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C O R O N A V I R U S

Viral genomes reveal patterns of the SARS-CoV-2 
outbreak in Washington State
Nicola F. Müller1*†, Cassia Wagner1,2†, Chris D. Frazar2†, Pavitra Roychoudhury1,3, Jover Lee1, 
Louise H. Moncla1, Benjamin Pelle2, Matthew Richardson2, Erica Ryke2, Hong Xie3, 
Lasata Shrestha3, Amin Addetia3, Victoria M. Rachleff1,3, Nicole A. P. Lieberman3, Meei-Li Huang3, 
Romesh Gautom4, Geoff Melly4, Brian Hiatt4, Philip Dykema4, Amanda Adler5, 
Elisabeth Brandstetter6, Peter D. Han2, Kairsten Fay1, Misja Ilcisin1, Kirsten Lacombe5,  
Thomas R. Sibley1, Melissa Truong2, Caitlin R. Wolf6, Michael Boeckh1,6,7, Janet A. Englund5,8, 
Michael Famulare9, Barry R. Lutz7,10, Mark J. Rieder7, Matthew Thompson11, Jeffrey S. Duchin12,13, 
Lea M. Starita2,7, Helen Y. Chu12,7, Jay Shendure2,7,14, Keith R. Jerome1,3, Scott Lindquist4, 
Alexander L. Greninger1,3‡, Deborah A. Nickerson2,7‡, Trevor Bedford1,2,7*‡

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has gravely affected societies 
around the world. Outbreaks in different parts of the globe have been shaped by repeated introductions of new 
viral lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral 
genomes from Washington State (USA) to characterize how the spread of SARS-CoV-2 in Washington State in 
early 2020 was shaped by differences in timing of mitigation strategies across counties and by repeated introduc-
tions of viral lineages into the state. In addition, we show that the increase in frequency of a potentially more 
transmissible viral variant (614G) over time can potentially be explained by regional mobility differences and 
multiple introductions of 614G but not the other variant (614D) into the state. At an individual level, we observed 
evidence of higher viral loads in patients infected with the 614G variant. However, using clinical records data, we 
did not find any evidence that the 614G variant affects clinical severity or patient outcomes. Overall, this suggests 
that with regard to D614G, the behavior of individuals has been more important in shaping the course of the 
pandemic in Washington State than this variant of the virus.

INTRODUCTION
After its emergence near the end of November or beginning of 
December 2019 in Wuhan, China, severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) rapidly spread around the world (1). 
In the United States, the first reported case of coronavirus disease 
2019 (COVID-19), the disease caused by SARS-CoV-2, was found 
in Washington State on 19 January 2020 in a traveler who had re-
turned from China 4 days earlier. Until the end of February, no ad-
ditional cases of COVID-19 were reported in Washington State.

At the end of February, however, a case of COVID-19 was reported 
in Snohomish County, the same county where the initial case was 
reported. This case had no known travel history and constitutes the 
first reported case of community transmission in Washington State 

(2). Although genetically closely related to the initial case, the later 
sequenced cases share a common ancestor in early February and 
have been reported to likely be due to an independent introduction 
of the virus (2).

After these initial introductions, SARS-CoV-2 has been intro-
duced repeatedly into Washington State from different parts of the 
globe. Viruses introduced later differed genetically from those in-
troduced earlier, most notably in one amino acid in the spike pro-
tein that facilitates viral entry and includes the receptor-binding 
domain. Since its first occurrence, this amino acid substitution 
from aspartate (D) to glycine (G) at position 614 of the Spike pro-
tein increased in relative frequency around the world (visible at 
https://nextstrain.org/ncov/global?c=gt-S_614) and now represents 
the vast majority of all new cases of COVID-19 (3–5). This increase 
in relative frequency of the 614G variant has been proposed to be due 
to higher transmissibility of the 614G variant over the 614D variant 
(4, 6). A modest increase in viral load has been observed in patients 
infected with the 614G variant (4, 7). Recently, multiple in vitro studies 
in human cell lines found a three- to ninefold increase in infectivity 
of the 614G variant (5, 8, 9). However, it remains unclear whether 
these population-level trends are due to higher transmissibility of the 
virus or simply due to founder effects owing to strong bottlenecks 
when SARS-CoV-2 spread globally, as the D614G variant was intro-
duced early on in the European COVID-19 epidemic and spread from 
Europe to the rest of the world.

Washington State differs regionally, from more densely populated 
areas at the coast to more sparsely populated areas inland. We here 
focused on differences between the spread on lineages of 614D and 
614G in the context of regional differences within Washington State. 
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Extensive local spread of SARS-CoV-2 was first detected in King 
County, which includes the city of Seattle. King County was also the 
first region in the state to take action to curb the spread of SARS-
CoV-2, including several large companies in the area mandating work 
from home in early March 2020 (10). After a statewide lockdown, 
new cases began to fall in the whole state, except for Yakima County, 
where cases peaked substantially later than in the rest of the state.

Using viral genetic sequence data isolated from patients in 
Washington State between February and July 2020, we tested the 
impact of temporal differences in county level workplace mobility 
trends, as well as the role of introductions from outside the state in 
driving case loads. We additionally investigated potential transmis-
sibility differences between the two spike variants by comparing viral 
loads using cycle thresholds for viral quantification. Last, we inves-
tigated whether the D614G amino acid substitution led to more 
severe disease in patients infected with SARS-CoV-2.

RESULTS
The Washington State outbreak was caused by repeated 
introductions and shaped by temporal differences 
in mobility reductions
We sequenced 3940 viruses from Washington State collected be-
tween February and July 2020 and used these sequences alongside 
other publicly available sequences from elsewhere in the world to 

characterize transmission dynamics. We observed that SARS-CoV-2 
entered Washington State from different parts of the world and 
subsequently spread locally, evident as clusters of genetically similar 
Washington State viruses in the global phylogeny (Fig. 1A). In early 
February, an introduction of a 614D variant (2, 11) fueled much of 
the early outbreak in March and April, but this lineage was sup-
planted through multiple introductions of 614G, and past April, the 
majority of viruses were 614G (Fig. 1).

To analyze the introduction and local spread of SARS-CoV-2 in 
Washington State, we first split these sequences into different local 
transmission clusters, which we defined as groups of sequences that 
originated from a single introduction into Washington State. To 
do so, we use a parsimony-based clustering approach, considering 
Washington State and everything outside Washington State as the 
two possible locations for parsimony clustering. The local transmis-
sion clusters obtained are shown at https://nextstrain.org/groups/
blab/ncov/wa-phylodynamics?c=cluster_size, and their size distri-
bution and D614G makeup are shown in fig. S1. We then used these 
local transmission clusters to analyze the spread of SARS-CoV-2 in 
the state using two phylodynamic approaches. First, we estimated 
the effective reproduction number (Re) using a birth-death ap-
proach (12), where we treated each individual local transmission 
cluster as independent observation of the same underlying popula-
tion process (13). Next, we estimated effective population sizes over 
time and the degree of introductions using a coalescent skyline ap-

proach (14). To do so, we assumed that 
all sequences that clustered together were 
the result of local transmission and each 
individual cluster was the result of one 
introduction into Washington State. We 
then modeled the whole process as a 
structured coalescent process (15, 16), 
where we assumed the migration history 
on the basis of the previous clustering 
(see Materials and Methods for details). 
In contrast to the birth-death model, the 
coalescent is conditioned on sampling, 
meaning that the information about 
population-level trends comes from the 
phylogenetic tree itself and not from the 
number of sequences through time.

We performed these phylodynamic 
analyses for a random subsample of 
1500 samples from all Washington coun-
ties except for Yakima County as well as 
for the 614D (500 sequences) and 614G 
(1000 sequences) lineages separately. In 
addition, we performed the same analy-
sis using 750 sequences from Yakima 
County only. After an initial introduc-
tion of SARS-CoV-2 (2), the number of 
cases grew rapidly (Fig. 2A). As expected, 
growth in confirmed cases was mirrored 
in phylodynamic estimates of viral ef-
fective population size (Fig. 2A). In addi-
tion, we observed maximal transmission 
intensity at the end of February 2020 
when Re was between 2 and 3 (Fig. 2B). 
This is consistent with other estimates 
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Fig. 1. SARS-CoV-2 phylogeny highlighting D614G split and cases through time in Washington State. (A) Phy-
logenetic tree of 13,900 sequences from Washington State and around the world. Tips are colored on the basis of 
sampling location. This is a time-calibrated phylogeny with time shown in the x axis. The split between 614D se-
quences (blue) and 614G (orange) sequences is shown as a bar to the right of the phylogeny. (B to E) Confirmed 
cases and genetic makeup of SARS-CoV-2 across Washington State and individual counties. The green line shows a 
7-day moving average of daily confirmed cases. The bar plots show weekly sequenced cases in our dataset. Cases due 
to the 614D variant are shown in blue, and cases due to the 614G variant are shown in orange. w/o, without.

https://nextstrain.org/groups/blab/ncov/wa-phylodynamics?c=cluster_size
https://nextstrain.org/groups/blab/ncov/wa-phylodynamics?c=cluster_size
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of the effective reproduction number of SARS-CoV-2 during early 
phases of an epidemic when control measures are not in place (17–19).

Around the time when community spread in King County was 
announced on 29 February 2020, we observed decreased occupancy 
of workplaces according to Google mobility data (fig. S2) (20). This 
reduction in workplace mobility occurred relatively early in King 
County compared to other regions of the state that had little or no 
reported cases at the time (fig. S2). This is consistent with several 
businesses starting to institute measures, such as work-from-home 
policies, at the beginning of March (10). This reduction in mobility in 
King County coincided with a reduction in the effective reproduc-
tion number of 614D cases in the state (Fig. 2B). By the time initial 
statewide measures were implemented on the 11th of March, cases 
of 614D had almost peaked and were starting to decline, whereas 
overall cases were about constant or still increasing (Fig. 2A).

Cases of 614G were still increasing and peaked a little over a week 
later than cases of 614D (Figs. 1 and 2A). This was around the time 
when the statewide lockdown order came into effect on 24 March 
2020. Whereas cases of 614D were initially mostly located around 
Seattle, cases of 614G were more widespread throughout the state. 
Viruses sampled from cases in Pierce County and in the counties 
north of King County mostly harbored the 614G variant (Fig. 1C). 
Changes in the effective reproduction number of 614G coincided 
with changes in mobility outside of King County (Fig. 2B). An alter-
native phylodynamic method using a coalescent approach yielded 
highly similar results (fig. S3).

Yakima County was the other county in the state besides King 
County with a large number of 614D cases later in the epidemic 

(Fig. 1D). The outbreak there happened later than the first large 
outbreak in King and neighboring counties. In addition, the trend in 
cases in Yakima County became increasingly decoupled from work-
place mobility as measured by cellphone movement for reasons likely 
associated with a large population of essential workers in the ag-
ricultural sector and seasonal worker migration poorly captured in 
mobility metrics (fig. S4) (21, 22).

To test whether amino acid substitutions beyond D614G affect-
ed the chance of SARS-CoV-2 of spreading locally, we next tested 
whether introductions of lineages with more amino acid substitu-
tions were more successful in spreading locally. We computed the 
number of amino acid and nucleotide substitutions of the first sam-
pled sequence of each local transmission cluster relative to Wuhan/
Hu-1/2019 (23). We then estimated whether there was a relationship 
between the number of amino acid and nucleotide substitutions when 
a lineage was introduced into Washington State and whether that 
introduction was successful, which we defined as having led to detect-
able local transmission. Consistent with a previous publication (24), 
we did not find any substantial relationship between the number of 
amino acid substitutions and the success of an introduction (fig. S5).

Introductions of SARS-CoV-2 cases from different countries or 
different areas within a country have repeatedly been discussed as 
drivers of local outbreaks, particularly in the context of travel bans. 
We therefore investigated the importance of introductions in driving 
the outbreak in Washington State. We estimated the relative contri-
bution of introductions compared to local transmission following 
the coalescent approach introduced above. In short, we used the 
estimated changes in effective population sizes over time and the 
estimated rates of introduction to compute the percentage of new 
cases in the state due to introductions (see Materials and Methods 
for details).

We estimated the percentage of new cases due to introductions 
in Washington State (excluding Yakima County) to be below 10% 
initially and to then have increased to about 10% by the middle of 
March through early April (Fig. 3). As a reference, the United 
States instituted a travel ban for nonresidents coming from China on 
2 February 2020 and a travel ban from Europe effective 16 March 2020. 
Increases in the proportion of introductions of the overall cases can 
be driven by either a reduction in the local transmission rate or an 
increase in the rate of introduction.

The observed introductions were unevenly distributed across 
the different clades 614D and 614G (Fig. 3) (6, 25). The proportion 
of introduced 614G cases was substantially greater than the propor-
tion of introduced 614D cases. We estimated the percentage of in-
troduced 614D cases to be below 3% during the whole outbreak. On 
the other hand, we inferred the percentage of introduced 614G cases 
to have been over 10% until the beginning of April. This means that 
a substantially higher fraction of 614G cases were caused by intro-
ductions than for 614D cases. This is expected, considering that cases 
of 614G were much more widespread outside of China (Fig. 1A), 
including in areas with relatively strong travel patterns to Washington 
State during the epidemic, such as New York State.

We next tested whether the percentage of new cases caused by 
introductions was reasonable given the number and size distribution 
of local transmission clusters. We simulated local transmission clusters 
where 0.1, 1, or 10% of all infections were caused by independent 
introductions. We found that the observed patterns in transmission 
cluster size distributions fell between the simulated patterns for 1 
and 10% of all infections caused by recent introductions (fig. S6).
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Fig. 2. Regional dynamics of SARS-CoV-2 in Washington State inferred from 
confirmed cases and pathogen genomes. (A) Estimates of effective population 
sizes for the outbreak in Washington State (green interval) as well as for 614D (blue 
interval) and 614G (orange interval) individually as compared to confirmed cases in 
the state (gray bars). The inner band denotes the 50% highest posterior density 
(HPD) interval and the outer band denotes the 95% HPD interval. (B) Re estimates 
using a birth-death approach for the same groups as in (A). The Re estimates are 
compared to Google workplace mobility data for King, Pierce, Skagit, and Snohom-
ish Counties shown as black solid and dashed lines. Workplace mobility is repre-
sented as a 7-day moving average.
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Overall, it appears that population-level changes in Washington 
State in relative frequencies of the two lineages can be explained by 
differences in timing of measures to curb the spread of SARS-CoV-2 
on a county level and by repeated introductions of 614G. Although 
a parsimonious explanation of observed dynamics, this does not 
preclude 614G having a higher transmission rate relative to 614D. In 
addition, these population-level trends are affected by many con-
founding factors that are not directly related to the virus itself. We 
therefore next moved to investigate whether we could observe dif-
ferences between individuals infected with viruses from either line-
age on an individual level.

D614G leads to higher viral load, without apparent effects 
on virulence
We tested for differences in viral loads between patients infected with 
either the 614D or the 614G viral variants by comparing cycle thresh-
old (Ct) values. Ct values are inversely correlated with viral load, and 
differences in Ct values between these two variants have been re-
ported previously (4, 7). We analyzed 1743 sequenced SARS-CoV-2 
samples from Washington State for which we had access to Ct values. 
We only used genomes sampled between February and April 2020, 
when both lineages were circulating in Washington State.

Of these 1743 genomes, 1128 genomes were from patients re-
ferred by a health care provider for nasopharyngeal swab testing to 
the University of Washington (UW) Virology laboratory. A total of 
523 genomes were from samples collected by the Washington Depart-
ment of Health (WA DOH), and 92 samples were from self-collected 
mid-turbinate nasal swabs mailed in for testing as part of the Seattle 
Coronavirus Assessment Network (SCAN). During this time period, 
UW Virology used multiple platforms for polymerase chain reaction 
(PCR) testing (fig. S7A). Because it is difficult to compare Ct values 
across primer sets and platforms (26), we mainly focused on samples am-
plified with the most common primer set: N1 and N2 (n = 879), although 
analyses using ORF1ab primers (n = 229) were also conducted.

We found that patients infected with 
viruses with the 614G substitution had 
lower Ct values (higher viral load) than 
those infected with 614D viruses in all 
three collection channels (Fig.  4A and 
fig. S8). This difference was significant 
by Wilcoxon rank sum test in samples 
from UW Virology (N1 and N2 primers: 
median  = 1.5 cycles, P = 1.5 × 10−12; 
ORF1ab primers: median  = 2.5 cycles, 
P  =  0.0012) and WA DOH (median 
  =  1.4 cycles, P  =  0.046), but not in 
SCAN samples, where we had far fewer 
samples (median   =  2.1 cycles, P  = 
0.077) (Fig. 4A and fig. S8).

We next tested whether factors other 
than the D614G variant predicted Ct 
values. We applied a generalized linear 
model (GLM) assuming normally dis-
tributed Ct values to the UW Virology 
and SCAN samples using variant, patient 
age, and days after symptom onset as 
potential predictors of Ct values given 
that we, like others, have found Ct to 
be positively correlated with time since 

symptom onset (fig. S9A) (27–30). We found that the D614G vari-
ant and days since symptom onset were significant (P = 1.9 × 10−7) 
predictors of Ct values. Variant 614G has a Ct value that is, on aver-
age, 1.6 cycles lower than the 614D variant (N1 and N2 primers) 
(Fig. 4B) when controlling for age and time since symptom onset. 
This difference in Ct translated to a 0.47 log10 increase in viral load 
[95% confidence interval (CI): 0.29 to 0.64 log10], assuming the stan-
dard curve is linear in this region. For each day after symptom onset, 
Ct value was predicted to increase by 0.2 cycles (N1 and N2 primers: 
P = 3.3 × 10−7), which is consistent with other work on Ct values 
and infection time course (27–30). In SCAN samples, we observed 
similar coefficients and significance in the GLM (fig. S8). With 
ORF1ab primers, D61G variant was not a significant predictor; however, 
the residuals were not normally distributed, suggesting the model 
fit poorly with ORF1ab primers (fig. S8).

We additionally looked for a difference in time of symptom 
onset and sampling date between the two variants—sampling date 
could be a confounding variable because the relative abundance of 
the 614G variant increased over time (Fig. 1B)—but did not find 
any (fig. S9B). Because Ct values were shown to vary with effective 
reproduction numbers (31), we tested whether Ct values changed 
over time after accounting for the two spike variants. There were 
also no clear differences in Ct across time when accounting for the 
spike variant (fig. S9C).

We next tested whether substitutions other than spike D614G 
contributed to observed Ct differences. First, we considered the 
genetic diversity defined by five viral clades using the Nextstrain 
nomenclature: 19A, 19B, 20A, 20B, and 20C (fig. S10A). Clades 19B 
and 20C differed significantly in their Ct values from the other clades 
(mean  = 1.5 cycles, P adjusted ≤ 2 × 10−8 Tukey’s range test) (fig. 
S10B). However, when controlling for the 614G variant, clade mem-
bership was not predictive of Ct (fig. S10C). Most samples with 
available Ct fell into clades 19B and 20C, which primarily contained 
614D and 614G variants, respectively, so there may not have been 
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enough genetic diversity in our dataset to identify Ct differences 
with respect to the other viral clades.

Next, we explored the relationship between the number of ami-
no acid substitutions different from Wuhan/Hu-1/2019 and Ct 
value. We did not find a significant correlation between amino acid 
substitutions and Ct with either of variants (614D: Pearson’s  = 
−0.052, P = 0.14; 614G: Pearson’s = 0.061, P = 0.066) (fig. S11, A and 
B). However, a GLM of 614D variant samples predicted a 0.42 de-
crease in cycle threshold with each additional amino acid sub-
stitution (P = 0.011) (fig. S11C). In the same GLM applied to 
614G variants, amino acid substitutions were not predictive of 
Ct (P = 0.66) (fig. S11D). Within the 614D variant, there was not a 
specific protein in which additional amino acid substitutions affected 
Ct values. This might suggest that within our dataset, 614G vari-
ants are at a local fitness maxima, whereas 614D variants are not. 
Thus, there could be more opportunity for amino acid substitu-
tions in 614D variants to affect viral load. We may, however, miss 
some potentially confounding predictors in this analysis, such as age 
or mutations in a primer binding region, which could inflate the 
confidence in the results.

We also found a difference in the age of people infected between 
the two lineages (fig. S12). In samples from UW Virology, the aver-
age age of patients infected with viruses from the 614D and 614G 
lineages was 56.6 and 52.4, respectively (P = 5.8 × 10−4, Student’s 
t test). In SCAN samples, the average age of patients was 45.8 for 614D 
and 38.4 for 614G (P = 0.088). Age differences may be caused by 
increased testing, resulting in detection of less severe, younger cases 
later in the epidemic when 614G was more prevalent. However, 
we tested this hypothesis in a GLM with week of sample collection 

and D614G variant as potential predic-
tors of age. Individuals with 614G vari-
ant were 3.5 years younger on average 
(P  =  0.0098), whereas sample week 
was not a significant predictor of age 
(P  =  0.20) (fig. S12). A skew toward 
younger individuals is consistent either 
with a more transmissible virus or with 
more severe infection as this would 
result in a larger fraction of younger 
patients seeking testing. However, the ab-
solute difference in age of infection was 
still small.

We had access to additional clinical 
information for 248 of the 1128 se-
quences from patients referred for SARS- 
CoV-2 testing by a health care provider. 
One hundred four of these patients were 
infected with viruses from the 614D 
clade, and 144 patients were infected 
with viruses from the 614G clade. We 
used data from electronic health re-
cords to examine whether differences in 
Ct values held after correcting for addi-
tional potentially confounding factors. 
We performed the same GLM analysis 
as above but omitted days since symp-
tom onset as it was missing from most 
samples. We included additional poten-
tial predictors, such as sex, active cancer 

or immunocompromised status, hospitalization, and whether a 
patient required intensive care or died. We again found the D614G 
variant to be significantly associated with Ct values (N1 and N2 
primers, n = 184, P = 0.03). Sex was also a significant predictor of Ct 
with male individuals having Ct values 1.09 units lower than female 
individuals (SE =  0.48, P  =  0.02). None of the other predictors 
were found to be significant in predicting Ct values, which might be 
driven by small sample size (table S1). With ORF1ab primers, the 
D614G variant was not significantly associated with Ct values nor 
were residuals normally distributed (n  =  63) (table S2). ORF1ab 
primers were used later in the epidemic when the 614D variant was 
less abundant (fig. S7B).

We next investigated which factors associated with clinical 
outcome. We grouped cases into inpatient (hospitalized) or 
outpatient (not hospitalized) and then performed a logistic regres-
sion with inpatient or outpatient as potential outcomes. As factors 
predicting outcome, we considered clade membership, sex, immu-
nocompromised/active cancer, age, week of testing, and measured 
Ct value. Age (P = 3.2 × 10−6) and measured Ct value (P = 0.012) 
were significant predictors for hospitalization after Bonferroni 
correction for multiple hypothesis testing. Whether a patient was 
suffering from active cancer or was immunocompromised had 
an estimated odds ratio of 2.9 (0.8 to 10.8) but was not signifi-
cant (P = 0.14). We did not find any evidence that D614G variant 
affected clinical outcome (Fig. 4C). This is consistent with neither 
variant being significantly enriched among males, immunocom-
promised/active cancer patients, hospitalized patients, or pa-
tients who required intensive care or succumbed due to COVID-19 
(Fig. 4D).
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DISCUSSION
The COVID-19 pandemic has greatly affected lives around the 
world. As a virus that just recently made the jump into humans, 
understanding its transmission dynamics and the drivers of its 
spread is of utmost importance. The emergence of more transmissi-
ble strains of SARS-CoV-2 based on an increase in relative frequen-
cies over time has been suggested previously (25).

Consistent with trends from other locations around the world 
(4), we found that cases of the spike 614D variant initially dominated 
in Washington State but were later taken over by spike 614G. How-
ever, the trends for 614G and 614D cases that we observed in Wash-
ington State appeared to be explained by differences in when action 
to curb the spread of SARS-CoV-2 were taken on a county level. The 
trends in effective reproduction numbers between the two clades 
614G and 614D coincided with the different trends in mobility of 
King County (which includes Seattle) and other areas that experi-
enced substantial spread of SARS-CoV-2. The observed patterns are 
consistent with initial spread of the 614D clade being largely con-
centrated in King County, which was then mitigated early on. Spread of 
614G on the other hand, although present in King County, dominated 
in other areas of the state and the reduction in the Re of this variant 
coincided with a reduction in mobility in these areas, which happened 
about 9 days after King County. The spread of SARS-CoV-2 in Yakima 
County, however, seems to be poorly captured by mobility trends.

We additionally inferred introductions play a larger role in driv-
ing cases of the 614D variant than of the 614G variant. This suggests 
that differences in the relative frequencies of the two variants are at 
least, in part, driven by differences in when and where lineages were 
introduced into the state. Overall, we find that we can explain the 
changes in relative frequency of the 614D and 614G variants over 
time by nonviral factors in absence of intrinsic transmission rate 
differences. This does, however, not exclude the possibility that 
such differences exist and have led to the replacement of 614D by 
614G in other parts of the world. The observation that changes in 
patterns of which lineages are introduced into a location can drive 
changes in local frequencies of a variant is important when evaluat-
ing whether new variants (such as B.1.1.7) are more transmissible. 
In particular, it means that an increase in relative frequency of a 
new variant in different places does not necessarily provide inde-
pendent evidence about whether or not the new variant is more 
transmissible.

We did find evidence for lower Ct values in patients infected 
with viruses of the 614G variant, suggesting higher viral loads. This 
holds even after including several additional factors, such as the age 
of a patient and days since symptom onset, as potential predictors 
for Ct values. However, we did not find evidence that D614G has an 
impact on risk of hospitalization although testing policy would bias 
toward finding a variant with greater virulence as hospitalized pa-
tients are overrepresented in the dataset (32, 33). The differences in 
Ct values translate to an about 0.47 log10 increase in viral load (95% 
CI: 0.29 to 0.64 log10). This difference might not be large enough to 
lead to large differences in severity or transmissibility that can be 
observed in a dataset of this size.

Our findings are broadly consistent with other analyses on the 
spike D614G substitution. A previous study found evidence of low-
ered Ct but limited clinical difference for viruses of the 614G clade 
in Sheffield, UK (4). Recent in vitro studies showed that pseudovi-
rus containing spike protein with a 614G substitution exhibits greater 
infectivity (5, 8, 9). Other work suggests the increased transmissibility 

of 614G over 614D in an analysis of thousands of sequences from 
the United Kingdom (6).

Although our results are broadly consistent with other analyses, 
they are not without limitations. First, the sample collection is likely 
biased toward more symptomatic cases. In addition, the collection 
of SARS-CoV-2 samples was limited initially and improved during 
the study period and likely differed across different geographic ar-
eas. In other words, the sampling regime likely differed across space 
and time, potentially affecting the results.

The phylogenetic analyses conditioned on specific clustering 
of sequences in Washington State by incorporating background 
sequences from other locations. Differences in sampling and se-
quencing regimes in potential source locations of SARS-CoV-2 
relative to Washington State could bias this clustering, which, 
in turn, could affect the estimated rates of introductions into 
Washington State and potentially also the effective reproduction 
numbers over time. Last, the phylodynamic methods used here make 
a few simplifying assumptions about how SARS-CoV-2 is spread, such 
as random sampling of infected individuals, homogeneous mixing 
of individuals, or the absence of superspreading. Although we ad-
dressed the latter in our simulation study, it is not fully clear how some 
of these simplifying assumptions affected the inference results.

Overall, we found evidence for higher viral loads in individuals 
with viruses from the 614G clade, which theoretically could affect 
transmissibility and severity. However, we did not see strong evi-
dence that this degree of difference in Ct manifested in substantial 
differences in transmissibility or severity of infection with SARS-
CoV-2 in the spring/summer 2020 Washington State epidemic.

MATERIALS AND METHODS
Study design
The aim of this study was to characterize the drivers of the SARS-
CoV-2 outbreak in Washington State (USA) over several months 
and to investigate how different viral variants affected the spread of 
SARS-CoV-2. We collected genetic sequence data from SARS-
COV-2 viruses isolated in Washington State. Here, we analyzed 
3940 SARS-CoV-2 genomes sequenced from samples collected in 
Washington State between February and July 2020 as our primary 
dataset. These sequences were produced as part of an effort to survey 
the spread and evolution of SARS-CoV-2 in the state. These sam-
ples were pooled from three different channels: UW Virology, WA 
DOH, and SCAN, as described below.

Sequencing and analysis of samples from the Seattle Flu Study was 
approved by the Institutional Review Board (IRB) at the University 
of Washington (protocol STUDY00006181). Informed consent was 
obtained for all community participant samples and survey data. 
Informed consent for residual sample and clinical data collection was 
waived. Sequencing and analysis of samples from SCAN was approved 
by the IRB at the University of Washington (protocol STUDY00010432). 
Informed consent was obtained for all community participant sam-
ples and survey data. For UW Virology Lab, use of residual clinical 
specimens was approved by the IRB at the University of Washington 
(protocol STUDY00000408) with a waiver of informed consent.

Sample collection and testing for SARS-CoV-2
For the 1236 UW Virology samples, nasopharyngeal/oropharyn-
geal swabs were obtained as part of clinical testing for SARS-CoV-2 
ordered by local health care providers or collected at drive-up testing 
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sites. RNA was extracted and the presence of SARS-CoV-2 was de-
tected by reverse transcription–PCR (RT-PCR) as previously de-
scribed using either the emergency use-authorized UW Centers for 
Disease Control (CDC)–based laboratory-developed test, Hologic 
Panther Fusion test, or Roche cobas SARS-CoV-2 test (34).

For the 2601 WA DOH samples, nasopharyngeal/oropharyngeal/
bronchoalveolar/sputum samples were obtained for SARS-CoV-2 
clinical testing, as requested by submitting health care entities. RNA 
was extracted and the presence of SARS-CoV-2 was detected via either 
the CDC 2019-nCoV RT-PCR Diagnostic Panel or the Applied 
Biosystems TaqPath COVID-19 Combo Kit.

For the 103 SCAN samples, specimens were shipped to the Brotman 
Baty Institute for Precision Medicine via commercial couriers or 
the U.S. Postal Service at ambient temperatures and opened in a 
class II biological safety cabinet in a biosafety level-2 laboratory. Two 
or three 650-l aliquots of Universal Transport Media were collected 
from each specimen and stored at 4°C until the time of nucleic acid 
extraction, performed with a MagNA Pure 96 small volume total 
nucleic acid kit (Roche). SARS-CoV-2 detection was performed using 
real-time RT-PCR with a probe set targeting Orf1b and S with 
FAM fluor (Life Technologies 4332079, assay nos. APGZJKF and 
APXGVC4APX) multiplexed with an RNaseP probe set with VIC 
or HEX fluor (Life Technologies A30064 or IDT custom) each in 
duplicate on a QuantStudio 6 instrument (Applied Biosystems).

Viral sequencing and genome assembly
For UW Virology samples, sequencing was attempted on all speci-
mens with Ct < 32 either using a metagenomic approach described 
previously (2, 35), via oligonucleotide probe-capture (36), or using an 
amplicon sequencing–based approach (37). Libraries were sequenced 
on Illumina MiSeq or NextSeq instruments using 1 × 185 or 1 × 75 runs, 
respectively. Consensus sequences were assembled using a custom 
bioinformatics pipeline (https://doi.org/10.5281/zenodo.4701603) that 
combines de novo assembly and read mapping to generate a per-sample 
consensus sequence. Consensus sequences were deposited to GenBank 
and GISAID and raw reads to SRA under Bioproject PRJNA610428.

For samples from WA DOH and SCAN, sequencing was at-
tempted on all specimens with Ct  <  30 using a hybrid-capture 
approach. RNA was fragmented and converted to cDNA using ran-
dom hexamers and reverse transcriptase (SuperScript IV, Thermo 
Fisher Scientific) and a sequencing library was constructed using an 
Illumina TruSeq RNA Library Prep for Enrichment kit. Using Ct 
value as a proxy for viral load, samples were balanced and pooled in 
24-plex for the hybrid capture reaction. Capture pools were incu-
bated overnight with probes targeting the Wuhan-Hu-1 isolate, 
synthesized by Twist Bioscience. The manufacturer’s protocol was 
followed for the hybrid capture reaction and target enrichment washes. 
Final pools were sequenced on the Illumina NextSeq or NovaSeq 
instrument using 2 × 150–base pair reads. The resulting reads were 
assembled against the SARS-CoV-2 reference genome Wuhan/
Hu-1/2019 (GenBank accession MN908947) using the bioinformatics 
pipeline at (https://doi.org/10.5281/zenodo.4701970). Consensus 
sequences were deposited to GenBank and GISAID. Samples se-
quenced by UW Virology had a higher proportion of 614G variants 
(54.7%) than SCAN and WA DOH samples (48.6%), which were 
sequenced using a different pipeline (chi-square test: P = 0.017). In-
vestigating differences in Ct independently for each primer type 
should control for differences in the spike variant proportion, as 
primer types did not overlap between sequencing pipelines.

Clustering
To distinguish between sequences that were connected by local 
transmission, we clustered all sequences from Washington State to-
gether on the basis of their pairwise genetic distance. We first built 
a timed tree using sequences from Washington State and from 
around the world using the Nextstrain pipeline (3). Overall, we used 
4023 sequences from Washington State and 6028 from the rest of 
the world. Of all sequences, 2601 were from the Washington De-
partment of Health, 1236 were from the UW Virology Lab, and 103 
were from SCAN. All other sequences were downloaded from the 
GISAID EpiCoV database (38, 39).

We then use a parsimony-based approach to reconstruct the 
locations of internal nodes. We considered all sequences from 
Washington State as one location and all sequences from anywhere 
else on the globe to be from another location. We then reconstructed 
the internal node locations using the Fitch parsimony algorithm. 
We considered each group of sequences to be on the same local 
transmission cluster if all their common ancestor nodes are inferred 
to be in Washington State. We additionally tested the sensitivity of 
this approach to having less background samples by randomly 
removing sequences from outside of Washington State and com-
puting the number of clusters again. Although we do expect that 
including more background sequences would increase the number 
of clusters detected, we did not find a large impact on the number of 
background sequences on the number of clusters identified or the 
average size of clusters identified (fig. S13).

Estimating population dynamics jointly from multiple local 
outbreak clusters
To estimate the population dynamics of the Washington State out-
break, we used a coalescent approach to infer these dynamics jointly 
from all known local outbreak clusters. We modeled the coales-
cence and migration of lineages within Washington State as a struc-
tured coalescent process with known migration history. Under this 
model, lineages can coalesce within the sampled subpopulation and 
have originated from outside the sampled subpopulation. We a priori 
assumed that we know where on the tree lineages were introduced 
into the sampled subpopulation (fig. S14). This known migration 
history is given by the clustering of sequences into local outbreak 
clusters. The migration events from anywhere outside WA into WA 
were always assumed to have happened before the common ances-
tor of all sequences in each local outbreak cluster. How long before 
this common ancestor time was inferred during the Markov chain 
Monte Carlo (MCMC) run. The rate at which we expect coalescent 
events to occur is exponentially distributed with mean = n × (n − 
1)/2Ne, and the rate at which we expect to observe introductions 
events is exponentially distributed with mean n × m, with n being 
the number of lineages in any given local transmission cluster that 
coexist at a point in time and m being the rate of introduction. 
Everything that happened outside the sampled subpopulation was 
ignored, or in other words, we ignored how exactly the individual 
local outbreak clusters related to each other.

We then inferred the effective population size and rates of intro-
duction through time using a skyline approach. Effective population 
sizes and rates of introduction were allowed to change at predefined 
time points. The rates were interpolated between these predefined 
time points where the rates are estimated. This is equivalent to as-
suming exponential growth or decline between the effective popu-
lation sizes at these time points.

https://doi.org/10.5281/zenodo.4701603
https://doi.org/10.5281/zenodo.4701970
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We then used two different ways to account for correlations be-
tween adjacent scaled effective population sizes (Ne). First, we used 
the classic skyride (14) approach, where we assumed that the loga-
rithm of adjacent Ne is normally distributed with mean 0 and an 
estimated . In addition, we used an approach where we assumed 
that differences in growth rates are normally distributed with mean 
0 and an estimated  (40). This is equivalent to using an exponential 
coalescent model with time varying growth rates. We implemented 
this multitree coalescent approach as an extension to the Bayesian 
phylogenetics software BEAST2 (41). The code for the multitree co-
alescent is available here (https://doi.org/10.5281/zenodo.4697903) 
and is validated in fig. S3. We allowed the effective population sizes 
to change every 3.5 days and the rates of introduction to change 
every 7 days. The inference of the effective population sizes and rates of 
introductions was performed using an adaptive multivariate Gaussian 
operator (42) implemented at (https://doi.org/10.5281/zenodo.4705996), 
and the analyses were run using adaptive Metropolis-coupled 
MCMC (43).

In contrast to backward-in-time coalescent approaches, we can 
consider different local outbreak clusters as independent observa-
tions of the same underlying population process using birth-death 
models. We inferred the effective reproduction number using the 
birth-death skyline model (12) by assuming that the different local 
outbreak clusters are independent observations of the same process 
with the same parameters (13). We allowed the effective reproduction 
number to change every 3.5 days. As for the coalescent approach, 
we assumed adjacent effective reproduction numbers to be normal-
ly distributed in log space with mean 0 and an estimated . We fur-
ther assumed the becoming uninfectious rate to be 52.3 per year, 
which corresponds to an average duration of infectivity of 7 days 
(44). We allowed the probability of an individual to be sampled and 
sequenced upon recovery to change every 7 days.

Simulation study
To test our implementation of the multitree coalescent, we per-
formed two different sets of simulation studies. In the first simula-
tion study, we simulated 10 phylogenetic trees under the structured 
coalescent using 1000 samples from the same location in MASTER 
(45). For each of the 10 simulations, we randomly sampled the Ne 
at time 0 from a normal distribution with mean = 0 and  = 0.5 and 
then randomly drew the Ne at subsequent time points t + 1 ran-
domly from a normal distribution with mean = Ne(t) and  = 0.5. 
This is equivalent to randomly sampling Ne trajectories under a 
skygrid distribution (14). We performed the same for the rate of 
introductions at different points in time. We then simulated a sin-
gle phylogenetic tree under the structured coalescent using these 
randomly sampled parameters. Next, we splitted this tree into several 
local transmission clusters and then inferred the Nes and rate of 
introductions over time from only the local transmission clusters 
(fig. S15).

In the second simulation study, we simulated 10 phylogenetic 
trees under a structured infected (I) only model with superspread-
ing. We assumed that there was a constant number of introductions 
per unit of time from outside into Washington State. After an intro-
duction into the state, each infected individual was transmitting to 
n other individuals. We assumed the number of newly infected in-
dividuals to be negatively binomially distributed such that the mean 
number of introductions at any point in time t was equal to Re(t) 
and the dispersion parameter k = 1. We next simulated a structured 

phylogenetic tree from this approach. We then simulated genetic 
sequences on top of this phylogenetic tree using Seq-Gen (46).

Subsampling of sequences
We analyzed the population dynamics in total for four different 
datasets. In the first datasets, we randomly subsampled 1500 of 
the sequences from Washington State, excluding sequences from 
Yakima County. One thousand five hundred sequences were cho-
sen because of computational limitations of the Bayesian phylody-
namic inference. For the second and third datasets, we distinguished 
between two different clades that we call D and G. The D clade 
consists of all sequences with an aspartic acid at site 614 of the 
spike protein, and the G clade consists of all sequences with a 
glycine at this position (visible at https://nextstrain.org/ncov/
global?c=gt-S_614). For the 614D datasets, we used the same subsa-
mpling procedure as for the above dataset but with 500 sequences, 
and 750 sequences for the 614G clade. For the Yakima County data-
set, we used 750 randomly subsampled sequences.

Estimating the percentage of overall new cases 
from independent introductions
We estimated the relative contribution of introductions compared 
to local transmission using the coalescent approach introduced 
here. In addition to the regular assumptions of the coalescent ap-
proach that all samples are taken at random from a well-mixed 
population, we assumed that differences in effective population size 
between adjacent time intervals can be used to compute the trans-
mission rate. We then computed the transmission rate as the sum of 
the growth rate of the effective population size and the becoming 
uninfectious rate (that is, we used the relationship   dNe _ dt   = transmission 
rate − becoming uninfectious rate , to compute the transmission rate). 
We assumed an average time of infectiousness of 7 days. In addition, 
we assumed that dNe/dt is independent from the rate of introduc-
tion. We then computed the percentage of introductions in overall 
cases using the rate of introduction and the transmission rate. The rate 
of introduction can be expressed as the total number of introduc-
tions divided by the number of infected in WA, that is, rate of intro-
duction = No. introductions/No. infected. The total number of new 
infections locally can be expressed as transmission rate × infected, 
which, in turn, means that ratio of introductions over local in-
fections can be expressed as (rate of introduction × infected)/
(transmission rate × infected). From this ratio, we can then compute 
the percentage of introductions of the overall cases.

We tested that we can retrieve the percentage of introductions 
from simulations, where we simulated phylogenetic trees using an 
infected recovered (IR) compartmental model with superspreading 
using MASTER (45). We then simulated genetic sequence data us-
ing those trees and then inferred the percentage of new cases due to 
introductions from those sequences (figs. S15 and S16).

Chart review
Clinical record review of UW affiliated patients was performed 
under University of Washington IRB: STUDY00000408. This 
included patients who visited UW affiliated clinics and patients 
who were hospitalized at UW Medical Center, both the Montlake 
and Northwest locations, and Harborview Medical Center. Sex, age, 
the presence of active cancer or immunosuppresive medication, 
hospital admission, critical care admission, and deceased status 
were extracted from all charts.

https://doi.org/10.5281/zenodo.4697903
https://doi.org/10.5281/zenodo.4705996
https://nextstrain.org/ncov/global?c=gt-S_614
https://nextstrain.org/ncov/global?c=gt-S_614
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Statistical analysis
Factors affecting Ct and clinical outcomes of individuals
R/3.6.2 was used for Ct and clinical record analysis. The code 
and data cleaned of all patient identifiers is available at (https://doi.
org/10.5281/zenodo.4701583).

UW Virology used three different primer sets and platforms 
over the timeframe of the dataset (fig. S7). Because it is difficult to 
compare Ct across primer sets, we ran both tests comparing Ct by 
viral clade and the generalized linear model predicting Ct sepa-
rately for N1 and N2, and ORF1ab primers. There were insufficient 
samples amplified with Egene/RdRp primers for statistical analysis 
(n = 20).

We chose to use Wilcoxon rank sum test to compare differences 
in Ct between viral lineages and Student’s t test to compare differ-
ences in age between viral lineages. Age was reported as a decade 
bin converted into a numerical equivalent, and Wilcoxon rank 
sum test underestimates differences with duplicate numbers. Tukey’s 
range test was used to identify differences in Ct between viral clades, 
and we used Pearson’s correlation coefficient to examine the rela-
tionship between Ct and number of amino acid and synonymous 
substitutions. P values less than 0.05 were considered significant. Data 
were plotted as a univariate histogram to check for normal distribu-
tion before testing with Tukey’s range test and Student’s t test.

For GLMs predicting Ct and age, we used a multivariate linear 
regression of form

   y  i   =    0   + Σ    j    x  i,j   +  ϵ  i    

where y is the dependent variable (either Ct or age),  is the coeffi-
cient of the predictor variable, x is the predictor variable, and ϵ is 
the residual error. Models were run with the glm package in R.

UW Virology and SCAN samples were used to estimate predic-
tors of Ct as age was not available for WA DOH samples. The pre-
dictor variables were the amino acid at Spike 614 (binary variable), 
days since symptom onset (continuous variable), and age of patient 
(continuous variable). In the GLM of Ct with only samples from 
UW Medicine affiliates, we excluded days since symptom onset as it 
was not available for most samples. We additionally included sex 
(binary variable), active cancer or immunocompromised (binary 
variable), hospitalized (binary variable), and required critical care 
or deceased (binary variable) as predictors of Ct. When considering 
viral clade as a predictor of Ct, we applied the same GLM as above 
with addition of binary variables for clade 19A, 20A, and 20C. Clades 
20B and 19B were excluded due to collinearity.

To test the relationship between number of substitutions (syn-
onymous and amino acid) and Ct, we applied a GLM predicting Ct 
from amino acid substitutions (continuous variable), synonymous 
substitutions (continuous variable), days since symptom onset 
(continuous variable, week since start of the Washington State epi-
demic (continuous variable), and binary variables for ORF1ab, WA 
DOH, and SCAN primers. We ran the GLM separately spike 614D 
and 614G variants as the correlation between the number of amino 
acid substitutions and Ct differed between variants. In the GLM, we 
excluded samples with greater than 20 nucleotide substitutions as 
outliers, because all other samples had between 3 and 17 nucleotide 
substitutions.

To estimate predictors of patient age, we used all SCAN & UW 
Virology samples with age available (n = 1172). The predictor 
variables were amino acid at spike 614 (binary variable) and week 

since community spread of COVID-19 was reported in Washington 
(continuous variable).

To estimate predictors of hospitalization if infected with SARS-
CoV-2, we used a multivariate logistic regression

  logit( P  i   ) =    0   + Σ    j    x  i,j   +  ϵ  i    

where P is the probability of hospitalization,  is the coefficient of 
the predictor variable, x is the predictor variable, and 𝜖 is the resid-
ual error. Predictor variables were week since first sample in dataset 
(continuous variable), sex (binary variable), active cancer or immu-
nocompromised (binary variable), age in decade (continuous vari-
able), amino acid at Spike 614 (binary variable), and average Ct 
(continuous variable). To fit the logistic regression, we again used 
the glm package in R, specifying family as “binomial”. P values and 
CIs for risk of hospitalization were adjusted for multiple hypothesis 
testing using a Bonferroni correction.

Chi-square tests were used to compare proportions of viral line-
ages by sex, immunocompromised status, clinical outcome (inpa-
tient or outpatient), and severe outcome (critical care or death). 
P values were adjusted for multiple hypothesis testing using the 
Bonferroni correction.
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