:
median 10 versus 14 months in BC, 5 versus 10 months in
STS, and 11 versus 94 months in NHL [21]. The authors
conclude that lymphopenia is an independent prognostic
factor for overall progression-free survival in several
cancers.

In 2010, Porrata et al. studied the relapse rate of 149
Mayo clinic patients with diffuse large B cell lymphoma
treated with rituxan, cyclophosphamide, adrimamycine, vin-
cristine, and prednisone [22]. Relapse was associated with
lower ALC (1,430 vs 670 cells/mm3) and patients with ALC
>960 cells/mm3 had a cumulative incidence of relapse of 6%
versus 79% with an ALC <960.

In 2011, Cézé et al. conducted a retrospective study on
the influence of lymphopenia as a prognostic marker of
colorectal cancer in patients receiving chemotherapy [23].
Among the 260 patients analyzed, lymphopenia (ALC
<1,000cells/mm3) appeared as an independent factor for
hematological toxicity and was associated with shorter over-
all survival (median 16 vs. 24 months).

At the recent ASCO meeting, three abstracts showed the
association of lymphopenia with a poor outcome: Lim et al.
[24] poor overall survival in stage IV advanced gastric
cancer; Desposorio et al. [25] faster progression of preoper-
ative breast cancer; and, Capellino et al. [26] poor survival
in locally advanced breast cancer. In another set of data,
Peron et al. [27] presented the significant association of
various T cell counts (CD3, CD4, and CD8) observed prior
to initiation of chemotherapy with survival in lymphoma,
breast cancer, and sarcoma.

This encouraging result obtained on ALC or T cell counts
led the Blay/Ray-Coquard team to further document CD4 T
cell counts in various populations of cancer patients, includ-
ing breast cancer, and to further explore the diversity of the
TCR repertoire in collaboration with ImmunID Technolo-
gies. An interim analysis of a prospective breast cancer
cohort currently under evaluation was presented at the
2011 AACR meeting, indicating a striking difference in

the 9-month survival rate of patients with more than 450
CD4/mm3 or more than 20% diversity of their TCR reper-
toire (83% for CD4 >450/mm3 vs 45% for CD4 <450/mm3

and 78% for TCR diversity >20% vs 17% for TCR diversity
<20%) (AACR 2011 abstract 165).

All these interesting observations shed new light on
cancer-related hemato-toxicity and its impact on overall
survival of cancer patients, further emphasizing the protec-
tive role of the immune system in fostering the anti-infective
and anti-malignant aspects of immune surveillance.

Lack of T cell intra-tumoral infiltration: lymphopenia
and dysfunction associated with poor outcome

In 1984, Miwa was the first to review the data linking cancer
prognosis with tumoral T cell infiltration, indentifying the
enumeration of tumor-infiltrating lymphocytes (TIL) as a
good prognostic biomarker [28]. The local availability of the
family of LEU and OKT monoclonal antibodies explains the
interest of Japanese teams in this marker [29, 30]. Since that
time, the topic has been broadly documented and continu-
ously reviewed [31–34], the case of colorectal cancer per-
haps being one of the best documented. Presented in a
landmark paper in 1995, Pages et al. established the associ-
ation between increased survival and a high level of infil-
trating memory T cells (CD45RO+), an absence of signs of
early metastatic invasion, and a less advanced pathological
state [35]. In more recent papers, an effort is made to better
document the various phenotypes of the TILs, emphasizing
the need to document their functional status.

Among TILs the ratio of suppressor FoxP3 regulatory T
(Treg) cells over their agonist CD8 or CD4 counterparts is
critical to delineating the prognosis which is linked to the
number of cells able to express or support a CTL activity
[36, 37]. Also of interest is tracking the known “protein
programmed death 1” (PD1) expressed on activated T cells.
The engagement of the programmed death ligand 1 (PD-
L1)/B7H1 within tumor cells or other host-derived cells
results in the down regulation of T cell function and repre-
sents an important negative regulatory pathway [38, 39].

IL-7 for immune reconstitution: preclinical data

IL-7 was identified as a human T cell growth factor in 1987
[40]. The origin of circulating IL-7 is not completely eluci-
dated as it can apparently originate from various organs.
What is definitively known is that it is produced in lym-
phoid organs by thymic hepithelial cells, bone marrow stro-
mal cells and, in non-lymphoid organs, by liver and
intestinal epithelial cells, keratinocytes, and fibroblasts. In
lesser amounts, dendritic cells and macrophages can also
produce IL-7 (see for a review [41]). In solid tissue, IL-7 is
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bound/presented at the surface of T cells by fibronectin and
heparin sulfate [42]. The IL-7 receptor is only present on the
cell surfaces of hematopoietic lineage, including T cells,
dendritic cells, macrophages, and NK subsets. Recently,
the known biology of IL-7 has been well summarized in
an excellent review by Fry and Mackall [1], allowing us
here to confine ourselves to emphasizing a few points seen
as critical to the therapeutic use of IL-7.

IL-7 is key for T cell production and homeostasis

IL-7 is a non-redundant cytokine essential for T cell
production. Indeed, IL-7/IL-7 R gene knockout (KO)
mice do not produce mature T cells [43, 44]. In these
models, the thymocytes are blocked at an early stage of
differentiation and thymus cellularity is dramatically re-
duced. In vitro studies showing the essential role of IL-7
in establishing a competent immune system in humans
[45] were confirmed by a few SCID (severe combined
immunodeficiency disease) syndrome cases [46–49].

These patients presented a profound T cell deficiency
due to a defect in the IL-7 receptor leading to an inca-
pacity for binding to the cytokine or for signal transduc-
tion. IL-7 is also a major player in the regulation of
peripheral T cell homeostasis [50], as demonstrated in
2001 by Fry et al. [51] and Napolitano et al. [52] who
show the inverse relationship between endogenous blood
levels of IL-7 and counts of CD4 T cells in HIV-infected
patients, a feedback regulation already documented for
erythropoietin in anemic patients. Furthermore, IL-7 is
also implicated in the survival, proliferation, differentia-
tion, and metabolism of peripheral T cells [53, 54].

Thus, IL-7 is seen as a critical factor for T cell produc-
tion, maturation and expansion and therefore an ideal
candidate for immune reconstitution. This non-redundant
function of IL-7 for T cell production and maintenance is
very similar to erythropoietin for red blood cells, PDGF
for platelets and G-CSF for neutrophils, and provides a
solid basis for the development of a therapeutic product
(Fig. 1).

Fig. 1 IL-7 a key factor in thymopoiesis and T cell periperal homeo-
stasis. IL-7 receptor is expressed on common lymphoid progenitors
(CLP) cells in the bone marrow and is essential for maintenance or
progenitor pool for both B and T cells. During T cell development in
the thymus IL-7 is involved at different stages of T cell proliferation
and positive/negative selection. Following thymic export, recent emi-
grant T cells (RTE) are incorporated to the periphery. In the periphery,
IL-7 is a major anti-apoptotic/survival factor of T cells through eleva-
tion of Bcl-2 expression. It also controls homeostatic and antigen-

driven expansion of both CD4 and CD8 T cells. Its capacity to augment
the immune response to weak or low affinity antigens will lead to the
recognition of tumoral antigens. The Th1 response directly target
tumoral cells. Following antigen driven expansion of activated T cells,
a small population of effector cells become long-lived memory T cells
expressing high levels of IL-7 receptor, the long-lasting anti-tumoral
response. IL-7 by controlling thymopoiesis and peripheral homeostasis
as well as antigen response is a critical factor for the immune system
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IL-7 key preclinical results support its therapeutic use

IL-7 efficiently triggers immune reconstitution in various
models of lymphopenia

Very early in its development, IL-7 was successfully tested
in various models of immune reconstitution. In mice, using
a single injection of cyclophosphamide, Morisey et al. in-
duced lymphopenia and showed that IL-7 administration
resulted in an accelerated recovery of peripheral CD4+ and
CD8+ T cell numbers in the spleen and lymph nodes [55].
Alpdogan et al. [56] demonstrated the immune reconstitu-
tion effects of IL-7 administration in a mouse model of
allogeneic HSCT and Storek et al. did the same in a baboon
model of autologous transplant [57]. This impressive im-
mune reconstitution potential is also well documented in
three reports on SIV-infected monkeys [58–60] and has
more recently been shown to counteract interferon-induced
lymphopenia [61]. In all these models, reconstitution
involves both CD4 and CD8 lymphocytes as well as naïve
and memory T cells.

IL-7 does not induce an inflammatory cytokine storm
syndrome

In all in vivo preclinical models tested, IL-7 administration did
not produce the acute inflammatory cytokine release observed
with various other cytokines. During the preclinical toxicolo-
gy studies conducted in macaques at very high doses (up to
1 mg/kg twice a week), IL-7 administration produced a mas-
sive expansion of T cells and accompanying infiltration of all
lymphoid tissues accomplished as a cold infiltration without
signs of inflammation or manifestations of acute cytokine
storm. If IL-7 induces a massive expansion in most T cell
populations this proliferation appears unlikely to be accom-
panied by T cell activation. This very probably reflects the
quick internalization of the IL-7 receptor after IL-7 interaction
leading to a transient refractoriness of the Tcell to further IL-7
stimulation [62]. As demonstrated by Henriques et al., this is a
feature of IL-7 that is very consistent with the disappearance
of CD127+ cells and their reappearance after 5 to 7 days as
observed in early IL-7 pharmacodynamic and pharmacokinet-
ic studies conducted in monkeys [62]. This lack of T cell over-
activation also accounts for the possibility of producing viable
models of transgenic mice that over express IL-7, something
which is impossible withmost activating cytokines such as IL-
2, IL-12, and IL-15.

IL-7 stimulates T cell homing to tissues

Using the rhesus macaque primate model to investigate the
mechanisms involved in the short-lived, initial peripheral T
cell depletion observed after IL-7 administration, Beq et al.

[63] found that IL-7 administration induces a massive and
rapid T cell migration from the blood into various organs,
including the lymph nodes, parts of the intestine and the
skin. This homing process is initiated after the induction of
chemokine receptor expression by circulating T cells. In
fact, all monkeys treated with IL-7 showed an increased
expression of CD62L (L-selectin) and, when assessed, also
showed an increase in α4β7 (MadCAM-1 integrin). Inter-
estingly, in both anti-tumor responses discussed below, a
massive tumor T cell infiltration was documented (Fig. 2).

The simultaneous production of CD4 and CD8 T cells
contributes to restoring or expanding efficient immune
responses

Observations of this set of immunological effects lead to the
further testing of IL-7 in various preclinical tumor models.
In these studies, it rapidly became apparent that IL-7 alone
does not seem to trigger anti-tumoral immune responses.
Instead, any such response triggered by a vaccine, an adop-
tive T cell therapy, or any therapy able to stimulate antigen-
presenting cells (APC) is amplified and prolonged by IL-7
treatment, leading to an improved outcome in the animal
model. Two of these vaccine models seem particularly
suited for further investigations in the clinical setting.

In combining IL-7 administration with a GM-CSF-
secreting tumor cell immunotherapy directed against colon
carcinoma or malignant melanoma, Li et al. observed an
increased number of activated dendritic cells, T cells in
lymphoid tissues, and an increase of activated effector T
cells in the tumor microenvironment. Importantly, this ob-
servation correlates with a more potent systemic tumor-
specific T cell response leading to prolonged survival of
the tumor-bearing mice [64].

In a complex double-transgenic mouse model using
LCMV infection as a vaccine against a spontaneous SV40-
driven tumor mouse model, Pellegrini et al. observed that
short term IL-7 therapy potently enhanced vaccine-mediated
immunity, though it was inefficient in promoting antitumor
immune responses in the absence of vaccination. To pro-
mote the anti-tumor response, IL-7 treatment was shown to
antagonize various inhibitory networks, all of which are
well documented at both the cellular and molecular level
[65].

IL-7 for immune reconstitution: clinical data

The clinical development of recombinant human IL-7
follows two main pathways

In the setting of immunosuppression, usually associated
with low to very low T cell counts, IL-7 is used for immune
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reconstitution. This setting includes HIV-infected patients
who have not recovered adequate CD4 T cell counts after 1
or 2 years of HAART (the so-called “immune non-
responders”), post-HSCT patients who have received a cord
blood transplant or grafted with CD34+ cells (both very
poor in lymphocytes progenitors), patients with rare cases
of idiopathic lymphopenia, and approximately 25% of post-
chemotherapy cancer patients. Soon, frequent cases of sep-
sis, where lymphopenia appears to be the main cause of the
pathologic events leading to patient death, may also be
classified in this group, along with patients exhibiting severe
lymphopenia from any cause found in association with
massive viral infections caused by pathogens usually con-
trolled by a healthy immune system, including the EBV,
CMV, HHV-6, and JC viruses.

Together, non-lymphopenic patients with chronic viral
or bacterial infections or with cancer can benefit from IL-
7 treatment if it is combined with an additional therapy

utilized to create conditions favorable to the emergence of
an immune response. This is exactly the case in chronic
viral infections when a direct acting antiviral is used to
decrease massive antigen load and thereby rescue some of
the exhausted T cells expressing the PD1+ marker. This is
also the case when another immune intervention such as a
therapeutic vaccination is used to trigger the initiation of
an immune response. Clinical studies in chronic HCV and
HBV infections are currently ongoing to test this promis-
ing immune enhancement approach to IL-7 therapeutic
use.

Rather than reviewing the IL-7 clinical effects by indi-
vidual disease conditions, we will summarize below the
main effects consistently observed in the clinical setting,
illustrating the quality and the multiple dimensions of IL-
7-induced immune reconstitution. This better supports and
justifies the current therapeutic approach utilized in treating
cancer patients with IL-7.

Fig. 2 Possible mechanisms of action of IL-7 immunotherapy in
oncology. IL-7 immunotherapy increases both CD4 and CD8 T cell
subsets (Levy et al.). In non-lymphopenic recipients, this increase is
transient and return to baseline (unpublished data CONVERT study);
while in lymphopenic patients, a progressive restoration was observ-
able with a sustained higher T cell count at 1 year post-treatment [74].
T-lymphocyte infiltration was demonstrated in lymph nodes, gut, and
skin lymphoid tissue [60] in primates following IL-7 treatment. The
cytokine lead to an upregulation of homing chemokine receptors on T
cells including CXCR4, CCR6, and CCR9 coupled with increased
chemokine levels in tissues (CCL19, CCL20, CCL21, and CCL25)

and plasma (CCL3, CCL4, and CXCL12). The teams of Li et al. and
Pellegrini et al., elegantly demonstrated that IL-7 treatment of mice
induces a massive T cell infiltration in murine tumor leading to an
enhanced anti-tumor protection correlated with an increased number of
activated dendritic cells [61, 62]. Moreover, IL-7 will decrease the
immunosuppressive environment in the tumor by decreasing TGFbeta
secretion a key cytokine for immunosuppressive Treg. By increasing
the number of tumor reactive T including cells with a memory pheno-
type cells and decreasing immunosuppression will result in a persistent
and long-lasting anti-tumor T cell response
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Distinct differences in IL-2 and IL-7 effects on T cells
explain the failure of IL-2 in immune reconstitution

In advocating the development of IL-7 for immune recon-
stitution, the failure of IL-2 therapy in two major studies
focused on the immune reconstitution of HIV patients rep-
resents an instructive opportunity for review of the main
differences between these two cytokines. Like IL-7,
interleukin-2 is a key cytokine component of the immune
system responsible for regulating tolerance and immunity
[66]. In designing HIV studies for IL-2, its known capacity
for inducing T cell proliferation, and specifically CD4 T cell
expansion, made it a logical drug candidate for HIV patients
who suffered from the loss of peripheral and mucosal CD4 T
cells. Yet, in attempting to restore CD4 T cell populations
through IL-2 administration, results from two pivotal clini-
cal studies, SILCAAT for extremely lymphopenic HIV
patients and ESPRIT for the less lymphopenic HIV patients,
failed to demonstrate any clinical benefit from this therapy,
although patients did exhibit increased CD4 T cell counts
[67].

A detailed phenotypic analysis [68] of the CD4 produced
by IL-2 treatment explains the failure of these two studies.
IL-2 delivers essential signals for thymic development of
regulatory T (Treg) cells and later in the periphery promotes
their homeostasis and function [69]. Treg cells are increased
in most human solid tumors [70]. In murine models, selec-
tive elimination of Treg cells (i.e., CD4+CD25+FOXP3+)
restores an effective anti-tumor immune response leading to
tumor regression. Treg cells are now increasingly being
studied in the oncology field due to their apparent ability
to limit the potency of the T cell response directed against
tumors, either physiologically or following immunotherapy.
Recent work has demonstrated that Treg cells selectively
activated in the tumor contribute to tumor progression [71].
Thus, IL-2 expansion of CD4+ Treg cells in HIV patients
could not be expected to cure the deficit in conventional

T cells seen in this disease nor contribute to decreasing the
incidence of opportunistic infections and AIDS or non-
AIDS-related malignancies.

In fact, early transgenic models of IL-2 gene KO mice
have shown, contrary to what is seen in the case of the IL-7
gene KO, that this does not lead to SCID syndrome but
rather to the development of a fatal immunopathology char-
acterized by lymphoadenopathy, splenomegaly, T cell infil-
tration of the bone marrow, loss of B cells, anemia, and
inflammation of the gut [72]. Furthermore, studies of IL-2R
beta gene KO mice demonstrate that IL-2R beta is required
to keep the activation programs of T cells under control, to
maintain homeostasis, and to prevent autoimmunity [73].
Table 1 summarizes the various features of IL-2 and IL-7
immune effects.

Intensity: IL-7 therapy systematically and durably increases
both CD4 and CD8 T cell counts

On the basis of data obtained from more than 200 patients
treated with IL-7 in the clinical trials conducted by Cytheris,
accumulated evidence indicates the potent lymphopoietic
effect of this cytokine. The lymphopoietic response and
peripheral expansion detected in all treated patients as a
consequence of IL-7 therapy involves both CD4 and CD8
T cells. The CD4 T cells produced are conventional T cells
with detectable helper function. Although IL-7 treatment
induces a moderate increase in Treg, in relation to the in-
crease of all other conventional T cells this increase actually
translates into a decreased frequency of Treg. Interestingly,
in HIV immune non-responders who have undergone sev-
eral years of HAART therapy but whose CD4 counts remain
below 250/mm3, a short 3-week cycle of IL-7 is sufficient to
bring the CD4 counts of these patients above the threshold
level of 500/mm3 and, furthermore, to maintain these CD4
counts above baseline levels for at least 1 year after this first
cycle of IL-7 treatment. This long-lasting effect was also

Table 1 Comparison of immune effects of IL-7 and IL-2

IL-7 IL-2

Gene KO Deletion of most T cells [43] Hyper-proliferation of T cells,
autoimmune syndrome [73]Receptor gene KO confirmation SCID syndrome in babies with mutation

of CD127/IL-7R [44]

Production of CD8 T cells +++ Long lasting [80] NO [68]

Production of suppressor Treg Very low, decrease in Treg frequency [81] High, increase in Treg frequency [68]

THYMUS and repertoire Support of thymopoietic activity broadening
of TCR repertoire [80, 82, 83]

NO thymic support [67]

Interaction with immunosuppressive TGFβ Antagonism of TGFβ [77] Synergy with TGFβ for Treg production [84]

Life of produced T cells Long lasting through anti-apoptotic support
[80, 82, 83]

Short

Clinical tolerance Good: loss of IL-7R on activated T cells
protects from over-activation [80, 82, 83]

Poor: risk of over-activation plus NK
stimulation [67]
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observed in lymphopenic patients, where the curve of T cell
counts was observed to peak a few weeks after the IL-7
cycle, then drop to a plateau where it stabilized. The shape
of this curve was different in non-lymphopenic patients,
where the same treatment produced a temporary increase
characterized by a dome shaped curve followed by a return
to baseline after a few weeks.

Throughout the IL-7 dose escalation studies explored in
various patient subpopulations, a dose-related effect from 3
to 10, 20, and 30 μg/kg was consistently observed. Consid-
ering the long-term maintenance of these effects, it appears
that 10 and 20 μg/kg/week provide the best results together
with an optimal clinical tolerance. This is consistent with the
pharmacokinetic of the product which appears to be linear
up to 20 μg/kg but becomes non-linear beyond this point,
probably reflecting a saturation of the high-affinity target-
mediated clearance at 30 μg/kg/week.

From the data accumulated in immune-suppressed
patients it is apparent that the most lymphopenic benefit is
obtained from the 20 μg/kg dose level, at least as a first
induction cycle. More clinical results will be needed to
determine the benefit of the 10 μg/kg/week dose for which

only preliminary results are available from the less immu-
nosuppressed patients. This dose will be explored to deter-
mine its utility in the maintenance cycle of patients who
have already received a first IL-7 cycle and have recovered a
CD4 count that is above 400/mm3 (Levy, Y ICAAC 2009
abstract 3585; Perales, M-A ASH 2011 abstract 674).

This stable and combined increase of both CD4 and CD8 T
cells is promising because CD8 Tcells are known to be the best
effectors of immune response. Thus, for these cells to be fully
functional and migrate to the tumor site where they can then
express their cytolytic activity they require the efficient CD4
support in which IL-2 and IL-21 production appears essential.

Quality and variety: IL-7 therapy impacts all T cells
subtypes

IL-7 therapy increases both naive andmemory Tcells. The very
significant increase of naïve T cells also involves recent thymic
emigrants (CD31+ bright). This increase in thymic output was
also observed by measuring the production of T cell receptor
excision circles (TRECs; small DNA excision circles produced
during the recombination of the TCR and reflecting the

Fig. 3 Impact of IL-7 on T cell repertoire. IL-7 has a major role in
preserving the naïve T cell repertoire by increasing thymopoiesis and
cell viability in absence of antigen stimulation. Thymopoiesis increase
was demonstrated by the increase of TRECs following IL-7 immuno-
therapy in HIV patients. By inducing a higher rate of thymocyte
proliferation, the cytokine generates more diverse TCR rearrangement
contributing to an increase of RTE and naive T cell subsets in the

periphery. An increase of the T cell pool diversity was demonstrated by
TCR beta combinational diversity in HIV-infected patients treated with
IL-7(manuscript in preparation INSPIRE 1 study). Peripheral expan-
sion of pre-existing T cells probably contributes to the TCR repertoire
diversification observation. By increasing thymus activity, output, and
peripheral expansion of produced cells IL-7 potentially increase T cell
repertoire diversity

Targ Oncol (2012) 7:55–68 63



thymopoietic activity) and later through the measure of sj/
βTRECs ratios, a marker reflecting the same effect but neutral-
izing the dilution due to the massive IL-7 T cell production
(Fig. 3).

IL-7 therapy also produced memory T cells, effectors,
and importantly for long-term protection central memory Tcells

All these effects were consistent with the known presence of
the IL-7 receptor on T cells, representing the sub population
with the most receptors, naïve, and central memory, being
preferentially expanded.

The proliferative effect measured by Ki67 was obvious in
the early days of treatment and the anti-apoptotic effect of IL-7
guaranteed the stability of these effects. The distribution of
these various subpopulations did not differ significantly when
measured just after the treatment cycle or a few months after.

IL-7 therapy can increase the diversity of the T cell receptor
repertoire: “the breadth dimension”

The observation of a thymopoietic effect confirmed earlier
data sets produced in IL-7 treated monkeys as well as early

thymic assessments performed on cancer patients. In addition
to its lymphopoietic effect, IL-7 therapy can also raise clonal
diversity by increasing the sensitivity of the TCR, not only to
dominant epitopes, but also to sub-dominant epitopes as well
[74–76]. The combination of these two effects results in an
increased diversity of the TCR repertoire in treated patients.
This was again assessed by utilizing the double PCR technol-
ogy of ImmunID Technologies. The increase in TCR diversity
has already been confirmed in HIV- and HCV-infected
patients and after HSCT. These results also confirm previous
data obtained by the immunoscope technology in cancer
patients (Fig. 3). These increases in the diversity of the TCR
repertoire are expected to increase the breadth of response
against pathogens as well as against the escape of viruses by
mutation and of malignant cells by immune editing.

IL-7 therapy can increase the homing of T cells to lymphoid
tissues and target organs

Supporting previous data from experimental monkey stud-
ies, the measure of CD62L and α4β7 on T cells after IL-7
treatment confirmed their potential for migration to tissues.
In fact, due to the massive T cell depletion observed in HIV-

Fig. 4 Clinical trial design involving IL-7 immunotherapy. As lym-
phopenia was identified as a prognosis factor for overall survival and
tumor progression in patients with advanced cancer, cycles of IL-7
could be used before chemotherapy intervention to restore global
immunity. Two different types of cancer are envisaged here: solid
tumor and bone marrow transplantation. In metastatic patients

presenting a chemotherapy-induced lymphopenia, cycle of IL-7 before
or during chemotherapy will counteract the lymphopenia effect and
preserve T cell survival. Following T cell depletion in bone marrow
transplanted patients, multiple cycles of IL-7 will be necessary to
recover a competent immune system and reach a less life-threatening
window
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infected patients and the key pathogenic role of this deple-
tion in this disease and in the residual disease observed in
immune non-responders to HAART, we were encouraged to
measure the ability of IL-7 therapy to repopulate the gut
with T cells. This was confirmed by gut biopsies performed
on these patients, showing a significant repopulation in most
patients after just one 3-week cycle of treatment. These
investigations are still ongoing and are being extended to
patients receiving more than one IL-7 cycle in order to
explore the stability of this T cell repopulation.

Some interesting facets of IL-7 activity remain
to be confirmed and detailed at the clinical level

Though the expression of α4β7 allowing the extravasation of
lymphocytes to the peripheral tissues certainly facilitates access
to the tumor, fibrosis nevertheless remains a potential barrier,
blocking access of Tcells to their malignant targets. In his view,
the IL-7 antagonism of TGF-β and the resulting block of
fibrosis observed in an experimental model (bleomycin-induced
lung fibrosis) could represent an interesting aspect of IL-7
activity which remains to be demonstrated in the clinic [77].
Antagonizing the immune-suppressive of TGF-β would also
represent a positive trait of IL-7 anti-tumoral activity [78, 79].

Finally, the proliferative effects of IL-7 on the lymphocyte
population are not limited to theαβTcells, as IL-7 also triggers
the expansion of γδ T cells and invariant NKT. At the hinge
between adaptive and innate immunity these cell populations
certainly must participate in cancer immune surveillance, a
feature that will be investigated in future clinical studies.

Conclusions

While anemia and platelet loss are quickly apparent to the
clinician and call for immediate therapeutic correction, the
case of lymphopenia is more surreptitious. Behind an ap-
parent normal standard hematology cell count, a critical
deficit can be hidden involving a global deficit of T cells
(CD3), helper cells (CD4), or an oligoclonality, also known
as “divpenia” for the loss of diversity. Together, these con-
ditions open gaps in the immune repertoire or result in a
deficit of migration which leaves substantial room for severe
local lymphopenia in the vicinity of the tumor.

All along the dimensions of lymphopenia, preclinical and
clinical data have accumulated to demonstrate the ability of
exogeneous IL-7 therapy to repair these multiple deficits.
With the availability of the first clinical results, there is now
a high probability for demonstrating a true clinical benefit
of IL-7 treatment in the most lymphopenic patients.
The development of IL-7 therapy for the prevention of
opportunistic infections and relapses or incidence of new

malignancies is ongoing in the setting of post-HSCT and
HIV infection. With the production of new data indicating
short term post-chemotherapy survival of cancer patients
with lymphopenia characterized by a loss of CD4 T cells
or repertoire diversity (divpenia), a new therapeutic para-
digm is beginning to open based on the role of the immune
system in treating these cancer patients (Fig. 4). Though it is
now obvious that a thrombocytopenia can lead to death by
fatal hemorrhage, until recently it was much less obvious
that loss of lymphocytes could also lead to death by a
breakdown in the immune barrier to infectious agents or
malignant cells, including metastatic cells.

Finally, in the current acceleration in the development of
anticancer immunotherapies, most efforts have been
deployed to trigger anti-malignant cell responses, a difficult
task against cells made invisible to the immune system. The
concept of immunoediting has been instrumental in advanc-
ing our understanding of how an efficient immune response
can be insufficient and unstable. As a counter balance, then,
it has now become clear that the addition of IL-7 support
could bring to these developing immunotherapeutic
approaches, the intensity, breadth, and stability needed to
eliminate the malignant process before the advent of an
efficient escape facilitated by immunoediting.
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