
sensors

Article

Recognition of Fingerspelling Sequences in Polish
Sign Language Using Point Clouds Obtained from
Depth Images

Dawid Warchoł , Tomasz Kapuściński * and Marian Wysocki
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Abstract: The paper presents a method for recognizing sequences of static letters of the Polish
finger alphabet using the point cloud descriptors: viewpoint feature histogram, eigenvalues-based
descriptors, ensemble of shape functions, and global radius-based surface descriptor. Each sequence
is understood as quick highly coarticulated motions, and the classification is performed by networks
of hidden Markov models trained by transitions between postures corresponding to particular letters.
Three kinds of the left-to-right Markov models of the transitions, two networks of the transition
models—independent and dependent on a dictionary—as well as various combinations of point
cloud descriptors are examined on a publicly available dataset of 4200 executions (registered as depth
map sequences) prepared by the authors. The hand shape representation proposed in our method
can also be applied for recognition of hand postures in single frames. We confirmed this using a
known, challenging American finger alphabet dataset with about 60,000 depth images.

Keywords: hand posture recognition; fingerspelling; Polish finger alphabet; American finger alphabet;
Kinect; point cloud; hidden Markov models

1. Introduction

Recognition of static hand posture sequences is a natural and relevant expansion of static hand
posture recognition. Changing one hand shape to another, e.g., by performing two finger alphabet
letters represented by different static hand postures, introduces motion of the hand that is not the part
of a gesture itself. Recognition of static hand posture sequences is often compared to recognition of
speech, which consists of phoneme sequences. However, in the case of hand gestures, the recognition
problem is more difficult because there are no silence models, which are present in audio signals.

Recognition of static hand postures in single images, point clouds or skeletons is a common
problem. Researchers have addressed this issue using different algorithms [1–7]. However, recognition
of static hand posture sequences is an issue rarely addressed in the literature. A recognition algorithm
can work based on two strategies: (i) Skipping motion related to transitions between postures and
(ii) exploiting motion information. The first of these strategies was used by Lamar et al. [8] and
Oz et al. [9], where recognition of American and Japanese sign language alphabets was achieved
by discarding frames with motion and choosing only frames corresponding to letters. Skipping
motion frames is performed by calculating the difference between consecutive frames [8] or direct
measure of hand velocity using sensory gloves [9]. This approach is problematic in the case of
gestures fingerspelled at high speed (which is natural for proficient signers) because the pauses,
during which the hand shape is fixed in consecutive frames, are very short or do not exist at all.
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In many works [10–15], hidden Markov models are used for recognition of letter sequences. There
are models based on letters [10,12,13], based on transitions between consecutive letters [14,15], and
based on phonological features of fingerspelling [11,12]. Some of the mentioned approaches require
a signer to wear a special outfit—long sleeves [10,13] or gloves [8,9]. Liwicki et al. [13] recognized
letter sequences of the British finger alphabet that were performed with both hands. Such gestures
provide information which is more useful in distinguishing between classes than in the case of
single-handed gestures. The works mentioned above use different kinds of data: Grey images [14],
color images [8,10–13], hand skeletons acquired by a Leap Motion camera [15], and finger joint angles
obtained from sensory gloves [9]. The following finger alphabets are recognized: American [10–12,14],
Japanese [8], British [13], and German [15]. All of the mentioned works involve data other than point
clouds or depth images, and none of the works are related to Polish finger alphabet.

In this work, we present an approach to recognition of Polish finger alphabet letter sequences
using 3D data in the form of point clouds. Three-dimensional data have several advantages over data
formats used in the mentioned works. One of the advantages is the possibility of hand segmentation
based on depth that can be more accurate than methods relying solely on color information. Another
advantage is the representation of objects using features based on the surface geometry in addition to
the standard 2D shape features. Moreover, 3D cameras using time-of-flight technology work correctly
under poor lighting conditions or even in absolute dark. Additionally, users performing gestures are
not required to wear any gloves or to keep their hands very close to the camera, as is the case with Leap
Motion cameras. In addition to the listed advantages, the main motivation for using 3D data is the
good results obtained for the recognition of static hand postures in single images with representative
datasets [16–18].

For gesture classification, we used hidden Markov models and the strategy exploiting motion
related to transitions between letters. Our feature set was calculated using the point cloud descriptors:
viewpoint feature histogram (VFH) [19], eigenvalues-based descriptors [20], and modified versions
of two other descriptors: Ensemble of shape functions (ESF) [18,21] and global radius-based surface
descriptor (GRSD) [18,22]. We focused on every letter from the Polish finger alphabet that is represented
by a static hand posture: A, B, C, E, I, L, M, N, O, P, R, S, T, U, W, Y. Hand postures representing this set
of letters are shown in Figure 1. It is worth noting that some of the postures are difficult to distinguish
even for a human, e.g., letters O, S, T, or E, P. That makes recognition of Polish finger alphabet letters a
challenging task.

Figure 1. Letters of Polish finger alphabet represented by static postures.
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The novelty of the paper is the study of recognition of finger alphabet letter sequences based
on models of transitions between the letters built using point clouds and point cloud descriptors.
The main contributions are:

1. Proposition of combining VFH, ESF, GRSD, and eigenvalues-based point cloud descriptors to
build hand shape representations;

2. Experimental selection of the best descriptor combination and the best structure of hidden Markov
models representing the hand shape sequences forming transitions between the pairs of letters;

3. Experimental verification of two recognition methods: Dependent and independent from the
dictionary of continuous fingerspelled expressions (acronyms);

4. Experimental verification of the suitability of the proposed hand shape representation to
recognition of hand postures in single frames by using a known, challenging American finger
alphabet dataset with about 60,000 depth images;

5. Providing the dataset and the details of the proposed method (at this time, we do not know any
other publicly available dataset containing depth maps (point clouds) of continuous fingerspelled
expressions including a set of transitions between the pairs of letters).

The remaining part of the paper is organized as follows. Section 2 discusses the proposed
recognition method. In Section 3, we describe the prepared datasets and our experiments with their
results. Using the challenging American finger alphabet dataset [23], we show that the hand shape
representation proposed in our method can also be applied for recognition of hand postures in single
frames. Conclusions and proposals for future work are included in Section 4.

2. Recognition Method

This section presents the outline and the details of the proposed method.

2.1. Outline of the Method

In this paper, we understand fingerspelling as quick highly coarticulated motions, not as the
careful articulations of isolated signs. For recognition, we used the strategy exploiting motion related
to transitions between the letters. The transition is called the sequence of hand shapes that appear
between two consecutive letters (see Figure 2).

Figure 2. Several consecutive depth maps showing an exemplary transition from the letter Y to the
letter O.

We modeled such sequences by hidden Markov models; thus, each pair of consecutive letters
considered in this study is represented by such a model, prepared using the training data. Multi-letter
expressions (e.g., acronyms) were modeled as networks of the transition models.

The proposed recognition algorithm consists of the following main steps:

1. Hand segmentation (based on depth map);
2. Building the point cloud of the hand, downsampling of the cloud, determining its bounding box,

and decomposing the bounding box into smaller cells;
3. Extraction of features based on point cloud descriptors;
4. Recognition using hidden Markov models (after performing steps 1–3 for each frame of the video

related to an expression being recognized).

Steps 1–3 were implemented using the OpenCV 2.4.9 [24] and the PCL 1.8.0 [25] programming
libraries. For the classification, we used HTK 3.4.1 (hidden Markov model toolkit [26]), a software for
building and manipulating hidden Markov models.
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2.2. Hand Segmentation

The hand segmentation method was proposed in our previous work [17]. It begins with the
extraction of the arm region (hand and forearm) from the depth map DM, which is our input data.
For this purpose, the pixel with the lowest depth value (closest to the camera) is localized and marked
as na and its depth, in meters, is denoted as dna. Then, all the pixels with a depth value greater
than dna + Tdepth are rejected (set to 0), resulting in a depth map DA representing the arm. In our
experiments, we set Tdepth to 0.1 m according to the empirical observations. Then, we threshold DA to
obtain a binary image BA:

BAi =

{
1 if DAz

i > 0

0 if DAz
i = 0

, (1)

where DAz
i is the depth value of the i-th DA pixel and BAi is the i-th BA pixel.

To remove defects resulting from measurement errors of a camera, morphological operations
should be performed on BA before the next segmentation stages. First, the jagged edges are smoothed
using opening and closing with a 3× 3 structuring element. For this operation, the functions erode and
dilate from OpenCV library can be used. Then, small gaps within the arm region are filled if they are
not larger than the rectangular structuring element of size 35× 35 pixels. This size is sufficient for the
data acquired by a Kinect camera in good lighting conditions or a Kinect 2.0 camera.

The next step of the hand segmentation is the selection of the central hand point. To this end, we
applied the Gaussian filter on BA using the kernel of a large size Gk that can be calculated as follows:
Gkx = Gky = roundo(100/dna) pixels, where roundo is a function rounding the value in parentheses to
the nearest odd integer. For the Gaussian filter, OpenCV function GaussianBlur can be used. With such
calculated Gk, the kernel covers the entire hand region. The resulting grayscale image has a global
maximum (the brightest pixel) Co at the object’s center. To ensure that Co belongs to the hand (not to
the wrist or the forearm region), we created a set M containing every local maximum not smaller than
85% of the Co value. Let us denote by D(m,na) the Euclidean 2D distance (on the xy plane) from the
maximum point m to na and by mv the value of m. As a central hand point Ch, we selected a maximum
from M, for which the difference D(m,na) −mv is minimal. Thus, the hand center is not too far from the
point of the lowest depth na, and it has a similar value to the global maximum Co.

After the calculation of the hand center, the palm region of the hand is roughly estimated by the
largest circle that can be fitted on it. Let us denote the circle with the center Ch as Cc, and its radius as
RCc. The circle Cc is iteratively enlarged, starting with RCc = 1 until the hand area inside it, denoted
as HCarea, is less than 95% of the circle area Carea. Then, the circle is moved to a neighboring position
maximizing the HCarea, and finally, the radius is increased once more. After this step, we obtain the
updated central hand point C′h with coordinates C′hx, C′hy.

The last segmentation step is the rejection of the pixels corresponding to the forearm. For this
purpose, each non-zero pixel of BA, whose y coordinate is less than C′hy − RCc, is set to 0.

This method was designed for recognition of static postures in single point clouds (or depth
images). For some hand postures, the circle can be fitted in a wrist region instead of palm, which leads
to incorrect segmentation. Therefore, the algorithm is slightly modified to increase its effectiveness in
posture sequence recognition. The modification includes checking whether the distance between the
circle center Cc and the highest hand point is more than 2.5 times (value determined experimentally)
greater than the circle radius Cr. If this condition is satisfied, then the circle is considered as incorrectly
fitted and its center is set to Cc from the previous frame of the sequence (provided that the current
frame is not the first).

2.3. Conversion from Depth Map to Point Cloud

After the hand segmentation, depth maps have to be converted into the point cloud format.
To this aim, we defined the set H of hand pixels belonging to binary image BH : H = {x ∈ BH|x = 1}.
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The conversion was applied to each DA pixel if H contains a pixel of the same coordinates. Therefore,
the resulting point cloud consists only of points belonging to the hand, without forearm and isolated
objects. The coordinates of cloud points: PChx

i , PChy
i , and PChz

i are set with respect to the DA pixels’
depth value DAz

i based on the perspective projection equations and the camera’s intrinsic parameters:

PChx
i =

(DAz
i + f l) · (DAwidth

2 − DAx
i − 1) · psx

f l
, (2)

PChy
i =

(DAz
i + f l) · (DAheight

2 − DAy
i − 1) · psy

f l
, (3)

PChz
i = DAz

i , (4)

where DAwidth and DAheight are the number of depth map columns and rows, respectively; f l is the
focal length of a camera; psx and psy are the pixel’s width and height, respectively. The intrinsic
parameters of the Kinect 2.0 camera, used in our experiments, are as follows: f l = 3.657 mm, psx = psy

= 0.01 mm. These values were obtained using the camera calibration toolbox for Matlab software [27]
(Caltech, Pasadena, CA, USA).

The resulting point cloud is redundantly dense. There is no need for such a large number of points
to calculate representative features. Therefore, the cloud has to be downsampled in order to reduce the
number of points and to speed up the process of feature calculation. This operation is performed by
creating a 3D voxel grid over the input point cloud data. Each point situated within each voxel (3D
cuboid) is approximated by its centroid. For this purpose, the PCL class downsampler can be used. The
voxel dimensions (width, height, depth) Vx ×Vy ×Vz are the filter parameters. We used cubic voxels
and set the dimensions as follows: Vx = Vy = Vz = 4.5 mm, which in our previous work [18] turned
out to be the optimal value in terms of gesture recognition rate and feature extraction time.

2.4. Bounding Box

In our method, the bounding box, defined as the smallest possible axis aligned cuboid that entirely
embraces the point cloud of the segmented hand, is determined before feature calculation. To increase
the distinctiveness of calculated hand features, we divided the bounding boxes into several cuboidal
cells of equal sizes. Our feature vectors consist of features calculated for each cell. The experiments
performed in our previous works [16,17] showed that dividing the bounding box into three horizontal
cells was most effective in the hand posture recognition (three vertical, and nine cells have also been
tested). Therefore, in this work, we divided the box into three horizontal cells (see Figure 3c).

(a) (b) (c)

Figure 3. (a) Binary image of an arm with the circle C fitted in the palm region and circle center Cc

marked as a green dot; (b) binary image of a hand after rejecting the wrist region; (c) point cloud of a
hand and its bounding box divided into three horizontal cells (projection on the x, y plane).
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2.5. Point Cloud Descriptors

To calculate hand features, we used the following descriptors: viewpoint feature histogram, ensemble
of shape functions, global radius-based surface descriptor, and eigenvalues-based descriptors.

The viewpoint feature histogram is a global descriptor of a point cloud considered as a set of 3D
points in a clockwise coordinate system with the horizontal x axis directed to the left, the vertical y axis
facing up, and the z axis coinciding with the optical axis of the camera and turned towards the observed
objects. VFH consists of a surface shape component and a viewpoint direction component which is not
used in our work, since it does not provide information useful in posture classification. The surface
shape component has a form of four histograms describing distributions of the four parameters d, θ,
α, and φ characterizing each point of the cloud. d means the distance between a point and the cloud
centroid. The remaining parameters are angles computed based on an estimation of the vector normal
to the surface at a given point and the average of such vectors for all points of the cloud hooked at the
centroid [19].

The ensemble of shape functions is a combination of three functions describing the following
properties of a point cloud: Distances, areas, and angles formed by connecting three randomly selected
points. These values are placed in three histograms: IN, OUT, and MIXED, depending on whether the
line connecting the points lies entirely inside the surface, entirely outside it, or both [21].

The global radius-based surface descriptor calculates the radial relationships between the
neighboring points. For each pair of point and its neighbor, the descriptor calculates the distance
between them and the difference between surface normals computed at these points. Based on this
information, a sphere is defined, which is then used for the surface categorization. This process assigns
one of several categories to each point and creates histograms based on the transitions between the
categories [22,28].

We used modified versions of ESF and GRSD descriptors. The modifications were proposed in our
previous work [18]. The main ESF changes include replacing IN and OUT histograms with MOSTLY-IN
and MOSTLY-OUT histograms, which better differentiate between subtle changes in hand posture
geometry. In modified GRSD, we proposed to combine the surface categories and to calculate features
based on the combinations of categories instead of transition histograms. The modified descriptors are
called ESF2 and GRSD-C. VFH, ESF, and GRSD with their modifications are described in detail in our
previous works [17,18].

Eigenvalues-based descriptors are computed as follows. The 3D covariance matrix is constructed
for a given 3D point cloud. Since the matrix is symmetric and positive–semidefinite, its three
eigenvalues (λ1, λ2, λ3 ∈ R, λ1 ≥ λ2 ≥ λ3 ≥ 0) exist, are real-valued, non-negative, and correspond
to an orthogonal system of eigenvectors. The three eigenvalues represent the extent of a 3D ellipsoid
along its principal axes. The normalized eigenvalues ei = λi/(λ1 + λ2 + λ3); ei ∈ [0, 1]; i ∈ 1, 2, 3;
e1 + e2 + e3 = 1 are used to define seven measures [20]: Linearity L, planarity P, scattering S,
omnivariance O, anisotropy A, change of curvature C, and eigenentropy E.

Linearity L, planarity P, and scattering S represent the dimensionality features as:

L =
e1 − e2

e1
, (5)

P =
e2 − e3

e1
, (6)

S =
e3

e1
. (7)

Omnivariance O and anisotropy A can be computed as:

O = 3
√

e1e2e3, (8)
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A =
e1 − e3

e1
. (9)

Change of curvature C estimates the surface variation as:

C =
e3

e1 + e2 + e3
= e3. (10)

Eigenentropy E may be defined by the Shannon entropy as:

E = −e1ln(e1)− e2ln(e2)− e3ln(e3), (11)

where the occurrence of eigenvalues identical to zero has to be avoided by adding an infinitesimally
small value ε. E represents a measure describing the order (disorder) of 3D points of the considered
point cloud. For justification of Equation (11), it is worth noting that the normalized eigenvalues
satisfy two of three probability axioms according to Kolmogorov, and they may be considered as the
probabilities, taking into account that quasi-probability distributions generally relax the third axiom
addressing the junction of mutually disjoint random events [20].

We proposed to represent the calculated histograms of each histogram-based descriptor (VFH
and ESF2) by their means and standard deviations. The features of GRSD-C and eigenvalues-based
descriptors are not histograms but single values, and therefore, there is no need to calculate their mean
and standard deviation. The results of our previous work on recognition of static hand gestures [17,18]
justify using only two VFH histograms, denoted in the original work as φ, d (related to angles between
the average of the surface normals hooked at the centroid of the point cloud and lines connecting the
centroid with surface points, and distances between the centroid and surface points, respectively), one
ESF2 histogram, denoted in original work as A3 (related to angles formed by lines connecting points)
and two combined categories of GRSD-C: (i) Plane, cylinder, rim, sphere, and (ii) sharp edge, noise.
These features are the most effective in terms of hand posture recognition rate in single images, which
has been experimentally verified in our previous works. The selection of eigenvalues-based descriptors
is described in Section 3.2. All features are normalized to the interval [0-1] using the extreme values
estimated from the training set. The source codes for ESF2, GRSD-C, and eigenvalues-based descriptors
can be downloaded from http://vision.kia.prz.edu.pl. The implementation of VFH descriptor is
available in the PCL library.

2.6. Hidden Markov Models

The classification of posture sequences is carried out using hidden Markov models (HMMs).
HMMs are useful for modeling the temporal structure and statistical properties of signals. They also
find wide applications in gesture recognition (see, e.g., [29]). A hidden Markov model consists of two
stochastic processes: (i) Unobservable Markov chain with a finite number of states, distribution of initial
state probabilities, and a matrix of state transition probabilities; (ii) a set of probability density functions
that are related to observations generated by states. Training of the models consists of parameter
estimation based on observation sequences. For this purpose, we used the dynamic-programming
Viterbi algorithm [30] implemented in the HTK software, with default parameters. This method tries
to find a stochastic process (model) which generates observation sequences from the training set. In the
classification stage, the algorithm returns a class represented by a model with the highest probability
of generating the sequence to be recognized.

In the proposed recognition method, we used HMMs that represent transitions between particular
alphabet letters (two-element combination of letters without repetition). Such an approach allows to
exploit not only shape information of the hand showing particular letters, but also the motion related
to transitions between letters. For this purpose, we considered three left-to-right models, also known
as Bakis models (see Figure 4):

http://vision.kia.prz.edu.pl
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• B1—in which transitions to the respective next state and to the current state itself, as well as the
skipping of individual states within a sequence, are possible. The self-transitions make it possible
to capture variations in the temporal extension of the patterns described. Skipping of individual
states allows the omission of short portions of a signal in its statistical description.

• B2—without the possibility of skipping individual states (also known as linear model).
• B3—like B1 with additional connections omitting two consecutive states. Thus, longer parts of

the data to be processed may be missing.

The number of states, also called emitting states, because they generate observations, was set
experimentally (see Section 3). For every emitting state, we used the Gaussian distribution with a
diagonal covariance matrix as a probability density function. Additionally, the models contained two
non-emitting states—the first and the last state—which were helpful in building model networks and
required in the HTK software.

Figure 4. The state transitions diagrams of exemplary four-state models B1, B2, and B3. Smaller circles
represent non-emitting states.

3. Experiments

In this Section, we describe the prepared dataset and list the recognized acronyms. Then, we
describe the performed experiments and present their results.

3.1. Dataset

We verified our method on a dataset recorded by three people (named as person I, person II,
and person III). The gestures were recorded using a Kinect 2.0 camera with Kinect for Windows SDK
2.0 [31]. It is a time-of-flight 3D camera with a USB 3.0 interface, which records depth maps with a
resolution of 512× 424 pixels at 30 frames per second. The camera was placed on a tripod at a distance
of about 90 cm from a sitting signer and at a height of about 90 cm (Polish sign language letters are
presented on the right side of the head). The speed of fingerspelling varied depending on the person.
For person I, it was about 140–150 letters per minute, for person II, about 160–170 letters per minute,
and for person III, about 90–100 letters per minute. Person I and person III learned gestures for the
needs of dataset recording, whereas person II is a professional sign language translator. Each person
performed gestures corresponding to transitions between letters five times, and thus, the training set
consists of 3600 sequences. The testing set consists of the following twenty sequences of letters: ABW,
ASL, CBOS, CEA, EUR, MOPS, MSW, NATO, NBP, NCBIR, NCN, PAN, PAP, PIS, OBOP, PLN, PO,
PRL, RP, and WYO. Each acronym was performed ten times by each person, which gave 600 sequences
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in total. The content of the dataset is described in Table 1. The dataset can be downloaded from
http://vision.kia.prz.edu.pl.

Table 1. Content of the prepared dataset (depth images registered by Kinect 2.0).

Name Description

T (transitions)
T = TI ∪ TI I ∪ TI I I(Tp, p ∈ {I, I I, I I I} performed by person p)

Tp: 240 transitions, 5 executions
Total: 240× 5× 3 = 3600 executions

A (acronyms)
A = AI ∪ AI I ∪ AI I I(Ap, p ∈ {I, I I, I I I} performed by person p)

Ap: 20 acronyms, 10 executions
Total: 20× 10× 3 = 600 executions

3.2. Classification without Knowledge of the Dictionary

In the first stage of experiments, the posture sequences were classified without knowledge of the
considered words (the acronym dictionary was not used). For this purpose, we used a structure of
connected transition models in which the first letter from each transition is equal to the second letter
from the previous transition (see Figure 5). For example, if the recognized transition is AB, then the
next transition must start with the letter B.

Figure 5. The structure of connected transition models for the method independent from the acronym
dictionary. Every transition model is represented by a rectangular block. For the sake of clarity, only a
few of all the blocks and connections are depicted.

At this stage, each testing sequence was classified using models trained by all the sequences
from the training set (i.e., the letter transitions). Because of the used HMM structure, in which words
are created from the letter transitions, each letter, with the exception of the first and last one, was
recognized twice. Therefore, each letter with even index, with the exception of the last letter, had to be
deleted from the resulting sequences. For example, the sequence of the correctly recognized acronym
NATO was initially identified as NAATTO. Deletion of the second and fourth letter yields the original
sequence: NATO.

http://vision.kia.prz.edu.pl
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The recognition rate of the algorithm independent from the acronym dictionary was calculated
using a method described by Kim et al. [11]—the rate of correctly recognized letters. The method
consists of calculating the Levenshtein distance [32] of the recognized word from the original word
corresponding to the given data sequence. The Levenshtein distance expresses the total number of
single-character insertions, deletions, and substitutions. The calculated distance is then divided by the
length of the original word yielding the letter error rate Er of the sequence. The average error rate ErM
is calculated for the whole testing set and, finally, the rate of correctly recognized letters is calculated
as: RM = 1− ErM.

We chose this form of letter recognition rate because, in the case of a standard word recognition
rate, the results seem to be significantly underestimated if only the single letters in the whole sequence
are incorrectly recognized, inserted or omitted. In such cases, the standard word recognition rate yields
the 100% error rate. The rate of correctly recognized letters results in a smaller error, depending on
the length of the word. It is worth noting that when a recognized word is quite different (in terms of
Levenshtein distance) than the original word, the rate of correctly recognized letters yields the error
greater than 100%. Therefore, in such cases, the results can be less favorable than those of the standard
word recognition rate.

We observed that the optimal number of states depended on the model type. Therefore, we
performed recognition tests separately for models B1, B2, and B3 with a varying number of emitting
states, ranging from 2 to 13. This experiment allowed us to set the number of states for each model:
B1—11 states, B2—7 states, and B3—9 states.

We decided to choose the optimal set of eigenvalues-based descriptors since we did not use
them in our previous works with posture recognition in single images. To this aim, we performed
tests with the feature set consisting of all the eigenvalues-based descriptors (further marked by FS1)
and the feature set consisting of all the remaining descriptors mentioned in Subsection 2.5 (VFH,
ESF2, GRSD-C) – further marked by FS2. The average recognition rates for FS2 were 17.7% higher
than for FS1. Then, we performed seven tests with feature sets containing single eigenvalues-based
descriptors (one descriptor per test) and sorted them in descending order by recognition rate (see
Table 2). We combined the set FS2 with the best eigenvalues-based descriptor, E (eigenentropy), and
observed improvement of the results up to 5.5%, depending on the person from the testing set. Then,
we tried adding the other best eigenvalues-based descriptor and observed that O, despite being the
second best, does not work well when combined with other descriptors. Finally, we chose the most
effective subset of FS1: The first (E), the third (C), the fourth (L), and the fifth (S) best eigenvalues-based
descriptor. The results of the aforementioned experiments are presented in Table 3. Since GRSD-C
was the least effective of the three descriptors analyzed in our previous works, we tried removing
GRSD-C features from FS2; however, the results were not better. The final feature vector, used in
the subsequent experiments, consists of the following components: VFH(φ,d), ESF2(A3), GRSD-C,
and eigenvalues-based descriptors (E,C,L,S). Thus, the complete feature vector representing a video
frame contains 16× 3 features: Mean and standard deviation related to each of the two mentioned
histogram-based descriptors, two values of GRSD-C descriptor, four eigenvalues-based descriptors,
for each cell of the bounding box of the hand (see Figure 3c).

In Table 4, we present recognition rates of the method independent from the acronym dictionary
for models B1, B2, and B3. The best mean recognition rates were obtained for B2; however, the
standard deviation of the results turned out to be relatively high. The interesting fact is that B2 yields
significantly higher recognition rate for person I and III, whereas B1 gives higher rates for person II
(proficient signer).
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Table 2. Recognition rates (sorted in descending order by mean rate) of the method independent from
the acronym dictionary using single eigenvalues-based descriptors. The results were obtained for the
model B2 with T as the training set and A as the testing set.

Eigenvalues-Based Descriptors
Recognition Rate [%]

Person I Person II Person III Mean

E 50.8 31.5 58.4 46.9
O 47.5 18.7 50 38.7
C 38.8 25.7 50.6 38.4
L 38.4 27.8 41.4 35.9
S 33.4 22.5 48.4 34.9
A 33.4 22.5 48.4 34.9
P 30.4 26.2 28.2 28.3

Table 3. Recognition rates of the method independent from the acronym dictionary using different
combinations of features. The results were obtained for the model B2 with T as the training set and A
as the testing set.

Feature Set
Recognition Rate [%]

Person I Person II Person III Mean

FS1 68.3 38.6 69.6 58.8
FS2 89.9 60.4 79.1 76.5

FS2 + E 90.3 65.9 79.5 78.6
FS2 + (E,O) 87.8 66 79.6 77.8

FS2 + (E,O,C) 87.8 66.4 80.6 78.3
FS2 + (E,O,C,L) 87.5 67.2 79.5 78.1

FS2 + (E,O,C,L,S) 88.1 67.1 80.2 78.5
FS2 + (E,O,C,L,S,A) 87.3 66.6 80.3 78.1

FS2 + (E,O,C,L,S,A,P) 86.3 66.7 80.2 77.7
FS2 + (E,C,L,S) 88.7 67.4 81.3 79.1

Table 4. Recognition rates of the method independent from the acronym dictionary using the best
combination of features FS2 + (E,C,L,S) with T as the training set and A as the testing set.

Person
Recognition Rate [%]

B1 B2 B3

I 84.8 88.7 64.6
II 69 67.4 61.2
III 71.7 81.3 48.3

Mean 75.2 79.1 58
Standard deviation 6.9 8.8 7

The most misclassifications were related to visually similar letters, such as S mistaken for O and
N mistaken for P. These mistakes are common in the case of posture recognition in single images.
Other frequent mistakes were related to letters N and A as well as inserting additional, single letters
at various positions of a sequence despite recognizing other letters correctly (e.g., MOSPS instead
of MOPS).

3.3. Classification Using a Dictionary of Acronyms

In the second stage of experiments, the posture sequences were classified by the method using
a dictionary of acronyms from the testing set. Each testing sequence was classified using models
trained by all the sequences from the training set. For this purpose, we used a structure of connected
models containing only the connections corresponding to the classified acronyms (see Figure 6).
The classification result is chosen from the twenty considered acronyms.
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Recognition rates of this method are presented in Table 5. Experiments with a varying number of
emitting states allowed us to set the following values for the recognition method using the acronym
dictionary: B1—6 states, B2—8 states, and B3—3 states. It is worth noting that the average optimal
number of states for the method using a dictionary of acronyms is smaller than for the method
independent from the dictionary. The best mean recognition rates were obtained for the models B1
and B3 (only 0.1% difference); however, B1 yielded lower standard deviation. Similarly to the previous
experiment, the worst results were obtained for person II.

Figure 6. The structure of connected transition models for the method dependent on the acronym
dictionary. Every transition model is represented by a rectangular block. For the sake of clarity, only a
few of all the blocks and connections are depicted.

Table 5. Recognition rates of the method using the acronym dictionary. Feature vector based on
FS2 + (E,C,L,S). Training set: T, testing set: A.

Person
Recognition Rate [%]

B1 B2 B3

I 97.5 99.6 99.6
II 92.3 87.3 90.5
III 100 100 100

Mean 96.6 95.6 96.7
Standard deviation 3.2 5.9 4.4

In the third stage of experiments, we performed leave-one-person-out tests (see Table 6) for the
method using the dictionary of acronyms: In each test, the person from the testing set was not present
in the training set. For models B1 and B2, the recognition rates were almost equal and significantly
higher than for model B3. The results of this stage can be considered satisfactory because of the
difficulty of the performed tests. Standard deviations are larger than in the previous experiment stage,
which results from the relatively low recognition rate obtained for person II.

The most frequent misclassification was incorrect recognition of acronym CEA in the case of
person I and II. Most often, it was mistaken for PAP, PLN (person I), and RP (person II). The reason for
this error could be a characteristic motion of thumb and index finger towards each other that can be
observed in each of these acronyms. This motion is more visible in gestures performed by person I and
II than by person III. Moreover, acronym NCN shown by person II was incorrectly recognized multiple
times as NBP and RP. This can be partially explained by the difficulty in distinguishing between the
similar letters N and P previously observed in the method independent from the acronym dictionary.

The difference between mean recognition rates of tests presented in Table 5 and leave-one-
person-out tests presented in Table 6 is about 8%. It can be presumed that extending the training
set with data recorded by more people would increase the classifier generalization ability, and thus
improve the recognition rates of leave-one-person-out tests.

Finally, we performed an additional experiment with the testing set recorded by person IV, who
showed each acronym 10 times. Person IV is a proficient signer who spelled at a speed similar to
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person I and II. In this experiment, we classified every acronym recorded by person IV with training
data T containing transitions recorded by person I, II, and III using the method dependent on the
acronym dictionary (similarly to the experiments presented in Table 6). The recognition rate was
81.8%. We performed similar experiments excluding particular signers from the training set. We then
observed that person II had the highest (positive) impact on the results. Most likely this is caused by
the fact that both person II and IV are proficient signers (unlike person I and III). This leads to the
conclusion that gestures performed by proficient signers are better recognized with other proficient
signers’ training data, and the same can be assumed in the case of inexperienced signers.

Table 6. Recognition rates of the method using the acronym dictionary. The results were obtained by
leave-one-person-out tests, i.e., with T \ Tp as the training set and Ap as the testing set for person p.

Person
Recognition Rate [%]

B1 B2 B3

I 85 88.2 76.8
II 83.6 80.7 77.5
III 97.3 96.4 92.3

Mean 88.6 88.4 82.2
Standard deviation 6.2 6.4 7.1

Recognition time of a single acronym depends strongly on its length (number of letters) and speed
of fingerspelling. Hand segmentation and feature extraction of a single point cloud took approximately
55 ms on a PC with Intel Core i7-4710HQ, 2.5 GHz CPU, and 16 GB RAM, 800 MHz. Classification
time of a single sequence was 10–13 ms. It depended on the number of states in HMM models (larger
models require more calculations).

3.4. Recognition of Isolated Letters

The previous experiments were focussed on the fingerspelling considered as quick highly
coarticulated motions. However, our hand shape representation method can also be applied for
recognition of hand postures in single frames, but in this case, the classifier has to be replaced. In this
subsection, we present experimental results of our method with SVM (support vector machine) [33] as
a classifier of single hand postures. Since SVM can distinguish only between two classes, we used the
all-versus-all method for multiclass classification. As a kernel, we used the function:

H(x, x′) = exp(−γ · |x− x′|2), (12)

where γ = 1/FVsize and FVsize is the size of the feature vector (48 in our case). We used the best
combination of features FS2+(E,C,L,S) obtained in the experiments from Section 3.2. The classification
was performed using Matlab software with LIBSVM (library for support vector machines) [34].

For these experiments, we used a publicly available American finger alphabet dataset [23]. It is
a very challenging dataset consisting of 24 hand postures performed a variable number of times
by 5 people, which amounts to 64,749 executions in total. For the classification, we used 400 depth
maps for each gesture performed by each person, starting at file number 100. The offset from the
beginning has been used due to accidentally captured head images (without a visible hand) or incorrect
hand postures present in the first files in some cases. The hand postures represent the letters of the
American finger alphabet without J and Z (since they involve motion). The gestures were recorded by
a Kinect camera.

The results, presented in Table 7, were obtained using leave-one-person-out 5-fold cross-validation
tests. Our approach is better than or comparable to other considered methods.
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Table 7. Comparison between recognition rates of our approach using FS2 + (E,C,L,S) and methods found
in the literature. The experiments were performed using leave-one-person-out 5-fold cross-validation tests.

Method Recognition Rate [%]

Keskin et al. [35] 43
Pugeault et al. [36] 49
Pedersoli et al. [37] 56

Kuznetsova et al. [38] 57
Wang et al. [39] 58.3

Dalal et al. [1,40] 65.4
Dong et al. [41] 70
Zhang et al. [42] 73.3
Wang et al. [3] 75.8
Feng et al. [1] 78.7
our method 78.8

4. Conclusions

In the paper, we presented a method for recognition of static hand posture sequences in a form
of fingerspelled letters of the Polish finger alphabet. The method works with 3D data in a form of
point clouds. As classification features, we used point cloud descriptors: VFH, eigenvalues-based
descriptors, and modified versions of ESF and GRSD. The hand shape representation based on such
an approach can be applied both for the recognition of hand postures in single frames, which we
confirmed on a challenging American finger alphabet dataset, and for the recognition of fingerspelling
considered as quick highly coarticulated motions. In the second case, our method is based on a hidden
Markov models classifier with the models trained by transitions between postures corresponding to
two consecutive letters. We considered three transition models (B1, B2, B3) and two model networks:
Dependent on and independent from the dictionary of acronyms.

We used our own dataset, consisting of training data in the form of transitions between letters
and testing data in the form of acronyms. Using our own, publicly accessible dataset, we achieved
high recognition rates for the method dependent on the acronym dictionary. The results obtained for
the method independent from the acronym dictionary are promising; however, the problem of letter
sequence classification without a dictionary still remains challenging and can be a subject for future
work. Another future study topic may be expanding the recognition method by adding the possibility
to recognize not only static but also dynamic letters of the finger alphabet.
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