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Abstract

Background: The gene expression is usually described in the literature as a transcription factor X that regulates the target
gene Y. Previously, some studies discovered gene regulations by using information from the biomedical literature and most
of them require effort of human annotators to build the training dataset. Moreover, the large amount of textual knowledge
recorded in the biomedical literature grows very rapidly, and the creation of manual patterns from literatures becomes more
difficult. There is an increasing need to automate the process of establishing patterns.

Methodology/Principal Findings: In this article, we describe an unsupervised pattern generation method called AutoPat. It
is a gene expression mining system that can generate unsupervised patterns automatically from a given set of seed
patterns. The high scalability and low maintenance cost of the unsupervised patterns could help our system to extract gene
expression from PubMed abstracts more precisely and effectively.

Conclusions/Significance: Experiments on several regulators show reasonable precision and recall rates which validate
AutoPat’s practical applicability. The conducted regulation networks could also be built precisely and effectively. The system
in this study is available at http://ikmbio.csie.ncku.edu.tw/AutoPat/.
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Introduction

Recently, a great amount of data about genes in various species

have been produced and documented in the literature as a result of

improvements in biological technology, like DNA microarrays and

other high-throughput experiments for molecular biology. Thou-

sands of genes can now be studied at one time. For biomedical

scientists, it’s an important issue to understand the relationship

between aberrant gene expression and human diseases. To achieve

this goal, transcriptional regulation of genes under normal and

abnormal conditions needs to be established. The previous work

that has received some attention in recent years is the protein-

protein interaction finding tool from biological texts [1,2,3].

However, most bioinformatics tools are developed to analyze the

relationship of gene-gene interaction and protein-protein interac-

tion but not the specific transcription factor-target gene paradigm.

We try to evaluate an interaction extraction tool, PIE [2], to find

related sentences from annotated sentences of five transcription

factors, i.e., E2F1, CREB, RAR-alpha, AP2 and ELK1. The

average precision rate of extracted sentences is only 28.6%. These

tools usually disregard the regulator and the target gene in gene

regulation sentences. Due to this reason, it will result in enormously

high false positive rates when applying these interaction finding tools

to construct the gene regulatory network.

Also, more and more text mining studies in the biological

domain do not only develop systems to discover gene-related

findings in text, but also construct the specific interaction network

because the need for network display and mining in the biological

field is drastically increasing [4,5,6]. Therefore, it is necessary to

develop a bioinformatics platform that focuses primarily on

identifying transcription factor-target gene pairs so that a proper

gene regulatory network can be established.

The biomedical literature documents a large scale of useful

information and such biomedical knowledge is recorded in the

plaintext format. These biomedical papers and literatures contain

substantial gene-related information, including the transcriptional

relationship between the transcription factor and its target genes.

However, it takes lots of time for the researchers to acquire these

relationships from the tremendous volume of sources. Moreover,

the large amount of textual knowledge recorded in the biomedical

literature grows rapidly, so the creation of manual patterns from

literatures becomes a difficult and time-consuming task.

Some methods have been proposed to find gene-gene relation-

ships from the biomedical literature. For example, the use of the

gene co-occurrence method is popular [7,8]. The base assumption is

that genes which co-occur in the same literature frequently reflect

an actual relationship between the two genes. Another approach

uses document similarity. Each gene is linked to a kernel document
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and some documents that are most similar to any kernel document

are then identified. This kind of document group is called the core

document set. Two genes are linked if their core sets of the kernel

documents have any intersection.

The associative concept space (ACS) has been developed for the

representation of information extracted from biomedical literature

[9,10,11]. The ACS is a multi-dimensional Euclidean space where

thesaurus concepts are positioned, using co-occurrence of concepts

as its source information. The distances between the concepts that

are positioned in the space indicate their relatedness. To recognize

the relationships in the literatures, the pattern matching method

has also been proposed for extracting information on protein-

protein interaction from scientific literatures [12]. The method

does not use the complicated Natural Language Processing (NLP)

technique. The author employs a protein dictionary, part-of-

speech rules and word patterns to extract information on protein-

protein interaction from scientific literature. These patterns are

manually established. Gene Information System (GIS) is a

biomedical text mining system that can retrieve gene-related

information from PubMed [13]. In the second phase of GIS, called

relation prediction, the authors predict the relationship between

the gene pairs by the sentence expression pattern and the

prediction rules that are generated with training samples. GIS

determines the relation described in the sentences via the sentence

expression patterns. Recently, PIE had been proposed for a

protein-protein interaction (PPI) prediction system in text [2]. The

PIE system utilizes natural language processing techniques and

machine learning method to predict PPI sentences. It provides a

Web service to extract PPIs from literature, including user-

provided papers as well as PubMed articles.

Considering interaction extraction in the gene regulation

mining issue, to the best of our knowledge, there are few studies

which deal exclusively with gene regulation. Textpresso is the

famous online gene-related mining system that included some

categories with the regulation [14]. Furthermore, some groups

have shown that there is a drastically increasing need to apply the

text mining method to the gene regulation issue [15,16]. These

tasks have been focused on discovering specific rules manually for

gene regulation mining from text. Saric et al. focused on detecting

the noun phrase (NP) of biological entities that use the active and

passive voices and proposed the NLP based method for regulatory

relationship extraction [17,18]. The previous studies on the

interaction extraction task can be assigned to several categories.

They established patterns or rules manually from literature or used

NLP techniques to assist the patterns which are generated

manually by domain experts from literature. Hahn et al. compared

the rule-based system and the machine-learning-based system on

the extraction of gene regulation events [19]. The compared

results show that the rule-based system has better performance and

the recall rate is highly affected by the machine-learning-based

system. In this paper, we therefore aim to reduce the cost of

manual rules for extracting gene expression relationships.

The method proposed in this article focuses on this aspect where

the difficultly and the consumed time are reduced from the

manual process to the automatic process. The goal of this work is

to develop an unsupervised pattern generation module and use

these patterns to extract gene expression relationships from

literature for gene regulatory network construction. The system

can establish unsupervised regulatory patterns automatically and

retrieve the regulation relationship between the transcription

factors and the target genes from literatures. The proposed gene

expression relation mining system, AutoPat, use the statistical

analysis and machine learning approach to construct the

regulation patterns from un-annotated sentences that are extracted

by a few annotated patterns. We then use the regulation patterns

to construct the mining system. Given a particular query

transcription factor, the system can extract the sentences that

contain the regulation information of the query transcription

factor from PubMed literature. We also show a regulation network

construction framework based on the proposed system.

We preliminarily evaluated a baseline method to assess the

difficulty of using unsupervised patterns. Three testing datasets

were built from annotating transcription factors AP1, E2F1, and

HIF-1 (the transcription factor hypoxia-inducible factor-1) related

abstracts. These datasets contain 100, 107, and 241 positive

sentences from 270, 279, and 619 sentences respectively.

We use 30 abstracts including the regulation relationship of

HIF-1 to establish the verb set in advance. The verbs are keywords

that may describe the regulation relationships according to the

statistical information. These verbs were also defined as the action

words [15]. Action words always describe relationships between

the transcription factor and target gene. The baseline method

‘‘TF-KV-TG’’ is defined as judging the co-occurrence of a

transcription factor, a key verb, and a target gene in a sentence. In

the preliminary result, the baseline method can extract gene

expression more precisely than other methods that extract the key

entities or verbs only in sentences. However, the baseline method

still suffers from a high false-positive rate. Therefore, in this paper,

we aim to find a set of more precise patterns in an unsupervised

manner to augment the baseline method.

We first use existing dictionaries to identify the transcription

factor and target gene in the sentences. With the action word set,

transcription factor, and gene names identification, we then

manually establish several patterns that can describe the

transcription factor and target gene regulation relationship from

the answer sets to be our seed patterns. These seed patterns are

then used to establish the unsupervised patterns automatically

from PubMed.

In addition, we also take some linguistic features into consider-

ation. These features and corresponding weights are obtained from

the training data and are helpful in assisting the judgment of the

correctness and importance of patterns. By exploiting the proposed

unsupervised patterns and linguistic features, a weighted unsuper-

vised pattern-based extraction system is then constructed. The

system can effectively rank the sentences that have been matched by

the unsupervised patterns.

Materials and Methods

Overall architecture of AutoPat
The proposed gene expression relation mining system, AutoPat,

applied the weighted patterns to extract regulation relation

information from literature. The overall architecture of AutoPat is

shown in Figure 1. This system is composed of two major modules,

i.e., the pattern generation module and the interaction extraction

module. The pattern generation module uses a small set of

supervised patterns to automatically search and build a large and

comprehensive pattern set. After the unsupervised patterns have

been established, these patterns are used for extracting the related

regulation sentences from literatures in the interaction extraction

modules. The system also provides a search interface to users for

gene expression mining. Finally, the ranked sentences that contain

the transcription factor and target gene expression are shown.

AutoPat parses each sentence in the test dataset once and compares

with a finite set of unsupervised patterns for extracting gene

regulation related sentences. These processes take a linear time cost

proportional to the number of input documents.

Gene Regulation Extraction by Unsupervised Pattern
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Identification of transcription factors and gene names
To extract the regulation relationships from the literature, it is

necessary to identify the transcription factor and gene names first.

Here we used the existing dictionaries of the transcription factor and

gene names to identify the transcription factor and gene names. The

input term is defined as a transcription factor (TF) and all other terms

that are found in the TF dictionary but not equal to the query are

considered as target genes (TG). Therefore, for each query, the

identified entities in a sentence contain one TF at most and the

remaining entities are all considered as TGs. For recognizing TFs, the

dictionary derived from Sequence Retrieval System (http://srs.ebi.

ac.uk) is applied. All the factor names and their synonyms are taken

into consideration. There are a total of 788 entries of TF data in the

TF dictionary. An exception word set containing the ambiguous

transcription factor names is also included. These terms are the same

as common words in English, e.g. ‘‘To’’, ‘‘Alpha’’ and ‘‘Cell’’.

The gene dictionary we used for gene identification is derived

from HUGO Gene Nomenclature Committee (http://www.gene.

ucl.ac.uk/). The gene information we take into consideration

includes the approved symbols, approved names, previous symbols

and aliases. Some cases of approved names might contain the

parentheses. For example, the approved name of ABCA4 is

written as ‘‘ATP-binding cassette sub-family A (ABC1), member 4’’ in

the HUGO database. We removed terms in the parenthesis and

combine the remaining terms together. The original approved

name is translated to ‘‘ATP-binding cassette sub-family A, member 4’’

and ‘‘ABC1’’. This translation can reduce the amount of false-

negative entities on the gene name recognition. The gene name

dictionary contains total 22,995 entries of gene data.

The pattern generation module
From the set of 30 abstracts of HIF-1 related articles, domain

experts manually collected the key verb set and HIF-1 gene

expression patterns. There are 60 sentences that describe the

regulation relationships from these abstracts and total 88 key verbs

and 80 seed patterns are manually extracted from these sentences.

The seed patterns are all associated with the selected 88 key verbs

and are used for the unsupervised pattern generation. In this

Figure 1. The overall architecture of AutoPat.
doi:10.1371/journal.pone.0019633.g001
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paper, a gene expression pattern is assumed to contain at least one

TG, one TF, and one key verb.

We then retrieved the abstracts with titles that contain these seed

patterns from PubMed. We hypothesize that it is probable that an

abstract will describe the regulation relationships if its title matches

the seed patterns. The total number of retrieved abstracts is 10,761.

These retrieved abstracts are then used to be our training corpus for

the process of unsupervised pattern generation. In this process, three

different kinds of pattern templates shown in Table 1 are established

first. These templates are based on the arrangement of TF names,

TG names, key verbs and prepositions where the prepositions are

optional. By matching with the three templates, if a pattern in the

training corpus that contains TF, TG, and the key verb terms also

matches one of these templates, this pattern will be selected. It is

noted that two or more pattern templates can be extracted in a

sentence if the sentences of the retrieved abstracts contain multiple

TFs, TGs, and key verbs. The set of selected patterns is called

unsupervised patterns in this paper. For each template and extracted

patterns, the numbers of occurrence in retrieved abstracts are

counted. The set of patterns that describe the relation of the gene

expression is then automatically constructed. In addition, a cut-off

of pattern threshold is defined for our information extraction

module. The assignment of the threshold will be discussed in result

and discussion section.

From the selected abstracts, 3,514 unsupervised patterns are

extracted. For the example pattern in PMID 9748288, a pattern

‘‘[TF/TG].*activation.*of [TF/TG]’’ will be conducted from the

sentence ‘‘Recent reports described a role for the hyposia-
inducible factor-1 (HIF-1) in the transcriptional activation of
lactate dehydrogenase A, aldolase-A, phosphoglycerate kinase, and

enolase-1 genes.’’. The symbol ‘‘*’’ means a wild card symbol that

can match any word. In Table 2, the top 5 patterns of the pattern

template 1 are shown according to their occurrence frequencies.

We integrated the equivalent patterns to calculate their frequen-

cies. For example, the pattern ‘‘TF/TG.*induced.*by.* TF/TG’’

is the subset of the pattern ‘‘TF/TG.*induced.* TF/TG’’, so their

frequencies are combined and the previous pattern will be

removed from the set of unsupervised patterns. Because not all

the patterns are useful, we used a frequency threshold to pick up

proper patterns for which frequencies are beyond the threshold. In

addition, four examples of seed patterns that include the same key

verbs appeared in the top-5 unsupervised patterns of pattern

template 1 are also shown in Table 2. This result shows that new

patterns are generated by pattern generation module.

The information extraction module
In previous studies, the statistics information between entities in

a sentence is used as the key feature in extracting biological

relationships, like protein-protein interaction [20]. In the pattern-

based ranking strategy, several pattern related features are

evaluated to rank the final result. We gathered the statistical

results of distribution of the distances, i.e. number of words

between TFs and TGs among the positive and negative sentences.

There are 60 sentences which are used for seed pattern generation

are also used for the preliminary evaluation of unsupervised

patterns. From these 60 sentences, we compare the numbers of

sentences that matched with seed patterns and unsupervised

patterns. There are 45 positive sentences that match the seed

patterns and 57 positive sentences that match the unsupervised

patterns. The distances in most positive sentences are less than 10.

Only a few cases in the positive sentences have a distance of more

than 10. The genes in the sentences matching the patterns may not

be the target genes of the TFs in the sentences if the TFs are too far

away from the genes in the sentences. Because many sentences have

very complicated structures and the regulation relationships

described in some sentences are ambiguous, it is difficult to extract

the regulation relationships from the sentences using only pattern

matching. Therefore, we also take other features into consideration.

In addition to pattern matching score, we also integrated the effects

of TF-TG distance, the position feature, type of pattern template,

and number of TF, TG and Key verb into our ranking strategy.

We gathered statistical information about the positions of the

correct sentences in the abstracts from the training set. From the

experimental statistical results, it is obvious that the sentences in the

titles or in the final part of the abstracts have higher probabilities of

describing the regulation relationships between TFs and TGs. The

number of sentences that are in the preceding part of the abstracts is

much fewer than others. This means that fewer TF-TG regulation

relationships are mentioned in the earliest part of the abstracts.

Therefore, we assign the sentence a position weight if the sentence is

in the title or in the final part of the abstract.

We used features of pattern matching, position of the sentence

in the abstract, the distance between TF and TG, number of TF,

TG, and Key verb, and type of pattern template in the ranking

strategy. In feature weight assignment, the pattern that matches

the pattern template 1 has a higher probability of describing

regulation relationships than those matching the pattern template

2 and 3, because the patterns of template 1 are more meaningful

than those of type 2 and 3. Therefore, only template 1 attains the

pattern match weight.

Each feature weight is assigned according to the statistic

information of gene regulation sentences. After each feature is

assigned a proper weight according to the meaning it represents,

we can integrate the information of the sentences and calculate the

combined weight of each sentence. The combined weight is

defined as the sum of each feature weight. According to the

Table 1. The pattern templates used for pattern generation.

ID Pattern Templates

1 [TF/TG] + Key verb + (preposition) + [TF/TG]

2 Key verb + (preposition) + [TF/TG] + (preposition) + [TF/TG]

3 [TF/TG] + (preposition) + [TF/TG] + (preposition) + Key verb

doi:10.1371/journal.pone.0019633.t001

Table 2. Top 5 unsupervised patterns and examples of seed
patterns of regulation relationships.

Top N Unsupervised Patterns #Occurrence

1 [TF/TG].*activation.*of.* [TF/TG] 1452

2 [TF/TG].*induction.*of.* [TF/TG] 1244

3 [TF/TG].*activate.* [TF/TG] 611

4 [TF/TG].*regulation.*of.* [TF/TG] 589

5 [TF/TG].*binding.* [TF/TG] 543

NO Seed Patterns

1 [TF].*activator.*of.* [TG]

2 [TF].*induce.* [TG]

3 [TG].*regulated.*by.* [TF]

4 [TF].*binding.*site.*in.* [TG]

doi:10.1371/journal.pone.0019633.t002
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statistics information of each feature, we hypothesized that a

sentence consists of these four features will has a higher likelihood

of describing the regulation relationships. Figure 2 shows an

example of counting the combined weight for an extracted

sentence. Each assigned weights are predefined for combined

weight. In this example, the TF-TG distance is less than 10 and

the assigned weight is 4. Overall, the combined weight is 10.1.

This weight can be used to representing the probabilities of the

sentences in describing the regulation relationships. Because not all

the extracted results are promised to be correct, the final results

will be sorted by the ranking method.

Results and Discussion

Unsupervised pattern validation
Two testing sets are used to evaluate the extracted unsupervised

patterns. The first one (A) is the original training set, i.e., 60 sentences

which are used to build the seed patterns. The second one (B) is also

related to ‘‘HIF-1’’ and contains 26 sentences. These 26 HIF-1

related sentences are collected from PubMed keyword search and

annotated by domain experts. The precision rates of unsupervised

patterns in Dataset A and Dataset B are 95% and 92% respectively

while recall rates are 100% and 96%. The experiment results show

that a high precision rate for the unsupervised patterns is achieved

and more correct sentences can be found. The results verify that our

proposed method is able to extract extra useful patterns from a large

amount of unsupervised data.

In addition, we use the extracted results to verify the relationship

between correct sentences and highly frequent unsupervised

patterns and to determine the threshold of unsupervised patterns

for the following experiments. The frequency distribution of the

unsupervised patterns is therefore also evaluated. The result is

shown in Figure 3. The frequencies of the patterns are normalized

by dividing by the maximal frequency, 1,510. This result shows that

even though the incorrect sentences match the patterns, the patterns

they match have lower frequencies. In addition, the correctness of

extraction result is very important to biologists because thousands of

genes may have associations with each other but not specific gene

regulation relationships. Therefore, we consider not only the higher

F score but also the higher extraction precision. We calculated the

precision rates of the unsupervised patterns under different

thresholds of the frequencies and the result is illustrated in

Figure 4. When the threshold is raised to the value 700, which

has a normalized value of 0.464, the precision rate can be increased

to 100% while lots of False Positive (FP) cases are then filtered from

extraction result. Moreover, the goal of our system is to construct a

gene regulation network from literature. We also observed that

many TGs in result sentences that are extracted by low-frequency

patterns can also be found in sentences extracted by high-frequency

patterns. Therefore, due to the merit of the high precision rate and

the reduction of computation cost, the threshold of unsupervised

patterns is set to value 700 for the following experiments.

However, some extraction errors still arise. Certain correct

sentences that contain the regulation relationship are missed by

our method due to the lack of the key verbs. Such kind of

sentences often contains general verbs, such as ‘‘identify’’ and

‘‘demonstrate’’, or describes the regulation relationship by using a

clause. A sentence ‘‘Sequence analyses identified Hif-1-binding
sites in the promoters of MCP-1 and MCP-5 genes.’’ From PMID

17474992 is used as an example for illustration. This sentence

Figure 4. The extraction precision of different thresholds.
doi:10.1371/journal.pone.0019633.g004

Figure 5. The precision of the Top N ranking results for
unsupervised patterns.
doi:10.1371/journal.pone.0019633.g005

Figure 3. The frequency distribution of unsupervised patterns.
doi:10.1371/journal.pone.0019633.g003

Figure 2. Example of combined weight of extracted sentences.
doi:10.1371/journal.pone.0019633.g002
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describes the regulation relationship without using any key verbs.

Because we assumed that the correct sentences should contain at

least one key verb, the sentences without key verbs will not be

extracted by the system. The precision rate of the ranking results is

shown in Figure 5. The proposed ranking method is useful to

distinguish the correct sentences from the incorrect sentences.

We also use five more TF queries, i.e., E2F1, CREB,

RARalpha, AP2, and ELK1 to test our system and the key verbs

are manually collected from 30 abstracts that are also used in

generating 80 seed patterns. However, when the larger testing data

is applied to AutoPat, two name entity recognition problems, i.e.,

homonym and abbreviation, have been observed in the extraction

process. In the homonym case, a tagged name could be found in

both the gene dictionary and TF dictionary. The TF name has

been tagged as a gene name according to dictionaries in many

sentences. The ratio is about 20% in the homonym case.

Furthermore, the TF has the most important role in the regulatory

process. In our tagging parameter, the TF has higher priority than

gene. In the abbreviation case, a gene or a protein name usually

has a full-name form. The abbreviation issue will happen while

some key verbs or other abbreviation words appear in the full-

name form. The ratio is about 5%. Examples of homonym and

abbreviation cases are shown in Figure 6. The protein CBP is not a

gene name in the first sentence. The term ‘‘response’’ appeared in

the full form of CREB is not a correct key verb in the second

sentence. These sentences are all incorrect tagging results.

Homonym and abbreviation adjustments are proposed for

improving the accuracy in tagging TF and TG names. The

overall average improvement of the precision rate is close to 20%.

The adjusted system is used as the mature version in the following

experiments.

Next, the mature version of AutoPat was compared with the

famous relation extraction system in our preliminary evaluation,

Textpresso. In Textpresso, users can specify the different biology

category for relation extraction. We selected categories in Text-

presso that have a similar biological relation to gene expression,

e.g., ‘‘regulation’’, ‘‘spatial relation’’ and ‘‘action’’ categories.

Besides,

we also compare the performance of the joined categories in

Textpresso. In this comparison, the extracted sentences of gene

Table 4. Top-K Precision of AutoPat.

Top-K AP1 E2F1 Average

10 100% 70% 85.0%

20 85% 85% 85.0%

30 70% 70% 70.0%

40 70% 57% 63.5%

50 68% 58% 63.0%

R-Precision 57.3% 60.5% 58.9%

Note that the precision rates of baseline ‘‘TF-KV-TG’’ for AP1 and E2F1 are 48.1
and 53.3.
doi:10.1371/journal.pone.0019633.t004

Table 5. The overall performance comparison.

Testing
Data Method Precision Recall

F-
measure

AP1 (270) Saric’s method 54.3% 25.0% 34.2%

AutoPat Seed Filter

MIX None 49.2% 70.8% 58.1%

AP1 46.0% 64.4% 53.6%

E2F1 49.2% 64.4% 55.8%

HIF1 48.0% 69.1% 56.7%

HIF1 None 45.7% 60.7% 52.2%

AP1 48.3% 64.0% 55.1%

E2F1 52.1% 69.7% 59.6%

HIF1 47.8% 85.4% 61.3%

E2F1 (279) Saric’s method 58.5% 57.9% 58.2%

Seed Filter

AutoPat MIX None 60.5% 70.5% 65.1%

AP1 61.7% 72.4% 66.6%

E2F1 62.6% 66.3% 64.4%

HIF1 58.9% 70.6% 64.3%

HIF1 None 57.9% 62.9% 60.3%

AP1 58.5% 59.6% 59.0%

E2F1 56.4% 54.8% 55.6%

HIF1 53.7% 84.6% 65.7%

H1F1 (619) Saric’s method 50.8% 24.4% 33.0%

Seed Filter

AutoPat MIX None 55.3% 45.6% 49.9%

AP1 52.8% 45.0% 48.6%

E2F1 54.3% 42.2% 47.5%

HIF1 50.6% 49.0% 49.7%

HIF1 None 52.7% 42.6% 47.1%

AP1 56.3% 38.5% 45.7%

E2F1 59.6% 38.5% 46.8%

HIF1 52.7% 57.7% 55.1%

The TFs in the ‘‘Filter’’ column are used to select the related abstracts from the
training corpus.
doi:10.1371/journal.pone.0019633.t005

Table 3. The performance comparison with Textpresso.

Precision Recall F-measure

Textpresso-Regulation 42.5% 22.9% 29.7%

Textpresso-Spatial 45.5% 6.2% 10.9%

Textpresso-Action 32.0% 9.2% 14.3%

Textpresso-Join 27.7% 26.4% 27.0%

AutoPat 95.0% 65.5% 77.5%

doi:10.1371/journal.pone.0019633.t003

Figure 6. Examples of the homonym and abbreviation issues.
doi:10.1371/journal.pone.0019633.g006
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expression relationship of Textpresso and AutoPat were both

evaluated by domain experts. The precision and recall rates of

Textpresso and AutoPat in HIF-1 TF are shown in Table 3. The

recall and precision rates of Textpresso are low for all test

categories. The precision rate decreased by joining these three

categories, and the recall also not highly increased. Overall, our

method achieved a high precision rate and a better recall than

Textpresso.

The top-k precision rate is then used to assess the effectiveness of

the unsupervised patterns and the pattern-based ranking strategy.

Results in Table 4 have shown that the new generated pattern and the

ranking strategy can improve the precision rate of the top answers.

Performance evaluation
One of extraction methods in previous studies, Saric’s rule-

based method is used as our comparison target for evaluating

AutoPat’s performance. Recently, many studies used the NLP

parser to construct the dependency tree for extracting biological

relationships. Their main idea is to extract the sub-paths between

two entities from the dependency tree. A path should contain at

least one biological action word (Key Verb). In our experiments,

we simulated Saric’s rule-based extraction method by using

Stanford parser [21,22]. In addition to the original seed pattern

collected by HIF1 TF, we also collected another set of mixed

manual annotated training sentences of TFs, i.e., AP2, CREB,

E2F1, ELK1, and RAR-alpha, to be one set of manual training

sentences for the construction of seed patterns. In total, there are

76 seed patterns from 80 annotated mixed sentences, and this set is

represented as ‘‘MIX’’ in Table 5. A filter TF was used to select

the related abstract from the training corpus. Results from the

different filtering selection could validate the applicability of

established unsupervised patterns. The results of Saric’s method

show a lot of correct relationships that contain nouns of key verbs

are filtered out by NP detection. In AutoPat, a lot of sentence

patterns were trained by the pattern generation module. The

preposition and orders between entities and verbs, i.e., the noun

forms of key verbs, were learned in our sentence patterns. The

result shows that AutoPat does not have the large recall gap with

trained NP sentence patterns. In other words, AutoPat does not

lose a lot of correct relationships of NP in biological sentences.

Overall, our recall is not only better than Saric’s method but also

has a smaller gap of precision.

We also used the Learning Language in Logic (LLL) dataset

[23,24]. The LLL dataset is a publicly available dataset that

contains gene interaction annotations and has been used

frequently in recent work on biological relation extraction. For

LLL dataset, the F-measures of Saric’s method and AutoPat are

39% and 60% respectively.

For the evaluation of gene expression network construction, we

evaluated the constructed network with pathways in the Pathway

Interaction Database (PID). PID is the integrated online database

that contains multiple curated interaction pathways composed of

human molecular signaling and regulatory events and key cellular

processes [25]. PID was created by a collaboration between the US

National Cancer Institute and Nature Publishing Group and serves

as a research tool for those interested in cellular pathways. We used

the related abstracts from literature of HIF-1, E2F1 and AP1

transcription factor pathways that were collected from PID to

evaluate AutoPat. The number of known TG nodes of HIF-1, E2F1

and AP1 transcription factor pathways in PID are 45, 30 and 47,

respectively. The extracted results and performance evaluation of

AutoPat and Saric’s method are listed in Table 6. The numbers of

Table 6. The list of extraction results of HIF-1 TF pathway in PID.

TF Method Target Gene

HIF-1 Found AutoPat (29)
P: 64.2% R: 80.5%

ET1, MDR1, beta_integrin, CD73, TF, PFKFB3, Leptin, TERT, MCL1, TFF3, CP, FURIN, DEC1, ALDOA, ENO1, ID2, ABCG2,
PFKL, CITED2, FECH, ETS1, DEC2, BNIP3, TfR, CXCL12, HMOX1, RORA4, NOS2, EPO

Saric’s method (19)
P: 48.6% R: 52.8%

ET1, beta_integrin, CD73, TF, Leptin, MCL1, CP, FURIN, DEC1, ALDOA, ENO1, ID2, ETS1, DEC2, TfR, RORA4, EPO, PHD2,
GLUT3

Not Found not in abstract (9) PGK1, ADRP, NDRG1, PGM1, PKM, ADM, HK2, HK1, CAIX

in abstract, AutoPat (7) PHD3, NPM1, PHD2, IGFBP1, GLUT3, PAI, CXCR4

in abstract, Saric’s
method (17)

PHD3, NPM1, IGFBP1, PAI, CXCR4, MDR1, PFKFB3, TERT, TFF3, ABCG2, PFKL, CITED2, FECH, BNIP3, CXCL12, HMOX1, NOS2

E2F1 Found AutoPat (18)
P: 63.3% R: 78.3%

XRCC1, HIC1, MCL1, SIRT1, APAF-1, SP1, DHFR, KAP1, E2F2, CDC25A, E2F1, P21CIP1, RB1, PAI, Cyclin-D3, uPA, P73, CDK1

Saric’s method (14)
P: 36.5% R: 60.9%

HIC1, SIRT1, SP1, DHFR, KAP1, CDC25A, E2F1, P21CIP1, PAI, Cyclin-D3, P73, CDK1, MAD2, p14ARF

Not Found not in abstract (7) HST, carboxylesterase, Caspase-7, TK1, Cyclin-E, MCM3, HSORC1

in abstract, AutoPat (5) MAD2, WASF1, p107, Cyclin-A, p14ARF

in abstract, Saric’s
method (9)

WASF1, p107, Cyclin-A, XRCC1, MCL1, APAF-1, E2F2, RB1, uPA

AP1 Found AutoPat (32)
P: 67.9% R: 71.1%

EGR1, TH, Fra2, GR, IL2, CYR61, IL8, Connexin43, FOS, p53, MMP1, TIMP1, ETS1, IL5, Angiotensin II, MYC, ANF,
proenkephalin, PTEN, MMP9, p27Kip1, IL10, GM-CSF, MKP1, A-FABP, CDK1, Cyclin D1, ER-alpha, ET1, IL4, uPA, Dmp1

Saric’s method (22)
P: 35.2% R: 48.0%

EGR1, TH, IL2, CYR61, IL8, FOS, ETS1, IL5, Angiotensin II, MYC, proenkephalin, PTEN, IL10, CDK1, ET1, IL4, Dmp1, CCL2,
COL1A2, IFN-gamma, Myb, TCF4

Not Found not in abstract (2) DMTF1, BIM

in abstract, AutoPat (13) Neurotesin, MHC-1A, CCL2, TGFB1, Actin, TCF4, Myb, Fra1, PEBPB2, p16INK4a, COL1A2, IFN-gamma, MT2A

in abstract, Saric’s
method (23)

A-FABP, Actin, ANF, Connexin43, Cyclin D1, ER-alpha, Fra1, Fra2, GM-CSF, GR, MHC-1A, MKP1, MMP1, MMP9, MT2A,
Neurotensin, P16INK4a, p27Kip1, p53, PEBPB2, TGFB1, TIMP1, uPA

P: Precision, R: Recall, the bold-faced target gene means this TG can be extracted in only one method.
doi:10.1371/journal.pone.0019633.t006
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known TGs of HIF1, E2F1 and AP1 extracted by AutoPat are 29,

18 and 32, respectively. Because some abstracts do not have enough

information for our method to extract the correct answer, several

TG nodes could not be extracted. For examples, some known TGs

in PID are not mentioned in abstracts and no aliases or synonyms of

HIF-1 are described directly in the abstract of CAIX TG. In sum,

there are twelve TGs that AutoPat cannot correctly extract from

abstracts. This is because their regulation relationships are usually

Figure 7. The global network of HIF-1 TF.
doi:10.1371/journal.pone.0019633.g007
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described in multiple sentences. Information in a single sentence is

not enough to judge the relation.

In Figure 7, a four layers global gene regulatory network that

contains direct and indirect relationships with HIF-1 TF and its

partial network are shown. After the first TG set of HIF-1 is

extracted, their confidence values are conducted by the occurrence

frequency. If an extracted TG is also found in the TF dictionary,

this TG is considered as the next TF for extracting generic

regulatory relationships. The process is repeated four times. The

extracted relationships are shown as a directed graph. The nodes

represent TFs or TGs and the arcs are represented pairwise

regulation relationships. An arc points from TF to TG and the

type of relation is indicated as the generic regulatory relation. TGs

in the layer one are denoted by green nodes. Furthermore, the

blue, orange, and purple nodes indicate the other TGs from layer

two to layer four. A high confidence regulation relation is denoted

by a bold line. In this network, five well-studied regulation

relationships are found by high confidence arcs. The VHL TG is

regulated by HIF-1 TF directly in the layer one. The GC, RAR-

alpha, MSK-1, and MOT1 TGs are indirectly related to HIF-1 TF

in the layer four through some important nodes. VHL and TFIIB

are found as important nodes between these indirectly related TGs

with HIF-1 TF. The overall pathway information is listed in

Table 7. Figure 8 shows the instances of direct and indirect generic

regulatory relationships from HIF-1 TF to P53 TG. HIF-1

regulates P53 gene directly according to the articles (PMID:

11375890). Besides, P53 gene is also regulated by HIF-1 indirectly

through P300 or VHL regulation processes.

Conclusions
In this paper, we designed and developed an unsupervised

pattern generation method and an information retrieval system,

AutoPat. This system is able to establish patterns automatically

and retrieve the regulation relationships between the transcription

factor (TF) and target genes (TG) from the PubMed literature

using unsupervised patterns for gene expression network construc-

tion. Although AutoPat cannot distinguish whether the second TF

is a TF or a TG, this is still a correct sentence because in Biology,

self regulation does exist. The concept of our proposed method

can also be applied to other relationship extractions between

biological entities such as protein-protein interaction. The

extracted results are sorted according to the score assigned to

each sentence, in order to save time for users to view the extracted

sentences. Because the sentence patterns used to describe

regulation relationships in the literatures are about the same for

each TF, therefore, our proposed method can also achieve high

accuracies for other TFs. Experiments on several TFs show

reasonable precision and recall rates which validates AutoPat’s

practical applicability. In the future, the incremental pattern

mining topic will be considered for biomedical literature mining.
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