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Abstract
Background: Recent studies show that sodium-glucose co-
transporter 2 inhibitors (SGLT2i), originally approved for gly-
cemic control in patients with type 2 diabetes, also exert 
renoprotective effects independently from effects on dys-
glycemia. Moreover, recent work indicates that SGLT2i treat-
ment may be effective in patients with nondiabetic chronic 
kidney disease, including primary and secondary glomerular 
diseases. Summary: SGLT2i lower blood glucose by blocking 
glucose resorption in the early renal proximal tubule through 
the glucose transporter, SGLT2, leading to enhanced urinary 
glucose excretion. Recent studies indicate that SGLT2i may 
have pleiotropic effects on cells other than proximal tubular 
cells. SGLT2i reduce the glomerular workload by decreasing 
the intraglomerular pressure, thus ameliorating hyperfiltra-
tion, if present, and may also decrease systemic blood pres-
sure. SGLT2i may also act directly on endothelial cells, pos-
sibly via modulating the effects of adhesion molecules and 
reducing inflammatory cytokines and reactive oxygen spe-
cies. SGLT2i may have direct anti-inflammatory and antifi-

brotic effects on renal tubules. Some reports suggest direct 
protective effects on podocytes and mesangial cells as well. 
Here, we provide a review of the potential mechanisms of 
renoprotection, therapeutic utility, and potential side effects 
of SGLT2i in patients with nondiabetic glomerular diseases, 
based on data from studies carried out in cells, experimental 
animals, and humans. Key Messages: SGLT2i may be a prom-
ising addition to the glomerular disease treatment arma-
mentarium. However, it is unclear at what point of the natu-
ral history of specific glomerular diseases (whether this is im-
mune or nonimmune mediated) SGLT2i can be beneficial. 
Additionally, further studies are needed to assess the long-
term efficacy and safety of SGLT2i in patients with nondia-
betic glomerular diseases. © 2021 The Author(s)

Published by S. Karger AG, Basel

Introduction

Despite recent progress in pharmacological interven-
tions, acute and chronic glomerular diseases continue to 
result in substantial morbidity and mortality [1]. The un-
derlying etiology of glomerular diseases is diverse, result-
ing in many different potential therapeutic targets (Fig. 1). 
Currently, renin-angiotensin system (RAS) blockers are 
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the standard of care and provide therapeutic benefits by 
reducing systemic and intraglomerular pressures as well 
as through direct effects on distinct renal cell types, acting 
at the molecular level.

Sodium-glucose cotransporter 2 inhibitors (SGLT2i), 
recently introduced as therapy for diabetes mellitus, low-
er blood glucose by blocking glucose entry into the renal 
proximal tubule cells through the SGLT2 transporter, 
leading to enhanced urinary glucose excretion. Recently, 
a number of studies in patients with type 2 diabetes (T2D) 
have demonstrated that SGLT2i unexpectedly exerted 
renoprotective effects independently of its glucose-low-
ering effects [2–4]. Moreover, it appears that SGLT2i may 
also have pleiotropic effects at the cellular level beyond 
the proximal tubule. Further, a recent randomized con-
trolled trial (RCT), DAPA-CKD, has demonstrated that 
SGLT2i slowed the progression of diabetic and nondia-
betic CKD [5]. Taken together, data suggest that SGLT2i 
may have a place in standard therapy of CKD.

Glomerular diseases can be immune- or nonimmune-
mediated damages. From the current evidence, it appears 
that SGLT2i would not target the pathomechanistic eti-
ologies of immune-mediated glomerular diseases. Rath-
er, it may ameliorate the downstream injury from the 
original glomerular damages (Fig. 1).

Why do SGLT2i, which primarily act in the proximal 
tubules, have upstream effects on glomeruli and else-
where? In this review, we consider various studies from 
cells and animal models to humans and summarize the 

proposed mechanisms through which SGLT2i may pro-
vide renoprotection in nondiabetic glomerular diseases 
(Fig. 1). Since studies of SGLT2i employed specifically for 
nondiabetic CKD both in humans and animals are limited 
(Tables 1, 2) [5–16], we highlight the implications of rel-
evant results from studies in diabetes as well. Finally, we 
consider whether SGLT2i constitute a potential treatment 
option for patients with nondiabetic glomerular diseases.

SGLTs and Their Effects

Under euglycemic condition, the kidney reabsorbs al-
most all the glucose filtered in the glomerulus through two 
glucose transporters: sodium-glucose cotransporter 1 
(SGLT1) and SGLT2. SGLT2 is a low-affinity, high-capac-
ity glucose transporter, expressed in the apical membrane 
of the early S1/S2 segments of the proximal tubules, which 
accounts for >90% of the glucose reabsorption [17]. 
 SLC5A2 encodes SGLT2 and is a causative gene for famil-
ial renal glycosuria. The remaining luminal glucose reach-
es the downstream S2/S3 segments of the proximal tubule 
and is reabsorbed by the high-affinity, low-capacity glu-
cose transporter SGLT1. SGLT1 is encoded by SLC5A1 
and is also expressed in the mucosa of the small intestine 
[18]. Glucose reabsorption through SGLT1 has been re-
ported to increase when SGLT2 is not expressed (SLC5A2 
gene is deleted) or is inhibited by SGLT2i or when filtered 
glucose is increased in the setting of diabetes [17].

Fig. 1. Potential renoprotective mecha-
nisms of SGLT2i in nondiabetic glomeru-
lar disease. Solid lines indicate SGLT2i’s di-
rect effects, and dotted lines indicate indi-
rect effects. SGLT2i, sodium-glucose 
cotransporter 2 inhibitor; GEC, glomerular 
endothelial cell; GBM, glomerular base-
ment membrane.
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Tubular SGLT2 Expression in Glomerular Diseases

An important point to discuss when considering the 
expansion of SGLT2i treatment in nondiabetic glomeru-
lar diseases is the difference of SGLT2 expression between 
diabetic and nondiabetic kidneys. SGLT2 expression 
abundance has been most frequently studied in patients 
and animal models with diabetes compared to healthy 
controls without diabetes. Most animal studies have 
shown increased SGLT2 expression in both type 1 diabe-
tes (T1D) and T2D, except for streptozotocin-induced 
diabetic mice [19, 20]. In humans, there are conflicting 
results in SGLT2 abundance in diabetic patients versus 
nondiabetic healthy controls [21, 22]. Therefore, a con-
cern has been raised whether the use or effect of SGLT2i 
in nondiabetic patients is comparable to that in patients 
with diabetes. It is also not known whether the efficacy of 
SGLT2i corresponds to the level of SGLT2 expression. In-
deed, Rajasekeran et al. [7] reported that renal SGLT2 
mRNA levels in kidney biopsies from patients with obe-
sity-related secondary FSGS (n = 6) were significantly 
lower than the levels in healthy controls (transplant do-
nor kidney, n = 6). In contrast, data from the Nephrotic 
Syndrome Study Network (NEPTUNE) demonstrated 
that tubular SGLT2 mRNA levels were the same in biop-
sies from patients with glomerulonephritis and kidney 
tissue from normal controls (kidney donors), and the ex-
pressions were similar across different subtypes of ne-
phrotic syndrome (membranous nephropathy, minimal 
change disease, FSGS, and IgA nephropathy) [22]. Tubu-
lar SGLT2 mRNA expression was positively correlated 
with estimated GFR (eGFR) and glycated hemoglobin 
and inversely correlated with interstitial fibrosis, suggest-
ing that CKD stages may be the key factor affecting the 
SGLT2 expression [22]. Furthermore, recent evidence 
from the DAPA-HF and DAPA-CKD trials supports the 
concept that SGLT2i may function even in nondiabetic 
states, as both cardio- and renoprotective benefits of 
dapagliflozin were similar in patients with or without di-
abetes [5, 23].

Effects of SGLT2i on Intraglomerular Pressure

Nephron loss from glomerular disease leads to a com-
pensatory response in spared nephrons, with increased 
intraglomerular pressure, glomerular hypertrophy, and 
hyperfiltration, leading to further glomerular damage in 
those nephrons that remain [24]. Reduction of the glo-
merular workload through decreasing the intraglomeru-

lar pressure has long been considered a viable strategy to 
preserve the remaining nephron function for many forms 
of CKD. The management of CKD based on this concept 
includes low-protein diet and RAS blockade, but recent 
studies have revealed that SGLT2i also affect the intraglo-
merular hemodynamics, with resultant decrease in intra-
glomerular pressure.

The mechanisms of improved renal hemodynamics 
with SGLT2i are incompletely understood. Both afferent 
and efferent renal arteriolar pathway theories have been 
proposed via preglomerular vasoconstriction induced by 
the activation of tubulo-glomerular feedback (TGF) [25] 
and postglomerular vasodilation [26], respectively. TGF 
is a complex autoregulatory feedback system that con-
trols the GFR based on the amount of NaCl delivered to 
the macula densa at the juxtaglomerular apparatus [27]. 
When the macula densa senses increased NaCl, it pro-
motes the adenosine release. Adenosine, via A1 receptor 
activation on the afferent arteriole, activates phospholi-
pase C, followed by inositol triphosphate and diacylglyc-
erol release, which results in cellular depolarization and 
influx of intracellular calcium, leading to afferent arteri-
ole constriction and a fall in GFR. SGLT2 inhibition, by 
blocking the sodium reabsorption at the proximal tubule, 
increases the distal sodium delivery and therefore de-
creases the GFR via TGF. An additional postulated mech-
anism of increased sodium delivery to the macula densa 
is that SGLT2i may also decrease the activity of Na+/H+ 
exchanger 3 (NHE3), another sodium transporter colo-
calized with the SGLT2, thereby blocking much of the 
sodium reabsorption at the proximal tubules [28]. The 
mechanism of the functional link between NHE3 and 
SGLT2 is not clearly understood, but it has been proposed 
that 17-kDa membrane-associated protein/NHE-regula-
tory cofactor 3 and/or NHE3 phosphorylation might be 
involved [29].

We and others have reported that SGLT2i decrease the 
GFR in T1D (Akita) and T2D (db/db) mouse models [30–
32]. Moreover, by using in vivo multiphoton microscopy 
techniques, Kidokoro et al. [33] showed that increased 
single-nephron GFR in Akita mice was decreased by em-
pagliflozin treatment, and that an A1 adenosine receptor 
antagonist, which blocks the TGF, attenuated the empa-
gliflozin’s effect on the GFR. This observation suggests 
that adenosine signaling in the TGF may be a key regula-
tor of the glomerular hemodynamic change with SGLT2i. 
The effect of the SGLT2i on GFR was also determined in 
T1D patients: empagliflozin treatment for 8 weeks sig-
nificantly reduced the measured GFR (inulin clearance) 
in patients with hyperfiltration at baseline (N = 27) [25]. 



SGLT2 Inhibitors for Nondiabetic 
Glomerular Disease

27Glomerular Dis 2021;1:21–33
DOI: 10.1159/000513659

This hemodynamic change is thought to account for the 
initial acute drop of eGFR reported in patients with T2D, 
despite subsequent stabilization of the eGFR [2–4].

An important question is whether the reduction of in-
traglomerular pressure by SGLT2i can also be achieved in 
nondiabetic CKD. Using 5/6 nephrectomized rats, a 
model of progressive CKD that resembles FSGS in hu-
mans, Zhang et al. [6] reported that reduced GFR (mea-
sured by FITC-inulin clearance) induced by 5/6 nephrec-
tomy was slightly further decreased by dapagliflozin 
treatment for 12 weeks (Table  1a). However, these au-
thors also showed that dapagliflozin did not improve pro-
teinuria or glomerular injury by histopathological exam-
ination [6]. In contrast, Rajasekeran et al. [7] reported 
that dapagliflozin treatment for 8 weeks did not change 
GFR or proteinuria in rats with subtotal nephrectomy 
(Table  1b). In clinical studies, in a small pilot study of 
dapagliflozin treatment for 8 weeks in FSGS patients (n = 
10), there was a nonsignificant trend of decrease in GFR 
and effective renal plasma flow in the dapagliflozin group 
(Table  2a) [7]. Recently, the same group published the 
DIAMOND trial, the first randomized double-blind clin-
ical study of SGLT2i on patients with nondiabetic CKD 
who were on stable RAS blockers at baseline (Table 2b,  
n = 53, including patients with IgA nephropathy, FSGS, 
hypertensive nephropathy, and other pathologies), which 
showed a significant reduction of measured GFR (via io-
hexol clearance) by −6.6 mL/min per 1.73 m2 (−9.0 to 
−4.2; p < 0.0001) after 6 weeks of treatment with dapa-
gliflozin that was fully reversible after discontinuation of 
the drug, though proteinuria was unchanged during the 
observation [16]. These results suggest that SGLT2i likely 
exert renal hemodynamic functional changes in humans 
who do not have diabetes. Clearly, longer-term studies 
are warranted to confirm whether this renal hemody-
namic change will lead to the overall beneficial effect on 
renal outcome in patients with nondiabetic glomerular 
diseases.

Effects of SGLT2i on Systemic BP

Since the afferent arteriole transmits systemic blood 
pressure (BP) to each glomerulus, affecting the intraglo-
merular pressure and protein leak, systemic BP normal-
ization in patients with hypertension is one of the most 
important CKD management strategies. It has been ac-
cepted that decrease in BP is part of the unique nonglyce-
mic effects of SGLT2i. Meta-analysis of 43 RCTs with 
22,528 T2D patients revealed that SGLT2i consistently 

induced a reduction of BP, mean difference of −2.46 mm 
Hg (95% confidence interval [CI]: −2.86 to −2.06) for sys-
tolic and −1.46 mm Hg (95% CI: −1.82 to −1.09) for dia-
stolic BP [34]. Moreover, RCTs of patients with T1D have 
shown that SGLT2i lower BP dose dependently [35, 36].

Such reports have results counter to published animal 
studies, including our reports, in which reduction of BP 
is inconsistent [30, 31, 37]. One intriguing report showed 
that luseogliflozin did not reduce BP in T2D rats, but the 
combination of luseogliflozin and lisinopril significantly 
reduced BP more than that seen in the rats treated with 
lisinopril monotherapy, suggesting that SGLT2i and RAS 
blockers may act in concert to lower the systemic BP [38]. 
Another report demonstrated that systolic BP was low-
ered by dapagliflozin in 5/6 nephrectomized rats (Ta-
ble 1b) [7]. In contrast, in Dahl salt-sensitive rats, dapa-
gliflozin did not reduce the BP induced by high-salt diet 
(Table 1c) [8]. In other nondiabetic studies, both in ani-
mals and patients, in which SGLT2i were used, significant 
changes of BP were not observed (Tables 1, 2). Clearly, 
further studies are warranted to assess whether the BP 
lowering effects of SGLT2i in T2D occur in nondiabetic 
glomerular diseases.

The mechanisms of BP lowering with SGLT2i appear 
complex and multifactorial. Possible contributing factors 
include decreased plasma volume, weight loss, better gly-
cemic control (in patients with diabetes or prediabetes), 
attenuation of inflammation, and improved arterial stiff-
ness and endothelial function [39, 40]. Among these fac-
tors, the most important is likely the diuretic effects of 
SGLT2i. The chronic osmotic diuresis and natriuretic ef-
fects of SGLT2i cause plasma volume contraction, leading 
to reduced arterial pressure. This likely mechanism is 
supported by the observed increase in hematocrit and re-
ductions in body weight, both of which are also consis-
tently reported in clinical trials with both T1D [35, 36] 
and T2D [3, 4] patients. Of note, the increased hematocrit 
may, in part, be due to the enhancement of erythropoietin 
production by SGLT2i [39].

Similarly, the effect of SGLT2i on the RAS has yielded 
discordant results. In a clinical study in which empa-
gliflozin was given for 8 weeks in T1D patients (N = 40), 
empagliflozin increased both systemic and intrarenal RAS, 
without affecting the plasma renin activity [25, 41]. In con-
trast, others reported no change in urinary angiotensino-
gen (Agt) after 1-month treatment with 5 different SGLT2i 
in T2D patients (N = 9) [42]. Our group has performed 
preclinical studies to investigate whether SGLT2i modu-
late the intrarenal RAS. We showed that renal Agt expres-
sion was similar between nondiabetic wild type and wild 
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type treated with canagliflozin for 4 weeks [43]. Moreover, 
renal Agt mRNA, protein expression, and urinary Agt ex-
cretion were unchanged in Akita mice treated with cana-
gliflozin compared to Akita mice, though blood glucose, 
GFR, glomerular injury, and renal fibrosis were all signifi-
cantly ameliorated by canagliflozin [31]. However, a study 
by Woods et al. [37] showed that canagliflozin given to 
T2D mice ameliorated hyperglycemia-associated aug-
mentation of renal AGT expression. Additional studies are 
needed to clarify whether these conflicting results are re-
lated to differences between T1D and T2D and whether 
the intrarenal/systemic RAS could be altered by SGLT2i 
under both euglycemic and hyperglycemic conditions.

Effect of SGLT2i on Endothelial Cells

The glomerular filtration barrier consists of glomeru-
lar endothelial cells (GECs), the tripartite glomerular 
basement membrane, and podocytes. GEC injury is seen 
in both primary glomerular diseases and in systemic con-
ditions such as diabetes, lupus nephritis, thrombotic mi-
croangiopathy, and vasculitis. Interestingly, there is ac-
cumulating evidence suggesting that SGLT2i may also 
directly act on the endothelial cells.

To the best of our knowledge, there is no report of 
SGLT2i specifically inducing changes in GECs. Because 
glucose-independent cardiovascular benefits have been 
consistently observed in clinical studies with SGLT2i, 
multiple animal, ex vivo and in vitro studies have been 
performed to explore their effects on cardiovascular en-
dothelial cells under diabetic and nondiabetic conditions 
[44]. As an example of euglycemic animal studies, dapa-
gliflozin decreased the overexpression of VCAM-1 and 
E-selectin and restored the downregulated eNOS levels in 
the hearts of Dahl salt-sensitive rats, a model of hyperten-
sion (Table 1c) [8]. In the same study, the authors also 
showed upregulation of endothelial Na+/H+ exchanger 1 
(NHE1) levels in vivo and direct effects of dapagliflozin 
on the activity of NHE1 in human umbilical vein endo-
thelial cells (HUVECs) in vitro [8]. Furthermore, in 
healthy rats and rabbits, an endothelium-dependent va-
sorelaxation was induced by canagliflozin and dapa-
gliflozin [44]. In the atherosclerosis model of ApoE 
knockout mice, empagliflozin for 8 weeks lowered circu-
lating levels of tumor necrosis factor alpha (TNFα), inter-
leukin-6 (IL-6), monocyte chemoattractant protein 1 
(MCP-1), and high-sensitivity C-reactive protein [45].

In cell culture studies, canagliflozin prevented IL-1β-
induced IL-6 and MCP-1 expression in HUVECs and hu-

man aortic endothelial cells [46]. Dapagliflozin also pre-
vented TNFα-induced increases of ICAM-1 and VCAM-
1 protein in HUVECs [47]. Moreover, empagliflozin and 
dapagliflozin attenuated TNFα-induced reactive oxygen 
species (ROS) generation in human coronary artery en-
dothelial cells and HUVECs [48]. These consistent ex-
perimental studies implicate a possible class effect of 
SGLT2i on reducing inflammation in endothelial cells, 
leading to improved endothelial function.

Whether SGLT2i are actually targeting SGLT2 in en-
dothelial cells or these actions are mediated via other 
transporters such as NHE1 are currently under investiga-
tion. Evidence indicates that there is both SGLT2 mRNA 
and protein expression in endothelial cells of mouse aor-
tic tissue and HUVECs [44, 49]. However, there is also a 
report of positive SGLT2 protein in Western blotting 
without detectable mRNA in human coronary artery en-
dothelial cells [48]. Recently, Khemais-Benkhiat et al. 
[50] reported that SGLT2 mRNA was not detectable un-
der normal conditions, but became above the detection 
level after H2O2 or high glucose exposure. These results 
suggest that the baseline SGLT2 expression in normal en-
dothelial cells may be small, but it may be enhanced in 
various disease states. Although the presence of SGLT2 in 
endothelial cells may remain controversial, there is in-
creasing evidence suggesting that SGLT2i likely act di-
rectly on endothelial cells, possibly via modulating adhe-
sion molecules and reducing inflammatory cytokines 
and/or ROS.

Effect of SGLT2i on Mesangial Cells

Though SGLT2 is primarily expressed in the renal 
proximal tubules, SGLT2 expression has been reported to 
be present in mouse mesangial cells [51]. Low-dose ad-
ministration of canagliflozin, which did not lower the 
blood glucose level, improved albuminuria and mesan-
gial expansion in type 2 db/db mice [51]. In cultured 
mouse mesangial cells, high glucose exposure increased 
SGLT2 expression, and canagliflozin treatment inhibited 
high glucose-induced protein kinase C activation and 
ROS production [51]. This is also supported by one of our 
previous reports, in which the mesangial expansion in 
T1D Akita mice was more significantly improved by 
canagliflozin than by insulin, though both canagliflozin-
treated and insulin-treated groups maintained similar 
blood glucose levels for 4 weeks [31]. Further studies are 
warranted to investigate SGLT2 expression and the direct 
effects of SGLT2i on mesangial cells.
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Effect of SGLT2i on Podocytes

Cassis et al. [9] reported in studies using immunofluo-
rescence and Western blotting techniques that SGLT2 is 
expressed in mouse and human podocytes. Using mice 
with protein-overload proteinuria induced by bovine se-
rum albumin, Cassis et al. [9] showed that dapagliflozin 
ameliorated the proteinuria, glomerular lesions, and foot 
process effacement (Table 1d). In vitro, SGLT2 expres-
sion by Western blotting was stimulated by albumin ex-
posure in cultured human podocytes, and dapagliflozin 
ameliorated albumin-induced cytoskeletal rearrange-
ments in podocytes [9]. Compared to normal human kid-
ney tissue in tumor nephrectomy specimens, biopsy sam-
ples from 4 patients with idiopathic membranous ne-
phropathy had increased SGLT2 expression in podocytes 
by immunofluorescence staining. Conclusions are tenta-
tive, given the pilot nature of that work [9].

Effect of SGLT2i on Tubulointerstitial Fibrosis

Regardless of the etiology, the most common patho-
logical manifestation at the final stage of CKD is renal 
fibrosis. Renal fibrosis may be considered as a failed 
wound healing process following various insults to the 
kidneys. Even if the primary cause of CKD is glomerular 
injury, the best predictor of renal functional decline is ac-
tually the extent of interstitial fibrosis [52]. Key mediators 
of fibrosis are inflammatory cell infiltration, myofibro-
blast activation and excessive extracellular matrix pro-
duction, and, ultimately, tubular cell atrophy and epithe-
lial-mesenchymal transition (EMT) [52]. Interestingly, 
multiple recent studies have revealed that SGLT2i may 
have antifibrotic effects by interfering with the profibrot-
ic steps just outlined.

Many diabetic animal studies have shown decrease in 
interstitial fibrosis after treatment with SGLT2i [32, 37, 
38]. In such models of diabetes, however, it is difficult to 
differentiate direct antifibrotic effects from secondary ef-
fects caused by the improvement in dysglycemia and he-
modynamic changes. Thus, it is important to assess the 
effects of SGLT2i against active controls. In our study 
with T1D Akita mice treated for 4 weeks to similar glu-
cose levels with either canagliflozin or insulin, we ob-
served similar improvement of renal fibrosis [31]. Li et al. 
[53] studied streptozotocin-induced T1D mice treated 
with empagliflozin or insulin to adjust the glucose level 
for a month and showed that empagliflozin but not insu-
lin suppressed kidney fibrosis. Moreover, in the study by 

Li et al. [53], empagliflozin but not insulin suppressed the 
EMT in the renal proximal tubules.

One clinical study addressed the direct antifibrotic ef-
fect of SGLT2i by comparing patients who were treated 
either with canagliflozin or glimepiride to a similar glyce-
mic level (N = 296) [54]; canagliflozin 300 mg/day de-
creased plasma levels of TNF receptor 1 (TNFR1), IL-6, 
matrix metalloproteinase 7, and fibronectin 1 (FN1) more 
significantly than glimepiride during the 2-year follow-
up.

Some compelling evidence supports direct antifibrotic 
effects of SGLT2i in vitro. Empagliflozin attenuated high 
glucose-induced toll-like receptor-4 (TLR-4) expression 
and increased nuclear deoxyribonucleic acid binding for 
nuclear factor kappa B (NF-κB), IL-6 secretion, and col-
lagen IV expression in human immortalized proximal tu-
bular cells (HK2) [55]. Dapagliflozin treatment also re-
duced high glucose-induced overexpression of alpha 
smooth muscle actin (α-SMA) and increased STAT1 and 
transforming growth factor-β1 (TGF-β1) expression in 
HK2 cells [56]. Furthermore, SGLT2 knockdown in HK2 
cells resulted in protection from high glucose-induced 
EMT [53].

In contrast, in animal models of nondiabetic renal fi-
brosis, the beneficial effect of SGLT2i has not been shown 
consistently. In mice with tubular damage induced by 
chronic oxalosis without direct glomerular damage, em-
pagliflozin did not improve renal function or fibrosis (Ta-
ble 1e) [10]. In the adenine-induced interstitial fibrosis 
and tubular atrophy (IFTA) model in rats, luseogliflozin 
for 6 weeks did not improve renal function or fibrosis 
(Table 1f) [11], but canagliflozin for 35 days dose depend-
ently improved renal function and urinary albumin ex-
cretion as well as IFTA (Table 1g) [12]. In a model of uni-
lateral ureteric obstruction (UUO) in rats, 2-week treat-
ment with empagliflozin improved renal function and 
renal fibrosis, accompanied by reduced inflammatory 
and fibrotic markers in the kidney, such as NF-κB, TLR-4, 
TGF-β1, α-SMA, and FN (Table 1h) [13]. In this study of 
the UUO model [13], the most significant improvement 
of renal fibrosis was observed in groups which were pro-
phylactically treated with empagliflozin before UUO and 
those treated immediately after UUO. Intriguingly, the 
third treatment group of mice which was started on em-
pagliflozin 1 week after UUO (delayed treatment) also 
had mild but significant improvement of renal function 
and fibrosis [13]. These observations are promising for 
the translation to the clinical setting because most of the 
CKD patients have some degree of fibrosis at the time of 
diagnosis and pharmacological intervention.
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Taken together, there appears to be direct anti-inflam-
matory and antifibrotic effects conferred by SGLT2i. 
However, considering the discordant nondiabetic animal 
study results in different fibrosis models, further studies 
are needed to establish the evidence that SGLT2i can im-
prove renal fibrosis in nondiabetic glomerular diseases.

Effect of SGLT2i on Renal Uric Acid Handling

Clinical trials have shown that SGLT2i treatment 
leads to a modest but significant reduction in the serum 
uric acid concentration through increased uricosuria 
[57]. Although the mechanism is not clearly understood, 
studies suggest that SGLT2 inhibition changes the activ-
ity of GLUT-9 isoform b, reducing urate reabsorption 
[58]. Hyperuricemia is a common finding in CKD pa-
tients, and it has been linked to tubulointerstitial fibrosis 
progression through the induction of inflammation, ox-
idative stress, endothelial dysfunction, and RAS activa-
tion. Therefore, SGLT2 inhibition may possibly indirect-
ly contribute to renal tubular protection by lowering se-
rum uric acid levels.

Effects of SGLT2i on Renal Function in Clinical 
Studies in Patients with Nondiabetic CKD

Several recently published clinical trials have included 
patients with nondiabetic CKD (Table 2) or are current-
ly in progress to investigate the renal benefits of SGLT2i 
[5, 7, 16, 59]. In the DAPA-CKD study (Table 2c), 4,304 
patients with and without T2D were randomized to re-
ceive dapagliflozin 10 mg/day or placebo. The trial was 
stopped early because of the “overwhelming efficacy” of 
dapagliflozin. Over a median follow-up period of 2.4 
years, the primary endpoint (a composite of sustained 
decline in the eGFR of at least 50%, end-stage kidney dis-
ease, or death from renal or cardiovascular causes) was 
significantly attenuated by dapagliflozin (hazard ratio, 
0.61; 95% CI: 0.51–0.72; p < 0.001). The effects of dapa-
gliflozin were similar in participants with T2D (67.5% of 
participants) and without T2D (etiologies of CKD in 
those without T2D were reported as ischemic/hyperten-
sive nephropathy [16%], IgA nephropathy [6.3%], FSGS 
[2.7%], membranous nephropathy [1%], minimal change 
disease [0.3%], chronic pyelonephritis [1.6%], chronic 
interstitial nephritis [1.2%], obstructive nephropathy 
[0.6%], and others) [5]. Both in DIAMOND and DAPA-
CKD studies, patients with lupus nephritis, polycystic 

kidney disease, and vasculitis were excluded. Another 
large-scale long-term RCT with empagliflozin, EMPA-
Kidney (NCT03594110), is currently ongoing and ex-
pected to be completed in 2022 [59].

Currently, it is undetermined until which level of re-
duced kidney function the SGLT2i exert renoprotective 
function. Although some studies have shown that 
SGLT2i’s glucose-lowering effect becomes less in patients 
with lower GFR, it has been suggested that improvement 
of BP and proteinuria by SGLT2i may persist in advanced 
CKD [60, 61].

Potential Side Effects of SGLT2i

Genital mycotic infections are the most common side 
effects as described in studies of SGLT2i in T2D patients, 
but the majority of the infectious complications are mild 
to moderate which respond to topical antifungals [62]. 
Patients with glomerular diseases also tend to be on im-
munosuppressive medications and are susceptible to in-
fections. Therefore, patient education and self-monitor-
ing are important.

Because of the osmotic and natriuretic diuresis prop-
erties, SGLT2i may predispose patients to dehydration, 
hypotension, and potentially acute kidney injury. In the 
DAPA-CKD study, volume depletion was slightly more 
frequent in the dapagliflozin group (5.9 vs. 4.2%; p = 0.01) 
[5]. It may need a closer monitoring especially for those 
who are on other diuretic drugs. Canagliflozin was ini-
tially found to be associated with a higher risk of lower-
limb amputation and fractures in the CANVAS trial, but 
later trials such as CREDENCE, DAPA-HF, and DAPA-
CKD showed similar rates, and meta-analysis has not 
proven the associations [4].

Conclusions

Multiple clinical trials with SGLT2i in patients with di-
abetes have raised the possibility that this class of drugs 
may provide renoprotection independent of its antiglyce-
mic effects. Accumulating evidence suggests that SGLT2i 
may act on many different types of kidney cells and in dis-
tinct kidney compartments with specific and varied mo-
lecular and cellular effects. Given the recent renoprotec-
tive effects observed in the DAPA-CKD trial [5], the use 
of SGLT2i in CKD unrelated to diabetes appears promis-
ing. However, it is unclear at what point of the natural his-
tory of specific glomerular diseases (whether this is im-
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mune or nonimmune mediated) SGLT2i can be benefi-
cial. Therefore, more studies targeting nondiabetic 
primary and secondary glomerular diseases are warranted 
to assess the efficacy and safety of SGLT2i in patients with 
glomerular diseases that are not associated with diabetes.
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