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Abstract: Cucumber (Cucumis sativus L.) is one of the most popular cultivated vegetable crops but
it is intrinsically sensitive to cold stress due to its thermophilic nature. To explore the molecular
mechanism of plant response to low temperature (LT) and the mitigation effect of exogenous nitric
oxide (NO) on LT stress in cucumber, transcriptome changes in cucumber leaves were compared.
The results showed that LT stress regulated the transcript level of genes related to the cell cycle,
photosynthesis, flavonoid accumulation, lignin synthesis, active gibberellin (GA), phenylalanine
metabolism, phytohormone ethylene and salicylic acid (SA) signaling in cucumber seedlings. Exoge-
nous NO improved the LT tolerance of cucumber as reflected by increased maximum photochemical
efficiency (Fv/Fm) and decreased chilling damage index (CI), electrolyte leakage and malondialde-
hyde (MDA) content, and altered transcript levels of genes related to phenylalanine metabolism,
lignin synthesis, plant hormone (SA and ethylene) signal transduction, and cell cycle. In addition,
we found four differentially expressed transcription factors (MYB63, WRKY21, HD-ZIP, and b-ZIP)
and their target genes such as the light-harvesting complex I chlorophyll a/b binding protein 1 gene
(LHCA1), light-harvesting complex II chlorophyll a/b binding protein 1, 3, and 5 genes (LHCB1,
LHCB3, and LHCB5), chalcone synthase gene (CSH), ethylene-insensitive protein 3 gene (EIN3),
peroxidase, phenylalanine ammonia-lyase gene (PAL), DNA replication licensing factor gene (MCM5
and MCM6), gibberellin 3 beta-dioxygenase gene (GA3ox), and regulatory protein gene (NPRI), which
are potentially associated with plant responses to NO and LT stress. Notably, HD-ZIP and b-ZIP
specifically responded to exogenous NO under LT stress. Taken together, these results demonstrate
that cucumber seedlings respond to LT stress and exogenous NO by modulating the transcription
of some key transcription factors and their downstream genes, thereby regulating photosynthesis,
lignin synthesis, plant hormone signal transduction, phenylalanine metabolism, cell cycle, and GA
synthesis. Our study unveiled potential molecular mechanisms of plant response to LT stress and
indicated the possibility of NO application in cucumber production under LT stress, particularly in
winter and early spring.

Keywords: cucumber; low-temperature stress; transcriptome; transcription factor; phenylpropanoid;
plant hormones

1. Introduction

Cucumber (Cucumis sativus L.) is a typical profitable and nutritious vegetable crop
across the world. Despite being a thermophilic species, it is one of the most popular
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greenhouse-cultivated crops in winter and early spring. However, cucumber plants rou-
tinely encounter chilling (0–12.5 ◦C) during the winter or early spring production in regions
with cold climates such as in northern China which appears to be the main limiting factor
for the growth, productivity, and quality of greenhouse-grown cucumber [1]. The pro-
duction of cucumber in greenhouses reaches 17.1 kg·m−2, more than five times that of
cultivated in the open field, and the productivity of cucumber cultivated in greenhouse
decreased by 3–4 kg·m−2 due to low temperature (LT) stress [2]. Thus, it is extremely vital
to enhance the LT tolerance of cucumber seedlings. According to previous reports, some
plant hormones and signaling molecules including auxin (IAA), abscisic acid (ABA), and
brassinosteroid (BR) play key roles in improving the LT tolerance of cucumber [3,4]. Nitric
oxide (NO), a gaseous signaling molecule, has previously also been shown to be involved
in the regulation of plant growth, development, and LT stress response [5,6]. Moreover, it
was revealed that exogenous NO increased plant LT tolerance at the physiological level,
such as by improving plant photosynthesis, carbohydrate metabolism, antioxidant enzyme
activity, and reactive oxygen species (ROS) metabolism [7–10]. In addition, NO also plays
a critical role in plant stress response through mobilizing the flavonoids and other sec-
ondary metabolites, such as salicylic acid (SA), ethylene, IAA, ABA, and jasmonic acid
(JA), and activating the expression of related genes encoding ABC transporter, glutathione
S-transferases (GSTs) and cytochromes P450 [11–13].

With the development and application of “omics” technologies, transcriptomics analy-
sis has provided a new experimental tool to investigate genome function and its physio-
logical regulation mechanism of stress tolerance in crops. In addition, as a comprehensive
and accurate tool, high-throughput RNA sequencing (RNA-seq) provides an opportunity
to quantify the transcriptome. Transcriptome profiling based on the RNA-seq is used to
analyze gene expression patterns and the molecular mechanism in plant development,
response to abiotic stresses and to map the response pathways [14–16]. A recent study
comprised of both physiological and transcriptome analyses showed that glutathione (GSH)
is a downstream signal of hydrogen sulfide (H2S)-induced tolerance to chilling stress in cu-
cumber [17]. In a transcriptome analysis of potatoes, the molecular mechanisms of freezing
tolerance were found to be modulated by the ADC1-associated putrescine pathway, proba-
bly by enhancing the expression of the CBF gene [18]. More recently, NO was also found
to be involved in enhancing melon tolerance to chilling stress by regulating saccharide
metabolism, biosynthesis of other secondary metabolites, lipid metabolism, amino acid
metabolism, and signal transduction pathways [19]. Those results have greatly extended
the current understanding of molecular mechanisms of plant responses to cold stress.

Transcriptional regulation plays a bridging role in plant responses to abiotic stress,
and transcription factors (TFs) cover a significant part of the genome and can interact with
promoters of different abiotic stress-related genes and initiate the expression of genes [20].
Among the transcription factor signaling cascades, ICE-CBF-COR (COLD-RESPONSIVE)
is one of the most well-studied pathways under LT stress. ICEs induce CBF expression
through specific binding to MYC cis-acting elements [21,22] and the activated CBF signal-
ing pathways with the induction of CBF1, CBF2, and CBF3 expression, followed by the
expression of COR genes under LT stress [23]. Furthermore, TFs, including members of
the AP2 [24], NAC [25], MYB [26], HD-ZIP [27], bHLH [28], CBF [29], and WRKY [16]
families were found to participate in plant tolerance against abiotic and biotic stresses by
modulating the expression of defense-related genes. For example, transcriptome data in
grapevine calli revealed that the expression of genes encoding antioxidant enzymes, such
as peroxidases and GST, was up-regulated after cold treatment in VaWRKY12-overexpressing
grapevine calli compared to the control calli [30]. In addition, MYB was extremely up-
regulated in the purple kale and induced by LT stress [26]. Furthermore, HD-ZIP family
TFs were also found to be associated with LT stress [31]. However, to our knowledge, few
studies have deeply investigated the networks regulated by key TFs in response to LT stress
and NO in plants, and the downstream regulation mechanism of these TFs.
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Our previous studies at the physiological level have revealed that NO improves the
LT tolerance of cucumber by inducing the photosynthetic and antioxidant systems [9,10].
However, the molecular mechanism of cucumber response to LT stress and the NO-induced
LT tolerance of cucumbers is still not well understood. In the present study, we aimed
to identify the pathways regulated by TFs and their target genes in response to LT stress
and NO. Our data suggest that NO plays a significant role in alleviating LT stress by
altering the expression of some key TFs that regulate downstream genes involved in LT
tolerance. Transcriptome profiling of the current study provides new insights into the
NO-regulated LT stress response in cucumbers. The list of abbreviations in the end of the
article summarized all of the abbreviations appearing in this study.

2. Results
2.1. Nitric Oxide (NO)-Induced Low Temperature (LT) Stress Tolerance in Cucumber Seedlings

The severity of cucumber leaf damage was apparently higher in LT treatment than
in NO + LT treatment (Figure 1A,B). While LT stress significantly decreased the Fv/Fm in
cucumber seedlings compared with the control, NO + LT treatment significantly increased
Fv/Fm value in cucumber seedlings compared with the LT treatment (Figure 1D). The
image of maximum photochemical efficiency (Fv/Fm) (Figure 1A) was highly consistent
with the quantitative value (Figure 1D). Chilling damage index (CI), electrolyte leakage,
and malondialdehyde (MDA) content were significantly elevated in cucumber seedlings by
LT stress compared with control, while these values were significantly reversed by NO + LT
treatment (Figure 1C–F). These results suggested that the inhibitory effect of LT on the
growth of cucumber seedlings could be partially reversed by exogenous NO.
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Figure 1. Effects of low temperature (LT) on photosynthetic apparatus and membrane stability
in cucumber leaves as influenced by nitric oxide (NO) pretreatment. (A) Fv/Fm image, (B) plant
phenotype, (C) chilling damage index, (D) Fv/Fm values, (E) electrolyte leakage, and (F) MDA
content in cucumber leaves. Control, the cucumber seedlings were sprayed with distilled water and
incubated under normal conditions; LT, the cucumber seedlings were sprayed with distilled water
and incubated at 10 ± 1 ◦C/6 ± 1 ◦C (day/night) temperatures; NO + LT, the cucumber seedlings
were sprayed with 200 µmol·L−1 SNP and incubated under LT condition. Data are an average of
6 replicates ± SE. Means denoted by different letters indicate a statistically significant difference at
p < 0.05.
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2.2. Identification of Differentially Expressed Genes (DEGs)

Nine cDNA libraries were established from Jinyan No. 4 cucumber seedlings under
normal conditions (Control), low-temperature stress (LT), and a combination of exogenous
NO and low-temperature stress (NO + LT) for RNA-seq analysis. The clean reads of each
sample ranged from 42.6 M to 55.9 M, with an average amount of 50.5 M. The quality of
Q30 bases ranged from 92% to 93%, with an average of 92.9% (Table S2). In summary, the
quality of the data meets the analysis requirements. Salmon was used to align the clean
reads of each sample to the annotated gene to estimate the expression abundance (TPM).
Furthermore, the mapping ratios ranged from 61% to 71%, with an average amount of 67%
(Figure S1). Figure 2A showed the correlation between the samples of the three treatments.
Deseq 2 was used to identify DEGs based on the gene expression levels between different
samples, and the results are shown in Figure 2B. A total of 7758 DEGs were observed in
LT vs. Control, and of these, 4230 were up-regulated and 3528 were down-regulated. In
total, 7301 genes were differentially expressed in NO + LT vs. Control, with 3966 up- and
3335 down-regulated. Only 248 genes (151 up- and 97 down-regulated) were differentially
expressed in NO + LT vs. LT (Figure 2B). We draw an UpSet diagram for the DEGs obtained
from the comparison of the three groups, and the results showed that a total of 1305 and
848 DEGs were uniquely observed in LT vs. Control and NO + LT vs. Control, respectively.
Among the 6453 genes differentially expressed in LT vs. Control and NO + LT vs. Control,
121 genes were specifically differentially expressed in NO + LT vs. LT (Figure 2C). These
results suggest that the response to LT stress alone and combined treatment of exogenous
NO and LT stress may share both the same regulatory pathways and different regulatory
pathways in cucumber.

2.3. Gene Ontology (GO) Enrichment Analysis of DEGs

In order to understand the function of DEGs in-depth, the DEGs with a corrected
p-value less than 0.01 (padj < 0.01) were chosen for GO enrichment analysis. The results
showed that there were 4609, 4915, and 159 DEGs that obtained GO annotations in the
three comparisons of LT vs. Control, NO + LT vs. Control, and NO + LT vs. LT, respectively.
In addition, 2439, 2632, and 81 DEGs were enriched in the biological process (BP), 835, 863,
and 44 DEGs were enriched in cellular component (CC), and 3320, 3428, and 116 DEGs were
enriched in molecular function (MF) in the three comparisons, respectively. Furthermore,
the MF contains the most DEGs, followed by BP, and the CC with the least DEGs. Taking
p < 0.05 as the criterion of significant GO enrichment, the significantly enriched GO terms
of each comparison were selected and plotted as a bubble diagram (Figure 3). GO terms
associated with DNA-binding transcription factor activity, oxidoreductase activity, trans-
membrane transporter activity, sequence-specific DNA binding, transferase activity, ADP
binding, protein serine/threonine phosphatase activity in MF; transmembrane transport,
signal transduction, serine family amino acid metabolic process in BP; and transcription
factor complex in CC were significantly enriched in LT vs. Control. Moreover, DEGs
including DNA-binding transcription factor activity, transmembrane transporter activity,
sequence-specific DNA binding, transferase activity, transferring hexosyl groups, protein
serine/threonine kinase activity, protein serine/threonine phosphatase activity in MF; trans-
membrane transport, serine family amino acid metabolic process, drug transmembrane
transport, nucleosome assembly, L-phenylalanine catabolic process, photosynthesis, light
harvesting in BP; and transcription factor complex in CC were predominantly enriched
in NO + LT vs. Control. In addition, the GO terms including DNA-binding transcrip-
tion factor activity and oxidoreductase activity in MF; DNA replication initiation in BP;
and transcription factor complex, replication fork in CC, were significantly enriched in
NO + LT vs. LT.

2.4. Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis of DEGs

KEGG enrichment analysis of the DEGs in the three comparisons (LT vs. Control,
NO + LT vs. Control, and NO + LT vs. LT) was performed to further elucidate the metabolic
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pathways and key regulatory genes involved in response to LT stress and exogenous NO.
The significantly enriched pathways with p < 0.05 were selected for analysis, and the
results were shown in Figure 4. A total of 16 pathways were enriched in LT vs. Control,
especially in plant hormone signal transduction, phenylpropanoid biosynthesis, MAPK
signaling pathway-plant, circadian rhythm-plant, glutathione metabolism, arachidonic
acid metabolism, and apoptosis pathways. Fourteen pathways were enriched by ana-
lyzing the DEGs in NO + LT vs. Control, in which, phenylalanine metabolism, linoleic
acid metabolism, glycolysis/gluconeogenesis, and alpha-Linolenic acid metabolism were
significantly enriched. A total of four pathways including phenylpropanoid biosynthesis,
phenylalanine metabolism, pentose and glucuronate interconversions, and cell cycle were
enriched by analyzing the DEGs between the NO + LT and LT treatments. These results
indicated that the signal transduction, carbohydrate metabolism, photosynthesis, circadian
rhythm-plant, and glutathione metabolism pathways may be involved in regulating LT tol-
erance in cucumber seedlings, while NO may improve cucumber LT resistance by activating
the differential expression of genes involved in DNA replication and cell cycle pathways.
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Figure 2. The differentially expressed genes (DEGs) in cucumber seedlings as influenced by nitric
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2.5. Prediction and Enrichment of Differentially Expressed Transcription Factors (DETFs) in
Cucumber Seedlings

In order to investigate the effect of LT stress and NO + LT treatments on transcription
factors (TFs) in cucumber, the TFs encoded by the DEGs and the upstream TFs that regulate
the DEGs were mined in this study (Figure 5, Table 1). BLAST was used to align the cucumber
protein sequence to the Arabidopsis protein sequence for homology comparison after converting
the cucumber gene ID to the Arabidopsis gene ID. Then the corresponding Arabidopsis gene
IDs were input into the Plant TFDB (http://planttfdb.gao-lab.org/help_famschema.php,
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accessed on 20 April 2021) software to predict the TFs. Moreover, The TFs enrichment
function was used to perform upstream transcription factors enrichment, and p < 0.01 was
assigned as a significantly different enrichment. As shown in Figure 5, a total of 504 and
490 DETFs were detected in LT vs. Control and NO + LT vs. Control, and these TFs belong
to 53 and 51 families, respectively. The number of DETFs identified in the bHLH family
is the largest, followed by ERF, NAC, C2H2, MYB, WRKY, and b-ZIP families in both LT
vs. Control and NO + LT vs. Control (Figure 5). Based on the DEGs in LT vs. Control
and NO + LT vs. Control, we further identified the upstream TFs that regulated these
DEGs. Table 1 showed that 139 and 129 upstream regulatory TFs were enriched in the two
comparisons, respectively, of which BBR-BPC, GRAS, AP2, b-ZIP, Dof, BES1, C2H2, MYB,
MYB_related, and HD-ZIP were most significant.
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Table 1. The upstream transcription factors (TFs) enrichment results.

BBR-BPC GRAS AP2 b-ZIP Dof BES1 C2H2 M YB MYB-
Related HD-ZIP

LT vs.
Control 1.24 × 10−41 7.56 × 10−38 6.40 × 10−32 5.22 × 10−16 1.82 × 10−15 5.57 × 10−14 5.07 × 10−12 9.12 × 10−5 1.44 × 10−5 -

NO + LT vs.
Control 7.08 × 10−40 6.57 × 10−32 8.88 × 10−29 6.13 × 10−12 8.84 × 10−12 5.45 × 10−12 1.96 × 10−10 9.96 × 10−5 4.12 × 10−4 1.04 × 10−4

Note: The upstream TFs were obtained by LT and NO + LT compared with the Control. The significance of the
difference is represented by the p-value.

2.6. Identification of the Key TFs in Response to LT and NO + LT Treatments

Based on the previous enrichment results, the significantly enriched KEGG path-
ways were screened out, and these enriched DEGs were input into EAT-Up TF v 0.1
(http://chromatindynamics.snu.ac.kr:8080/EatupTF, accessed on 22 April 2021) software
to predict the regulatory network. A total of 14 upstream TFs were identified, of which only
four TFs including MYB63, WRKY21, b-ZIP, and HD-ZIP were differentially expressed,
while b-ZIP and HD-ZIP TFs were specific activation TFs that respond to NO under LT
stress. The four TFs potentially regulated 18, 12, 26, and 7 DEGs, respectively (Table 2), and
these DEGs were mainly enriched in the flavonoid biosynthesis, phenylalanine metabolism,
photosynthesis-antenna proteins, plant hormone signal transduction, cell cycle, and DNA
replication (Figure 6B). The DEGs with the same law of change in the up- and down-
stream of the metabolic pathways were selected to establish the regulatory relationship
between the TFs and their downstream target genes (Figure 6A). The genes including
light-harvesting complex I chlorophyll a/b binding protein 1 (LHCA1), light-harvesting
complex II chlorophyll a/b binding protein 1, 3, 5 (LHCB1, LHCB3, LHCB5), chalcone syn-
thase (CSH) and peroxidase were regulated by MYB63, peroxidase and ethylene-insensitive
protein 3 (EIN3) were regulated by WRKY21, gibberellin 3 beta-dioxygenase (GA3oX),
DNA replication licensing factor (MCM5, MCM6), phenylalanine ammonia-lyase (PAL)
genes were regulated by HD-ZIP, and regulatory protein (NPR1), LHCA1, LHCB1, LHCB3,
LHCB5 were regulated by b-ZIP.

Table 2. The key DETFs in LT vs. Control, NO + LT vs. Control and NO + LT vs. LT.

TF Tair Gene ID Cumuber
Gene_ID p-Value Control LT NO + LT LT vs.

Control
NO + LT

vs. Control
NO + LT

vs. LT

MYB63 AT1G79180.1 CsaV3_7G004040.1 0.01075 0.015 0.065 0.167 2.1 3.5 1.4
WRKY21 AT2G30590.1 CsaV3_2G013650.1 0.014038 1.197 5.064 3.067 2.1 1.6 −0.7

b-ZIP AT2G36270 CsaV3_3G037220.1 0.016527 19.248 1.29 1.790 −3.9 −3.4 0.5
HD-ZIP AT2G22430.1 CsaV3_6G045240.1 0.033767 192.76 89.45 79.388 −1.1 −1.3 −0.8

Note: Tair gene ID represents the gene ID encoding four TFs in Arabidopsis. The number represents the value of
log2 (fold change).

2.7. Downstream Regulatory Mechanism of Key TFs

To explore the regulatory effects of TFs and their target genes on downstream genes,
we further studied the nine target genes of LHCA, LHCB, NPR1, CSH, POX, PAL, MCM5,
MCM6, and EIN3, and their upstream and downstream genes in the pathways.

2.7.1. The Regulation of Key TFs on Photosynthetic Antenna Protein-Related Genes

Light-harvesting complex I chlorophyll a/b binding protein (LHCA) and light-harvesting
complex II chlorophyll a/b binding protein (LHCB), located at the photosynthetic system I
(PSI) and the photosynthetic system II (PSII), respectively, are the most important part of
the light-harvesting complex (LHC) in photosynthesis to absorb light energy. As shown in
Figure 6A, we identified that the genes LHCA1, LHCB1, LHCB3, and LHCB5 associated
with photosynthetic antenna protein were down-regulated in both LT vs. Control and
NO + LT vs. Control in this study (Figure 6B). We also found that LHCA1, LHCB1, LHCB3,
and LHCB5 were regulated by MYB63 under low-temperature stress, while they were
regulated by b-ZIP in NO + LT stress treatment (Figure 6A). In addition, MYB63 was
up-regulated, while b-ZIP was down-regulated in both LT vs. Control and NO + LT vs.

http://chromatindynamics.snu.ac.kr:8080/EatupTF
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Control. These results suggested that MYB63 negatively while b-ZIP positively regulated
the LHCA1, LHCB1, LHCB3, and LHCB5 to reduce the light energy absorption in cucumber
seedlings at LT stress, reduce light damage, and ultimately respond to LT stress.
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Figure 6. (A) A diagram of TFs regulatory network. Blue represents TFs enriched only after NO
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The Heatmap shows the level of gene expression in different comparisons. The color from red
to purple represents the DEGs up-regulated to down-regulated. The gene ID is at the bottom.
‘*’ represents the genes regulated by transcription factors.

2.7.2. The Regulation of TF on Genes Related to Flavonoid and Lignin Synthesis

The biosynthesis of flavonoids starts from the phenylalanine metabolic pathway. The
cinnamic acid is catalyzed by chalcone synthase (CHS) to form chalcone, and chalcone is
catalyzed by chalcone isomerase (CHI) and forms naringenin. Naringenin is catalyzed
by flavanone 3-hydroxylase (F3H) to produce flavanone alcohols. Flavonols, the main
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product of metabolism, enter other different flavonoid synthesis pathways to form different
flavonoid substances. In this study, the CHS and CHI were down-regulated in both LT
vs. Control and NO + LT vs. Control, while had no significant difference in NO + LT vs.
LT (Figure 6B). These results suggested that the synthesis of chalcone and flavanone was
reduced by LT, while NO had no effect on the synthesis of chalcone and flavanone under
LT stress. The lignin biosynthesis also starts from the phenylalanine metabolism, and the
peroxidase, a plant-specific protein, is not only involved in plant hormone metabolism
and ROS metabolism but also participates in lignin synthesis in plants. We found that
the expression level of peroxidase was up-regulated by LT treatment compared with
Control, and exogenous NO further increased the peroxidase expression level under LT
stress (Figure 6B). In this study, both CHS and peroxidase were regulated by MYB63, and
peroxidase was also regulated by WRKY21. MYB63 and WRKY21 were up-regulated in
the three comparisons of LT vs. Control, NO + LT vs. Control, and NO + LT vs. LT. These
results indicated that MYB63 negatively regulated the CHS gene, and MYB63 and WRKY21
positively regulated peroxidase at LT stress, leading to decreased synthesis of chalcone and
flavanone and increased synthesis of lignin.

2.7.3. The Regulation of TF on Genes Related to Plant Hormone Signal Transduction Pathway

Phenylalanine ammonia-lyase (PAL) can catalyze the formation of trans-cinnamic
acid (t-CA), the precursor substance of salicylic acid (SA), from phenylalanine. Exogenous
NO could up-regulate the expression of PAL (Figure 6B), which further suggested that
NO could promote the accumulation of SA under LT stress in this study. In addition, the
expression levels of NPR1 and TGA were up-regulated by LT + NO and LT treatments
when compared with the Control. Compared with Control, PR1 was up-regulated by LT +
NO, while down-regulated by LT. PR1 was also up-regulated by exogenous NO under LT
stress (Figure 6B). Furthermore, HD-ZIP and b-ZIP were down-regulated by LT + NO when
compared with Control. PAL and NPR1 were regulated by HD-ZIP and b-ZIP, respectively.
These results showed that exogenous NO caused the down-regulation of HD-ZIP and
b-ZIP to negatively regulate the expression of PAL and NPR1 genes, thereby promoting SA
synthesis, and activating the defense mechanism of the SA pathway.

Ethylene can bind with the ethylene receptor (ETR) located on the endoplasmic reticu-
lum membrane, resulting in the inactivation of the negative regulatory component receptor
constitutive triple response 1 (CTR1). The inactivated CTR1 complex can no longer phos-
phorylate the downstream signal components ethylene-insensitive protein 2 (EIN2), thus
causing activation of EIN2. Then the carboxyl end of EIN2 protein (EIN2 CEND) is cleaved
followed by entry to the nucleus. EIN2 can promote the accumulation of EIN3/EIL1
in the nucleus by inhibiting the ubiquitination and degradation of transcription factors
EIN3-binding F-Box 1_2 (EBF1_2), and then EIN3/EIL1 transcription activates the expres-
sion of ethylene-responsive factor1 (ERF1) and other downstream target genes [32,33]. In
our study, EIN3, ETR, MKK4_5, and ERF1 were up-regulated by both LT and NO + LT
treatments when compared with the Control (Figure 6B), and EIN3 was also regulated by
WRKY21 which was up-regulated by LT and NO + LT treatments. These results showed
that WRKY21 positively regulated ENI3 to promote EIN3 protein transcription, thereby
activating downstream gene expression and ethylene-mediated stress response.

GA9 is the initial product of gibberellin, which can be catalyzed to synthesize bioactive
gibberellins GA1 and GA4 by GA3ox. In this study, the GA3ox was down-regulated
by exogenous NO under LT stress. In addition, the GA3ox was regulated by HD-ZIP
(Figure 6A), while NO down-regulated the expression level of HD-ZIP. These suggested
that exogenous NO increased the LT resistance of cucumber seedlings by down-regulating
HD-ZIP expression level and further down-regulated the expression level of GA3ox. The
reduced active gibberellin delays the growth of cucumber seedlings under LT stress, thereby
improving cucumber LT tolerance.
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2.7.4. The Regulation of TFs on Genes Related to Cell Cycle Pathway

The MCM node is the DNA replication permission factor, and the MCM2-7 complex
is the necessary replication helicase for the initiation and extension of DNA replication in
eukaryotic cells. Compared with Control, MCM5 and MCM6 were down-regulated by LT
treatment. Furthermore, compared with LT stress, the expression levels of MCM5, and
MCM6 were up-regulated, while HD-ZIP, a TF regulating the MCM5, MCM6 was down-
regulated by NO + LT treatment (Table 2, Figure 6A). The results showed that exogenous
NO increased the LT tolerance in cucumber seedlings by down-regulating HD-ZIP, and
HD-ZIP further negatively regulated the MCM5 and MCM6 to promote cell mitosis and
increased the cell cycle transition.

2.8. Transcript Level Analysis of NO-Induced LT Response Genes

To further validate our transcriptome results, transcripts of 12 key genes involved
in plant hormone signal transduction, phenylalanine metabolism, and cell cycle were
analyzed by qRT-PCR assays. The expression levels of these 12 genes under each treatment
were calculated based on the 2−44CT. Comparisons of the relative expression levels of
these genes evaluated by the Log2 (Fold Change) and qPCR methods are shown in Figure 7.
The qRT-PCR results were highly consistent with the transcriptome data, suggesting high
confidence in the RNA-seq data and supporting the mechanisms of NO-induced chilling
tolerance in cucumber seedlings.
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3. Discussion

Low temperature (LT), a major environmental constraint, severely affects plant growth
and development. It also can lead to a substantial reduction in production, and even
plant death [34]. To cope with LT stress, plants have evolved a series of mechanisms



Int. J. Mol. Sci. 2022, 23, 5615 12 of 20

at both the physiological and molecular levels. Over the past two decades, numerous
components, including messenger molecules, such as NO, calcium (Ca2+), hydrogen sulfide
(H2S), protein kinases, phosphatases, and transcription factors had been identified in cold-
stress signaling pathways [9,10,34–36]. Our study also showed that LT caused a certain
degree of damage to cucumber seedlings, and NO can effectively alleviate this damage
(Figure 1). In addition, we employed transcription factors analyses based on transcriptomics
to understand the modulation in gene induction and transcription by exogenous NO in LT
tolerance in this study.

The RNA-seq technology has the advantage of global representation and precise
measurement of the expression level of each gene in a sample by mapping short DNA
sequences on a reference [17]. Previous studies intended to identify underlying molecular
genetics pathways imparting LT stress tolerance using RNA-seq focusing on the seedling
stage of various plants [17,19]. In this study, a total of 7758, 248, and 7301 DEGs were
found in LT vs. Control, NO + LT vs. LT, and NO + LT vs. Control, respectively (Figure 2).
Previous findings on LT tolerance and NO-induced LT tolerance also revealed a relatively
large number of DEGs in melon [19]. Furthermore, a comparative analysis of DEGs of
NO + LT vs. LT and common (the genes that differentially expressed in both LT vs. Control
and NO + LT vs. Control.) revealed 121 DEGs were exclusively present in NO + LT vs. LT
and 127 DEGs were commonly involved in both NO + LT vs. LT and common (Figure 2).
This suggested that the presence of these genes may confer tolerance to cucumber during
exposure to LT stress. Similar results were also found in NO-induced LT tolerance in
melon [19]. These results suggested that the plants may have both the same regulatory and
different regulatory pathways when responding to LT stress alone and combined treatment
with exogenous NO and LT stress.

The GO and KEGG enrichments are used to analyze the function of genes and the
metabolic pathways of plants in response to abiotic stress [13,37,38]. In this study, the
GO and KEGG enrichment analyses were also performed to further study the function of
these DEGs and analyze the different regulatory pathways when cucumber seedlings were
subjected to LT stress and the NO-induced response mechanism in cucumber seedlings. The
GO analyses were performed to categorize the genes into three categories, such as molecular
function, biological process, and cellular component. The previous studies have shown that
the main functions of DEGs in response to LT stress were cell part, organelle, DNA binding,
transporter activity, transferase activity, metabolic process, cellular process, single-organism
process, cellular protein modification process, and so on [39,40]. In our study, we found
that the DEGs responsive to LT stress were mainly enriched in transmembrane transport,
signal transduction, and serine family amino acid metabolic process in BP, transcription
factor complex, protein serine/threonine phosphatase complex in CC, and DNA-binding
transcription factor activity, transmembrane transporter activity, sequence-specific DNA
binding in MF according to GO enrichment analysis. The difference in DEGs functions
participating in LT stress might be related to different plant species and organs. Consistent
with the previous study [19], the DEGs that respond to NO under LT stress were mainly
enriched in DNA-binding transcription factor activity, DNA replication initiation, and
transcription factor complex. However, the DEGs in NO + LT vs. Control were specifically
enriched in transferase activity, transferring hexosyl groups and photosynthesis, and light-
harvesting. These results suggested that these DEGs responded to both LT stress and
NO. In KEGG enrichment analysis, except for the phenylpropanoid biosynthesis, and
plant hormone signal transduction pathways enriched in the previous studies [19,38],
the arachidonic acid metabolism, glutathione biosynthesis, circadian rhythm-plant were
also significantly enriched in LT vs. Control. Notably, the linoleic acid metabolism and
glycolysis/gluconeogenesis pathways were specifically enriched in NO + LT vs. Control.
In addition, the pentose and glucuronate interconversions and cell cycle pathways were
specifically enriched in NO + LT vs. LT. Therefore, we propose that NO-induced LT
tolerance in cucumber seedlings is associated with the regulation of the cell cycle, secondary
product metabolism, and plant hormone signal transduction pathways in our experimental
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conditions. In order to confirm our hypothesis, we analyzed the TFs that respond to NO
under LT stress.

As a core of transcriptional regulatory networks, TFs are responsible for the control of
gene transcription, technically, TFs also act as the on/off switch of gene expression and are
responsible for inducing and repressing genes by binding directly to the promoters region of
the target genes in a sequence-specific mode, as well as responding to signal transduction,
thereby regulating their function under abiotic stress [41,42]. Thus, identification and
evaluation of TF genes related to stress tolerance are essential for understanding the
mechanism of cold tolerance in cucumbers. Previous studies have reported that WRKY
TFs are involved in cold tolerance in many plants, such as banana fruits, Coffea canephora,
Solanum lycopersicum, Camellia sinensis, and tall fescue [43–47]. In addition, MYB, b-ZIP,
Dof, NAC, and HD-ZIP were also reported in plant response to LT, such as the BoPAP1, an
orthologous gene of BoMYB1, was induced by LT and subsequently activated a subset of
anthocyanin structural genes [26], NAC, MYB, b-ZIP have been reported in response to LT
stress in tall fescue [45], HD-ZIP has been shown playing an important role in mediating the
resistance to various abiotic stresses [27], and Dof is up-regulated in response to cold stress
in grapevine [48]. In this study, we focus on the regulatory role of TFs in plant defense and
how NO plays a role in translating its bioactivity to recruit these TFs. Consistent with the
previous study, we found that a majority of the TF genes were expressed in cucumber leaves
under LT stress. We identified 504 and 490 TF genes belonging to 53 and 51 families in LT
vs. Control and NO + LT vs. Control, respectively, in which the BBR-BPC, GRAS, WRKY,
AP2, b-ZIP, Dof, BES1, C2H2, MYB, MYB-related, and HD-ZIP were significantly enriched.
Furthermore, the MYB63, WRKY21, b-ZIP, and HD-ZIP were found to significantly regulate
several pathways, such as phenylalanine metabolism, lignin, cell cycle, antenna proteins,
and plant hormone signal transduction. Based on these results, we further studied the
regulation network of TFs on these metabolic pathways.

Mutations that inhibit phenylalanine ammonia-lyase (PAL) synthetase are usually
associated with significant changes in the levels of many phenylpropanoids [49]. As a
primary metabolite, phenylalanine is derived from the deamination of phenylalanine pre-
cursor through PAL, resulting in cinnamate biosynthesis [50], and cinnamate is a substrate
for many different secondary metabolites, including phenylpropanoids, flavonoids, and
the cell wall lignin, in which lignin is one of the most important polymers of the plant
cell, as well as a wide range of phenolic secondary metabolites. The final stage of lignin
biosynthesis is the polymerization of monolignols, which occurs with the participation of
peroxidases [51]. Studies of genes encoding peroxidase in Arabidopsis have demonstrated
a close relationship between these enzymes and lignin accumulation in secondary cell
walls [52]. In this study, the PAL and peroxidases were induced by exogenous NO under LT
stress, while CHS and CHI were down-regulated by both LT stress and NO + LT treatment
in cucumber seedlings. Furthermore, PAL was regulated by HD-ZIP, and peroxidase was
regulated by both WRKY21 and MYB63 TFs. This result was consistent with the previous
study that suggested that some TFs including MYB, WRKY, and HD-ZIP could control
the lignin biosynthesis [53]. In addition, 61 WRKY genes were identified according to
the cucumber (Chinese Long, 9930) genome (v3.0) [54], and WRKY46 conferred cold tol-
erance to transgenic plants and positively regulated the cold signaling pathways in an
ABA-dependent manner in cucumber seedlings [16]. We found that WRKY21 was involved
in improving the cucumber LT tolerance in the present study. These results suggested that
exogenous NO could participate in inducing LT tolerance of cucumber by regulating the
expression of WRKY21 and MYB63, and these TFs could further regulate the phenylalanine
metabolism and lignin pathways, thereby improving the LT tolerance of cucumber.

NO interacted with phytohormones involved in the regulation of plant growth and
development, pathogen defense, and abiotic stress responses in plants [55]. A study showed
that NO was required for the transcription of GA3ox1 and GA3ox2, two key biosynthetic
enzymes for active GA [56]. We found that exogenous NO could regulate the transcription
of GA3ox under LT stress in cucumber seedlings. SA and ethylene have also been indicated
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to interact with NO to regulate plant growth and improve the abiotic stress tolerance in
plants. For example, SA can raise the content of NO, and NO interacts with SA to play
a crucial role in regulating stomatal closure in Arabidopsis leaves and alleviate cadmium
toxicity in rice [57,58]; The nature of NO-ethylene crosstalk can be synergistic and also
antagonistic, interestingly, most of the growth and developmental processes (e.g., fruit
ripening, de-etiolation) are regulated by NO-ethylene antagonism, while in abiotic stress
responses the picture is more complex [59]. In this study, we found that LT activated the
ethylene and SA response mechanism to stress by up-regulating the expression of ERF1,
MKK4_5, ETR, EIN3 and NPR1, TGA, PR1 genes. In addition, exogenous NO can also
regulate the content of GA by up-regulating the expression level of GA3oX, and similar
results were reported previously [56]. Furthermore, the EIN3, NPR1, and GA3oX were
regulated by WRKY21, b-ZIP, and HD-ZIP TFs, respectively. According to these results, we
supposed that the WRKY21, b-ZIP, and HD-ZIP were activated by LT stress, and these TFs
initiated the mechanisms of the hormone response to stress by inducing the expression of
genes related to ethylene, GA, and SA. In addition, exogenous NO could delay the growth
of cucumber plants by participating in HD-ZIP-regulated GA metabolism under LT stress,
thereby improving the LT tolerance of cucumber. A similar study reported that LT stress
led to a decrement in bioactive GAs, thus inhibiting rice seed germination [60].

The ability of plant cells to undergo transformation and regeneration is associated
with cell cycle activity [61], while the mini-chromosome maintenance protein [MCM (2-7)]
complex is associated with helicase activity for replication fork formation during DNA
replication [62]. So the MCM2-7 plays an essential role in the plant cell cycle. A study also
reported that the licensing of origins and the loading of MCM2-7 onto DNA is restricted
to late mitosis and the G1 phase of the cell cycle [63]. The MCM5 and MCM6 were up-
regulated by exogenous NO under LT stress in this study. In addition, the MCM5 and
MCM6 were regulated by HD-ZIP. A previous study reported that MCM6 shuttled between
cytoplasm and nucleolus in a cell cycle-dependent manner, and the subunits of the MCM2-
7 were coordinately expressed during Arabidopsis development and were abundant in
proliferating and young tissues [64]. Combined with previous research, we speculated
that exogenous NO activated down-regulation of HD-ZIP, further negatively regulated the
MCM5 and MCM6, and finally promoted cell cycle transition, cell mitosis, and accelerated
the production of the new cell to resist the damage of LT to cucumbers in this study.

The light-harvesting chlorophyll a/b binding (LHC) proteins, namely antenna proteins,
play a significant role in capturing solar energy, as well as in photoprotection under stress
conditions [65]. When plants were exposed to stress conditions that might generate photo-
oxidative damage, these proteins assume a conformation able to dissipate the excess energy
excitation as heat [66]. We found that LT treatment down-regulated the expression level
of LHCB1, LHCB3, LHCB5, and LHCA1, and these genes were also negatively regulated
by MYB63 under LT stress. In addition, exogenous NO down-regulated the expression
levels of LHCB1, LHCB3, LHCB5, and LHCA1 by negative regulating the b-ZIP. Similar
results were also reported by a previous study [67], which found that the levels of the
LHCA1-4 subunits are reduced under Fe deficiency, and it impairs the plant light-harvesting
capacity, resulting in decreased photosynthetic efficiency in rice seedlings. Consistent with
these results, we propose that LT reduced the photosynthesis by down-regulating the
expression levels of LHCB1, LHCB3, LHCB5, and LHCA1 gene, and NO could not improve
the photosynthesis of cucumber seedlings at the transcriptional level.

4. Materials and Methods
4.1. Plant Materials, Growth Conditions, and LT Treatments

Cucumber seeds of Jinyan No. 4 (purchased from Shandong Xiangyun seed com-
pany, China) were germinated at 28 ◦C for 24 h in dark and then sown in vermiculite at
(25 ± 1) ◦C/(20 ± 1) ◦C (day/night). After the two cotyledons were fully expanded,
healthy seedlings were selected and transplanted into plastic containers (diameter× height,
120 × 110 mm) filled with a mixture of peat and vermiculite (2:1 by volume). Since 7 days
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after transplantation, 50 mL of Hoagland’s nutrient solution was irrigated every four
days. The conditions were maintained as follows: (25 ± 1) ◦C/(18 ± 1) ◦C (day/night),
approximately 75% relative humidity, 14/10 h (light/dark) photoperiod achieved with
supplemental lights, and 300 µmol·m−2·s−1 average photosynthetic photon flux density
(PPFD) across replications for daytime hours. When the second true leaf is fully expanded,
that is, after fifteen days of pre-culture, different treatments were carried out. The cucumber
seedlings were divided into three groups, two of which were pre-treated with distilled
water and the other group was pre-treated with 200 µmol·L−1 SNP (Sodium Nitroprusside,
as a donor of exogenous NO, purchased from Sigm, USA). After the cucumber seedlings
were pre-treated with distilled water and SNP for 2 days. SNP-treated group and one of the
distilled water-treated group were placed in an incubator (Percival, Perry, IA, USA) with the
temperature of (10 ± 1) ◦C/(6 ± 1) ◦C (day/night), approximately 75% relative humidity,
14/10 h (light/dark) photoperiod, and 100 µmol·m−2·s−1 average PPFD at 10 o’clock in the
morning on the third day, and another group of cucumber seedlings treated with distilled
water grew in another incubator with normal conditions. The experiment for transcriptome
was defined as: (1) Control, cucumber seedlings treated with distilled water and grew in
normal conditions for 24 h; (2) LT, cucumber seedlings treated with distilled water and
then grew under LT stress for 24 h; (3) NO + LT, cucumber seedlings pre-treated with SNP
and then grew under LT stress for 24 h. The experiment was arranged in a completely
randomized design with three replicates.

4.2. Measurement of Physiological Parameters

The chilling damage index (CI) was measured after low-temperature stress of 24 h
according to the method described by [68]. The degrees of low-temperature tolerance were
classified into six grades: 0, no symptom; level 1, chlorosis or crinkled at the cotyledon;
level 2, chlorosis or crinkled at the edge of old leaves, level 3, chlorosis or crinkled at the
edge of functional leaves with good new leaves; level 4, chlorosis or crinkled and wilting of
functional leaves with damaged new leaves; level 5, severe damage of new leaves, plants
wilt or dead. The symptoms of cucumber seedlings with different treatments were shown
in Figure 1. The CI was calculated according to the following formula:

CI = ∑ (each level × number of plants with corresponding level)
the highest level × total number of treated plants

The malondialdehyde (MDA) content was determined in terms of thiobarbituric acid
reactive substances (TBARS) according to the method described by Heath and Packer [69].
The relative electrolyte leakage was measured according to the method of Xu et al. [70].
The maximum photochemical efficiency (Fv/Fm) was measured using an Imaging-PAM
(IMAG-MAX; Walz, Germany) according to our previous study [10].

4.3. RNA Extraction, RNA-seq Library Construction, and Sequencing

Total RNA of samples were extracted from frozen leaf tissues of cucumber seedlings
and then its purity and integrity were detected using Nanodrop 2000 and 2% agarose gel
electrophoresis, respectively. The quality-controlled mRNA samples were used for strand-
specific RNA library construction. mRNA was purified from total RNA and enriched
by A-T complementary pairing with poly-T oligo-attached magnetic beads. Then the
fragmentation buffer was added to break the mRNA into short fragments. mRNAs were
used as a template, six-base random hexamers were used to synthesize one-strand cDNA,
and then the buffer, dNTPs, and DNA polymerase I were added to synthesize two-strand
cDNA. AMPure XP beads were used to purify the double-strand cDNA. The purified
double-stranded cDNA is then repaired, A-tailed, and ligated with a sequencing adapter,
then AMPure XP beads were used for fragment size selection, and finally, PCR enrichment
was performed to obtain the final cDNA library. The quality-controlled libraries were used
for transcriptome sequencing. Paired ends of 250–300 bp sequencings were carried out on
the HiSeq platform.
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4.4. Transcriptomic Analysis

The quality of clean reads (clean data) was evaluated using Fastqc (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 15 April 2021), removing
poly-N, low-quality, and adaptor sequences [71]. Cucumber (Chinese Long) v3 reference
genome, transcript files, and annotation files were downloaded in GuGenDB (http://
cucurbitgenomics.org/, accessed on 15 April 2021), and Salmon was used to map the high-
quality sequences with cucumber genome and transcripts at the same time to obtain gene
expression (TPM) [72]. DESeq2 was used for standardization and differential expression
analysis [73]. The |log2 (Fold Change)| > 1 and the Padj < 0.01 as the standard to identify
the differential expression genes in each comparison. The Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was carried out using
the clusterProfiler package in R. KEGG annotation information was obtained from the
KAAS comparison, and the cluster Profiler package was used for GO enrichment and
KEGG pathway analysis [74]. The transcription factors in differentially expressed genes
were predicted using PlantRegMep [75]. Furthermore, the EAT-upTF v0.1 was used to
establish a gene regulatory network (http://chromatindynamics.snu.ac.kr:8080/EatupTF,
accessed on 15 April 2021).

4.5. Quantitative Real-Time PCR (qRT-PCR) Analysis

The total RNA was isolated using Trizol reagent according to the manufacturer’s in-
structions, and DNase I was used to remove any gDNA contamination. The reverse
transcriptase (Takara, China) was used to reverse-transcribe pure RNA to cDNA ac-
cording to the manufacturer’s protocol. The genes involved in the phytohormone sig-
nal transduction, cell cycle, and phenylalanine metabolism pathways were selected for
qRT-PCR analysis. The primers were generated in the online software Primer 3.0 (http:
//bioinfo.ut.ee/primer3-0.4.0/, accessed on 4 September 2021) and the pair of primers were
presented in Table S1. Actin was used as the reference gene. qRT-PCR was performed using
SYBR® Premix Ex Taq™ (Toyobo, Osaka, Japan). The PCR reactions were carried out on
the iCycler iQ Multicolor Real-time PCR Detection System (Bio-Rad, Hercules, CA, USA).
The relative expression level of each gene was calculated by 2−∆∆Ct with three technical
replicates [76]. All experiments had three replicates with three technical replicates.

4.6. Statistical Analysis

The statistical software package SPSS Statistics 19.0 (SPSS, Inc., Chicago, IL, USA)
was used for statistical analyses. Data was performed by two-tailed analysis of variance
(ANOVA), and values represent the means ± SE of at least three replicates. p < 0.05 was
considered to be differentially significant.

5. Conclusions

In the present study, the transcriptome analysis of cucumber seedlings revealed the
molecular mechanism of plant response to LT and the mitigation effect of exogenous NO
on LT stress in cucumbers. The transcript level of genes related to the cell cycle, photo-
synthesis, flavonoid accumulation, lignin synthesis, active GA, phenylalanine metabolism,
phytohormone ethylene, and SA signaling were significantly regulated by LT stress. Exoge-
nous NO can improve the LT tolerance of cucumber seedlings by affecting Fv/Fm, chilling
damage index, electrolyte leakage, lipid peroxidation, and changing the phenylalanine
metabolism, lignin synthesis, plant hormone (SA and ethylene) signal transduction, and
cell cycle pathway. In addition, four differentially expressed transcription factors MYB63,
WRKY21, HD-ZIP, and b-ZIP were identified which can regulate their target genes such as
LHCA1, LHCB1, LHCB3, LHCB5, CSH, EIN3, peroxidase, PAL, MCM5, MCM6, GA3ox, and
NPRI, to modulate plant responses to exogenous NO under LT stress. It is worth mention-
ing that HD-ZIP and b-ZIP specifically responded to exogenous NO under LT stress. These
results demonstrate that exogenous NO improved the LT tolerance of cucumber plants
by modulating the transcription of some key TFs and their downstream genes, thereby

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://cucurbitgenomics.org/
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regulating photosynthesis, lignin synthesis, plant hormone signal transduction, phenylala-
nine metabolism, cell cycle, and GA synthesis. Our study unveiled potential molecular
mechanisms of plant response to LT stress and indicated the possibility of NO application
in cucumber production under LT stress, particularly in winter and early spring.
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