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Abstract

Background: The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of
systems biology. This includes the inference of both the network topology and its dynamics. While there are many
algorithms available to infer the network topology from experimental data, less emphasis has been placed on
methods that infer network dynamics. Furthermore, since the network inference problem is typically
underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about
the network, along with an effective description of the search space of dynamic models. Finally, it is also important to
have an understanding of how a given inference method is affected by experimental and other noise in the data used.

Results: This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial
dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including
those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the
incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for
inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as
BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that
improves computational performance. The algorithm is validated with both simulated and experimental microarray
expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity
gene network in Drosophilamelanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of
state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our
method has good precision and recall for the network reconstruction task, while also predicting several of the
dynamic patterns present in the network.

Conclusions: Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse
engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A
C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at
http://www.paola-vera-licona.net/Software/EARevEng/REACT.html.
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Background
The inference, or reverse-engineering, of molecular net-
works from experimental data is an important problem in
systems biology. Accurate methods for solving this prob-
lem have the potential to provide deeper insight into the
complexity and behavior of the underlying biological sys-
tems. So far the focus has been largely on the inference
of network topology, that is, on the wiring diagram repre-
senting the regulatory relationships connecting different
genes [1,2].
It has been argued that one can obtain a significant

improvement in performance with inferencemethods that
make use of data that capture the dynamics of a network
in response to perturbations [3]. This point of view has
been adopted in the design of several recent methods that
take into account time series data as well as perturbations
of the network [4-7].
Making effective use of prior knowledge is also cru-

cial in any inference problem [8], because it is usually
vastly underdetermined due to insufficient data quantity
and/or quality. That is, typically many different models
are consistent with the available data, and prior knowl-
edge must be used to further narrow down the space of
candidate models. Prior knowledge can come in different
forms such as information about the network’s sparsity or
specific connectivity information. Since gene regulatory
networks are known to be sparsely connected, many infer-
ence methods specify constraints to favor sparse networks
in the inference process. This is achieved for example, by
iteratively setting weak connections to zero [9], choosing
the sparsest among all possible solutions [10], or simply
imposing a maximum number of regulators per gene [11].
However, care must be taken, since the more biologically
meaningful networks might not necessarily correspond
to the most parsimonious solution [12]. Explicit knowl-
edge of the network’s connectivity can be gathered from
previous biological knowledge of the system in question
[13-16] or from the contributed knowledge from differ-
ent inference methods, particularly when heterogenous
data types are available (e.g. steady state data vs. time
series).
Finally, another desirable property of inference meth-

ods is the tolerance to certain levels of noise in the
experimental data used. This is especially important for
methods that capture dynamical properties of the net-
work in order to avoid the problem of over-fitting the
data [17]. Sources of noise include both biological and
measurement noise. For methods that discretize data,
such as Bayesian network or Boolean network methods
[18,19], an additional source of noise comes from the nec-
essary discretization of continuous data into categorical
data.
Several inference methods have one or several of the

aforementioned features. Some of these methods fall in

the category of coarse-grained models based on discrete
variables, such as Boolean networks, Bayesian networks,
Petri nets, and polynomial dynamical systems [19-25];
others correspond to fine-grained models based on con-
tinuous variables, such as systems of ordinary differential
equations, artificial neural networks, hybrid Petri nets,
and regression methods [26-32] (For a broad overview
of the different methods in the field, we refer the reader
to [33-35]). However, there is still a need for inference
methods that gather all the previously mentioned proper-
ties, and for which their mathematical frameworks can be
exploited to improve the methods’ performance.
In this paper we present a novel reverse-engineering

method that combines all of these relevant features. It
uses input that consists of (1) time courses of experi-
mental measurements, which can include various network
perturbations, such as data from knock-out mutants and
RNAi experiments, and (2) prior knowledge about the net-
work in the form of directed edges between nodes (repre-
senting known regulatory interactions) or as information
about the regulatory logic rules of individual nodes. The
output of the algorithm is a family of Boolean dynamic
models, from which one can extract a directed graph
whose edges represent causal interactions between nodes.
The Boolean dynamic models are identified by an opti-
mization algorithm that searches through the space of
Boolean dynamic models that approximate the given data
and satisfy the constraints imposed by the prior biologi-
cal information. An important feature of the algorithm is
that it uses the expression of Boolean functions as poly-
nomials, leading to a model search space that has a rich
mathematical structure that can be exploited. This effec-
tive representation of dynamic models lends a criterion
for measuring model complexity and to select models
accordingly. We show that the method is robust to a sig-
nificant level of noise in the data. Additionally we show
that the method’s performance on the data set used in
[36], compares favorably to that of several other methods.
Our algorithm incorporates work contained in the first
author’s Ph.D. thesis [37].

Methods
Modeling framework
We use the modeling framework of Boolean networks,
represented as time-discrete, state-discrete dynamical
systems. A Boolean network on n variables can be viewed
as a function

f = (f1, . . . , fn) : kn −→ kn,

where each coordinate update function fi : kn → k is a
Boolean function in n variables and k = {0, 1}.
If we use the fact that k supports the algebraic structure

of a number system, using addition and multiplication
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modulo 2, then we can express each Boolean function
as a polynomial function with binary coefficients, using
the translation x AND y = x · y, x OR y = x + y +
xy, NOT x = x + 1, while addition corresponds to the
logical exclusive OR function XOR. Since x2 = x in
k, each polynomial can be assumed to be square-free,
that is, every variable in every term of the polynomial
appears with exponent 1. With this reduction, there is
in fact a one-to-one correspondence between Boolean
functions in n variables and square-free polynomials in n
variables over k (see [19]). Note that this square-free rep-
resentation is equivalent to the use of Sperner systems
for Boolean models’ search space reduction in [13]. We
refer the reader to [38] for an overview on polynomial
dynamical systems in biology and the network inference
problem.

Simulation of dynamics
Boolean models can be simulated either synchronously,
by applying all coordinate functions at the same time, or
asynchronously, with the coordinate functions updated
sequentially, in a particular order of the nodes in the
network. It is worth noting that in this mathemati-
cal framework the steady states of a dynamic model
are independent of the update schedule used. How-
ever, different update schedules can result in different
periodic dynamics [39-41]. While there are examples
of biological systems that exhibit synchronous dynami-
cal patterns [42,43], asynchronous simulations might be
able to predict a wider range of biological behaviors.
However, the exhaustive computation of asynchronous
simulations becomes intractable even for moderately
sized biological systems [44-46]. Thus, for the pur-
pose of the current work, we have decided to use
a synchronous update schedule for model simulation.
As we will show, this assumption will also allow us
to identify the Boolean functions that generate model
dynamics.

Network inference problem
The primary input to our algorithm is one or more time
series of experimental measurements for all the vari-
ables associated with the nodes in the network. These
can include measurements from network perturbations,
such as knock-out mutants and RNAi experiments, dis-
cretized into binary data. Additional input can include
prior knowledge about the network in the form of an n×n
interaction matrix (ρij), where ρij denotes the probability
that a causal influence exists from node j to node i.
Given a collection of n variables associated with the

nodes in the network, let T1, . . . ,Tμ0 be theμ0 input time
series. For 1 ≤ μ ≤ μ0, Tμ := {tμ1 , tμ2 , . . . , tμαμ} represents
the μth time series. Thus, tμj is the jth measurement in

the μth time series, and consists of a vector of dimension
n, with coordinates representing measurements for the
individual n variables associated with the n nodes in the
network. We assume that the data contains a proportion
0 ≤ ξ < 1 of noise; that is, a proportion ξ of entries in
the time series are assumed to be “flipped” through noise.
As a result of noise, or as a result of the data discretization
process, the given time series might end up being incon-
sistent, in the sense that from a given state tμi the system
transitions to two different states at different points in the
time courses, thus precluding fitting of the data with a
deterministic model. Such inconsistencies can be elimi-
nated by breaking the affected time courses at the points
of inconsistency. That is, we eliminate all transitions from
tμi (rather than choosing one transition over another). We
will assume for the purpose of this paper that the given
input time courses are the result of removing all possible
inconsistencies.
The network inference problem in our context can then

be formulated as follows:
Choose a family of Boolean dynamical models { f : kn →

kn} that:

(1) Best fit the data, in the following sense. For each
candidate f, generate μ0 new time series of length αμ

by iteratively applying f to the initial time points tμ1 of
the input time series. Then we require that these time
series agree with the input time series, except for a
fraction ξ of the (n×α1)+ (n×α2)+· · ·+ (n×αμ0 )

time series coordinate entries. To be precise, for
1 ≤ μ ≤ μ0 and 1 ≤ j < αμ, we search for Boolean
dynamic models satisfying f (tμj ) = tμj+1 except for at
most [(n × α1) + (n × α2) + · · · + (n × αμ0 )]×ξ

time points in which case f (tμj ) = tμj+1 + 1.
(2) Conform to the prior information available about the

biological system, given by the matrix (ρij).
(3) Contain Boolean coordinate functions that are as

“simple” as possible, in a well-defined sense.

We emphasize that in (1), we allow models to dis-
agree with the input data commensurate with the
expected noise level. Instead, one of the optimiza-
tion criteria is the Goodness-of-Fit of a given Boolean
dynamic model, which measures this deviation. This
relaxation is the reason for the method’s robustness to
data noise, and it is one feature that sets our algo-
rithm apart from others of this kind. We choose an
evolutionary algorithm as our optimization procedure,
although other optimization methods could be chosen
as well.

An efficient description of themodel search space
We derive now a computationally efficient characteriza-
tion of polynomial functions that fit a time series of a given
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length. This characterization greatly reduces the space of
all polynomials that the algorithm needs to search over.
First observe that finding a dynamic model f =

(f1, . . . , fn) : kn → kn satisfying the condition f (tμj ) = tμj+1
except for at most [(n×α1)+(n×α2)+· · ·+(n×αμ0 )]× ξ

time points, reduces to finding the individual coordinate
functions fi : kn → k for i = 1, . . . , n, satisfying the
condition:

fi
(
tμj

)
= tμj+1,i (1)

for 1 ≤ μ ≤ μ0, 1 ≤ j < αμ, and 1 ≤ i ≤ n, except for at
most [(n×α1)+ (n×α2)+· · ·+ (n×αμ0 )]×ξ time point
coordinates.
As previously described in the Modeling framework

Section, each function fi can be expressed as a square-
free polynomial in n variables, with coefficients in k.
A priori, the search space for fi is the vector space
of all such polynomials in n variables. Since this space
has dimension 2n, the number of square-free monomi-
als in n variables, an exhaustive exploration of the search
space quickly becomes intractable. However, each poly-
nomial fi in this space is described by the monomials
that appear as summands in fi (since all coefficients are
either 0 or 1), and each monomial xa := xa11 xa22 · · ·xann
is characterized by its support, that is, the list of vari-
ables that appear with exponent 1 in xa. Let supp(xa)
denote the support of the monomial xa and |supp(xa)|
denote the number of variables in xa, that is, |supp(xa)| :=∑n

i=1 ai, which we will refer to as the length of the
support. We propose to reduce the search space as
follows.
Note that each coordinate polynomial function fi has

prescribed values at exactlym points, where

m := α1 −1+α2−1+· · ·+αμ0 −1 =
μ0∑
j=1

αj −μ0. (2)

We call the integerm the total length of the input time
series. Recall that the floor �r� of a real number r is the
largest integer not greater than r. Then we define the set
M to be the set of all monomials whose support has
length at most � := �log2(m)�, that is,

M := {xa : |supp(xa)| ≤ �}. (3)

We restrict the search space to polynomials that are lin-
ear combinations ofmonomials inMwithBoolean coeffi-
cients. As a vector space,M has dimension

∑�
i=0

(n
i
)
. This

quantity also appears in information theory as the number
of bit-strings of length n with Hamming weight less than
or equal to �. This expression depends on both n and �,
thus preventing a direct comparison with 2n. In Table 1,
we provide a comparison between these two quantities for

Table 1 Comparison between the dimension ofM (for
different� values) and the dimension of the space of all
Boolean functions

Variables
4∑

i=0

(n
i

) 9∑

i=0

(n
i

)
2n

5 31 32 32

6 57 64 64

8 163 256 256

10 386 1023 1024

15 1941 27,824 32,768

20 6196 431,910 1,048,576

21 7547 695,860 2,097,152

the case when � = 4, which corresponds to time courses
of total length m between 16 and 31, and � = 9 which
corresponds to time courses of total lengthm between 512
and 1023. The rows of the table are labeled by the variables
in the network.
The fact that each polynomial function that fits a given

set of time series of total length m has a polynomial
representation in M follows from a theoretical result in
computer algebra. We present a thorough explanation of
this fact in Additional file 1. However, summed up briefly,
this result is based on the observation that if two different
polynomials f and g have the same values at each point t
in the input time series, that is, f (t) = g(t) for each time
series point t, then f can be written as f = g + h, for some
polynomial h with h(t) = 0 for each time series point t.
Furthermore, given a polynomial f and the valuations at

each time series point t, we can find polynomials g and h
with f = g + h, such that h(t) = 0 for each time series
point t, and such that g cannot be further decomposed
into the sum of two (non-trivial) polynomials g = p + q
with q(t) = 0 for each time series point t. In [47], Babson
et al. show that the exponent vector a = (a1, a2, . . . , an)
of any monomial xa appearing in any such polynomial g
must satisfy

n∏
i=1

(ai + 1) ≤ m.

For a square-free monomial xa, this criterion translates
to 2|supp(xa)| ≤ m, or equivalently, |supp(xa)| ≤ log2(m).
This justifies the definition of the setM above.
As observed in Table 1, the dimension reduction of

the search space achieved in this way is significant even
for reasonably large n. Although the search space might
still be too large to admit an exhaustive exploration,
this reduction makes the search space more amenable
for the application of stochastic optimization algorithms.
Furthermore, this reduction in the model space is not
arbitrary, but is based on a careful analysis of the form
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of polynomials relevant for interpolating time series of a
given length.

Inference algorithm
Inference of dynamic models as an optimization problem
We separate the binary time series T1, . . . ,Tμo into
two types: wildtype time series for μ = 1, . . . , �
and, knockt-out mutant/RNAi time series for μ =
�, . . . ,μo. We formulate the inference problem as an opti-
mization problem with a multi-objective function that
measures:

1) The Goodness-of-Fit of a Boolean dynamic model
with respect to the input data.

2) Model complexity with respect to the support of the
model’s coordinate polynomial functions.

3) Consistency with the network topology obtained
from the dynamic model with respect to the prior
knowledge of the network’s topology.

4) Consistency with any existing information about the
model’s polynomial structure.

For the solution of this optimization problem we chose
an evolutionary computation approach and we developed
an evolutionary algorithm. Evolutionary algorithms (EAs),
population-based heuristic optimization algorithms, are
known to perform well on under-determined problems
and noisy fitness functions [48]. Accordingly, this type of
evolutionary computation approaches are suitable search
methods for inferring dynamic model parameters of
GRNs [49]. In particular, EAs have shown to achieve
good solutions by searching a relatively small section
of the entire space [50], and have been widely used in
genetic data analysis and GRN inference (for an overview,
see [51-53]).
Although there are many different variants of EAs,

the common underlying idea behind all these methods
is the same: given a population of individuals, environ-
mental pressure causes natural selection (survival of the
fittest) which causes an increase in the fitness of the
population. Given a fitness function to be maximized, a
population of candidate solutions is created. Based on
this fitness, some of the better candidates are chosen
to seed the next generation by applying recombination
and/or mutation to them. Recombination or crossover
is an operator applied to two or more selected candi-
dates -the so-called parents- to form new candidates or
children. Mutation applied to one candidate results in
one new candidate. Executing recombination and muta-
tion leads to a set of new candidates (the offspring) that
compete, based on their fitness score, for a place in the
next generation until a candidate with sufficient quality
is found or a previously defined computational limit is
reached [54].

In our context, polynomial dynamic models play the
role of individuals in the population. Each one of these
individuals are made of n coordinate polynomial func-
tions. Within a given individual, polynomial functions
are mutated by changing some of their monomial terms.
Crossover occurs by assembling a new candidate model
from optimal polynomial coordinate functions for each
i = 1, . . . , n. Additionally, to prevent a decrease of the
fitness score of a given generation, some of the candi-
date solutions with better fitness scores are allowed to be
directly cloned, that is inherited unchanged, to the next
generation.

Multi-objective fitness function
Before describing our fitness function, it is important to
observe that our optimization problem can be divided
into n optimization sub-problems (Divide and Conquer
Strategy): Consider a Boolean polynomial dynamic model
f = (f1, . . . , fn) for a given generation in the EA. Based
on the synchronous update schedule that we have selected
for our approach, the state value of a node i at time t is
computed as xti := fi(xt−1

1 , . . . , xt−1
n ). That is, given the

coordinate function fi for a node i to compute its state at
a given time t for a given time series μ, it is enough to
have the values of the time series μ at time t − 1. Thus
we do not require the other n − 1 coordinate functions.
Therefore, the Goodness-of-fit of a model f = (f1, . . . , fn)
can be evaluated one coordinate function at a time. Sim-
ilarly, the other optimization criteria, such as complexity,
can be evaluated one coordinate function fi at a time. Once
each of the coordinate functions fi have been evaluated,
they can be assembled to a dynamic model f = (f1, . . . , fn)
via an n-point crossover. This newly assembled model
can then be evaluated for all the optimization criteria to
estimate its fitness as a mutant or clone for the next gen-
eration in the EA.
Hence, the fitness function for our EA is built as a
multi-objective function consisting of the weighted sum
of the different fitness criteria for each coordinate func-
tion fi and the fitness of the assembled candidate dynamic
models f = (f1, . . . , fn). We next list the different
criteria.

Goodness-of-fit: This score measures the ability of a
candidate model to fit the time series data. As previously
stated, for 1 ≤ μ ≤ � we let Tμ = {tμ1 , tμ2 , . . . , tμαμ}
correspond to the wildtype input time series. Consider
a candidate model f = (f1, . . . , fn). For each initial time
point tμ1 , we consider the time series generated by iterating
f = (f1, . . . , fn) for αμ times. We compute the Hamming
score as:

Hf =
∑�

μ=1 Dμ

n ×
(∑�

μ=1 αμ

) , (4)
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where Dμ is the Hamming distance between input wild
type time series and the input time series generated by f.
That is, the total number of bits where the input wildtype
time series and the time series generated by the candi-
date model f differ. Hence, the Goodness-of-Fit score is
computed asModelFIT (f ) = WHM(1−Hf ), whereWHM is
the weight assigned to the model’s data fit, part of the EA
parameters.
Now we consider the knock-out mutant and/or RNAi

time series. For each � + 1 ≤ μ ≤ μo we let Tμ =
{tμ1 , tμ2 , . . . , tμαμ} be an input knock-out mutant and/or
RNAi time series, corresponding to the r-th gene. In
this case, all the candidate models will be considered to
have the r-th coordinate function fr = 0. That is, for
a given candidate model f = (f1, . . . , fn) we let f ∗ :=
(f1, . . . , 0, . . . , fn) by setting the rth coordinate function
fr = 0, and keeping all the other coordinate functions
the same as for the wildtype case. Consider the initial
time points corresponding to the knockout and/or RNAi
time series. From these initial time points, we consider
the knockout and/or RNAi time series generated by iter-
ating f ∗ = (f1, . . . , 0, . . . , fn) for αμ times. For each � +
1 ≤ μ ≤ μo, analogously to equation 4, we com-
pute the Hf ∗ from comparing the knock-out and/or RNAi
input time series and those generated by f ∗. Similarly, we
computeModelFIT (f ∗) = WHM(1 − Hf ∗).

Goodness-of-fit of coordinate functions. This score
measures the ability of a candidate coordinate function fi
to fit the ith column of each input time series. In the case of
the wildtype time series data, we consider the time series
generated by synchronously iterating the coordinate func-
tion fi αμ times, starting at the initial time point tμi,1 of
the ith column of each input time series. We compute the
Hamming score as:

Hfi =
∑�

μ=1 Diμ∑�
μ=1 αμ

, (5)

where Diμ is the Hamming distance between the ith
columns of the input wildtype time series and the time
series generated by fi. Thus, the Goodness-of-Fit of a
coordinate function fi is given by PolynomialFIT fi =
WHP(1 − Hfi), where WHP is the weight parameter
assigned to the Goodness-of-Fit of coordinate functions.
For the knock-out mutant and RNAi time series, we pro-
ceed analogously to the wildtype case (Equation 5), but
considering the model f = (f1, . . . , fr−1, 0, fr+1, . . . , fn),
representing the knock-out mutant or RNAi exper-
iment on the rth gene (as explained in the per-
turbation case in the Goodness-of-Fit of candidate
models.

Complexity score. It is important to balance the ability
of a model to explain the observed data with its ability to
do so simply [18]. Thus, scoring metrics with a penalty
for unnecessary complexity are able to guard against over-
fitting of observed data.
With the previously introduced algebraic description

of the search space, we can evaluate the complexity
of each coordinate function as the ratio between its
total degree and � (the upper bound for the mono-
mial support). The complexity score for a candidate
model is measured as the average of the complex-
ity scores of its coordinate functions. Notice that the
complexity score in our proposed method is enabled
from the algebraic identification of the upper bound
for the monomial support. However other complex-
ity criteria such as Bayesian Information Criterion [55]
and Akaike’s Information Criterion [56], could be used
instead.

Prior knowledge of network topology. Prior informa-
tion about the topology of the network can be available
from two different sources: (1) From previous biologi-
cal knowledge and (2) from knowledge acquired from the
prior use of another inference method, thus applying our
method as a “meta-inference method". Prior knowledge
from these two sources is encoded in the n × n matri-
ces BioProbMatrix and RevEngProbMatrix, respectively.
The entries ρıj of either matrix represent the probability
of a causal influence from node j to node ı. For a can-
didate model f, let us consider its adjacency matrix V, in
which an entry aıj is ‘1’ if xj appears in the ıth coordinate
function fı and ‘0’ otherwise. For such a matrix, consider
the ıth row V (xı ) = (v1, . . . , vj , . . . , vn), corresponding
to all variables appearing in the ıth coordinate function.
Let (ρı1, . . . , ρın) be the ıth row of the BioProbMatrix,
and let

βıj :=
{
1 − ρıj if vj = 0;

ρıj otherwise.

Thus, the Prior Biological Knowledge score assigned to
each coordinate polynomial fı is given by BioScore(fı ) =
1
n

∑n
j=1 βıj . By extension, the BioScore assigned to a can-

didate model f is given by

BioScore f = WB

n∑
ı=1

BioScore (fı )
n

, (6)

whereWB is the weight assigned to the model BioScore in
the EA parameters.
Analogously, we compute the RevEngScore to obtain the

Prior Reverse Engineering score.

Algorithm summary
We summarize the full algorithm as follows:
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Algorithm 1 Inference of structure and dynamic polynomial models
Input: Binary time series and EA parameter set.
Optional input: Seed polynomial dynamic models and/or prior knowledge of network topology.
Output: Boolean polynomial dynamic models with best fitness scores.

[1] If no seed models are used as input, generate random polynomial dynamic models satisfying the support upper
bound �, until the desired GenePoolSize parameter is reached. Otherwise, use prior input models and complete the
pool size with randomly generated models satisfying the support upper bound �.

[2] Parallelization of EA: Subdivide the model population into n subpopulations, where each subpopulation corre-
sponds to one coordinate polynomial functions.

[3] For each subpopulation, evaluate and sort the candidate coordinate polynomial functions in descending order,
according to their fitness scores.

[4] Crossover: Using a roulette wheel process, select the highest scored polynomial functions for each coordinate, and
assemble them to form new models. The number of assembled new models is set by the parameter “NumCandidates.”
These candidate models will be part of the generation’s offspring.

[5] Score and sort all the newly assembled candidate models from the previous step. Dynamic models are scored
according to the aggregate performance of their coordinate functions, while still storing in memory the individual
performance of each coordinate function.

[6] Mutate the models from Step [5], with probability inversely proportional to the fitness, that is, fitter polynomial
models undergo fewer mutations. This probability is multiplied by the “MutateProbability” parameter. Notice that the
mutated models might become just a duplicate of another existing model, thus the number of assembled polynomial
models might be reduced.

[7] Clone a sub-population of models: The top fittest models from the previous generation will be cloned to the next
generation. The number of cloned models is given by the parameter “NumParentsToPreserve.”

[8] Build a new population from assembled offspring models and cloned models. If (Assembled offspring models –
cloned models) < MaxGenePoolSize, then complete the generation of models by adding randomly generated models,
as in step [1], until the “MaxGenePoolSize” parameter is reached. Go to Step 3.

Continue this process until the desired number of generations is reached (“MaxGenerations” parameter), or until the
score of the multi-objective fitness function has not improved for a pre-selected number of generations (“StableGener-
ationLimit” EA parameter).

Results
Validation Part 1: assessment of robustness to data noise
Inference algorithms using a discrete modeling frame-
work, such as Boolean or certain Bayesian methods,
face an additional challenge: their performance depends
on the choice of a data discretization method. Thus
we separate the effect of data discretization on the
method’s performance from that of robustness to data
noise. We use a binary data set generated from the
published Boolean model of a gene regulatory net-
work in [40]. We added different levels of noise to
the data sets to assess how robust the method is
to such data noise and the effect on the dynamics
prediction.

The Segment Polarity Gene Network: The Boolean
model in [40] represents a gene regulatory network in
Drosophila melanogaster responsible for segmentation
of the fruit fly body. This Boolean model is based on
the binary ON/OFF representation of mRNA and pro-
tein levels of five segment polarity genes. The authors
constructed their model based on the known network
topology and validated it using published gene expression
data.
The expression of the segment polarity genes occurs in

stripes that encircle the embryo and are captured in the
Booleanmodel as a one-dimensional representation. Each
stripe consists of 12 interconnected cells grouped into 3
parasegment primordia in which the genes are expressed
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in every fourth cell. The authors assumed the paraseg-
ments to be identical so that only one parasegment of four
cells is considered. The variables of the dynamical system
are the segment polarity genes and proteins in each of the
four cells. Thus, one stripe is represented as a 15× 4 = 60
node network which we aim to infer. In Additional file 2
we have included all the details about the Boolean model
and its polynomial translation, used in this section.

Input data
Because we did not assume any prior knowledge about
the amount of noise present in each one of the input data
sets, we uniformly choose all EA simulations to assume 5%
noise.

Generation of input time series. We generated 24 time
series, including wildtype and knock-out mutant data,
with a total of 202 time points (� 1% of the 221 possi-
ble states in the system). In Additional file 2, we present
a detailed description of the polynomial model used and
the simulation data.
We added ξ = 0, .01, .05 percent noise to the input data

by randomly flipping ξ(202)(n) bits, respectively. Note
that, since data discretization may filter out some amount
of noise in the experimental data, adding noise to the
already discretized data probably results in the addition of
more noise than if we would have added the noise to the
continuous data and then discretized it.

Prior knowledge about the network topology
a) Prior Biological information.We included only
the 5 biologically obvious molecular dependencies,
that is, from each one of the 5 genes in the network
to their corresponding protein products.
b) Prior use of an inference method. Using our
software as a inference method, independently of
prior biological information, we input information
about the network topology obtained by first
applying the inference method from Jarrah et al. in
[19] to the available data with the added noise. The
method in [19] infers network topology through
exact data interpolation within the polynomial
dynamical systems framework.

Generation of parameter sets for the EA algorithm
We assess the robustness to noise under a broad sam-
pling of parameter sets, rather than only presenting the
best results after parameter tuning. To create a good sam-
pling of multi-variable parameter sets while reducing the
number of runs necessary, we used a Latin hypercube
sampling (LHS) method, as introduced in [57]. From the
LHS, we generated 60 different sets of parameters. In the
Additional file 2, the reader can access the information

on the ranges of parameter values that the LHS protocol
generated.

Inference of static network
A key issue, when applying heuristic search algorithms,
is their dependence on the choice of various parame-
ters. For EA algorithms, the number of parameters that
can be changed to optimize the method’s performance
is often quite large. Furthermore, for inference meth-
ods that utilize EA strategies (e.g. [58-61]), typically a
prior parameter tuning is done to evaluate overall per-
formance based only on the set of parameters for which
the EA shows the best results. We considered it impor-
tant, however, to reveal a broader view of the algorithm’s
performance under different choices of parameter values
and identify relevant parameters to use in the evalua-
tion of robustness to noise. As indicated before, we used
an LHS method to create a broad sampling of multi-
variable parameter sets while reducing the number of runs
necessary.
We generated triplicates for each one of the EA runs,

for a total of 180 runs for each one of 3 noise levels. In
Figure 1 we show the performance of our method consid-
ering all the different sets of parameters, and present the
ranges -lowest to highest- of obtained values for False Pos-
itive Rate (FPR) and Recall or True Positive Rate (TPR).
We observe that even for the ranges of values with the
poorest performance across all the parameter sets and the
different levels of noise, the ratio between FPR and Recall
is always above 1; that is, according to the Receiver Oper-
ating Characteristic (ROC) space, these pairs of values fall
at all times above the line of no discrimination, showing
good performance of the algorithm over a wide range of
parameters [62]. Additionally, we considered the parame-
ter set that showed the highest fitness scores. In Figure 2
we show the pairs of FPR and Recall values for the three
levels of noise. In Figure 3 we show a comparison of the
inferred network topologies under different levels of data
noise based on the best results obtained across the differ-
ent 60 sets of parameters. Notice that these inferred net-
works are not the best solutions obtained after a tuning of
parameters but simply the best results obtained from the
different sets of parameters obtained by the LHS sampling
method.
As mentioned earlier, we assumed no prior knowledge

in terms of the amount of noise present in each one of
the input data sets; thus, we uniformly choose all EA sim-
ulations to disagree with up to 5% of the data. In that
sense, since for the input data set containing 0% and 1%
of noise, the polynomial models are allowed to disagree
with up to 5% of the bits of the input, it is not surprising
that rather than being detrimental, the EA’s performance
slightly improves when considering data sets with some
level of noise.



Vera-Licona et al. BMC Systems Biology 2014, 8:37 Page 9 of 16
http://www.biomedcentral.com/1752-0509/8/37

Figure 1 Broad assessment of robustness under different levels of data noise. Full range of result values of our algorithm in the presence of
0%, 1% and 5% noise, after running triplicates of each one of the 60 sets of EA parameters. A)Minimum and maximum Recall values under different
levels of noise. B)Minimum and maximum False Positive Rate (FPR) values. For our multi-parameter method, we observe that across all the ranges
of values of results, the ratio between Recall/FPR on each one of the different levels of noise is always greater than 1, thus above the line of no
discrimination within the Receiver Operating Characteristic (ROC) space.

Inference of dynamicmodel
Along with the network topology, by design, our method
infers dynamic models. Thus we tested the method’s abil-
ity to predict dynamic patterns of the network across the
different levels of noise.
We considered the 6 steady states retrieved in Albert

and Othmer’s model [40], 3 of which correspond to pat-
terns that have been observed experimentally. We selected
the dynamic model from the output of the best perform-
ing set of parameters found in the previous section. In
Table 2 we present the steady states retrieved by our
method under the different levels of noise. We observe

that across the different levels of noise, at least 50% of
the expected steady states were always retrieved by the
method.

Validation Part 2: Benchmarking with IRMA synthetic
network
To test the performance of our method on expression
profiles, we use the biological system in [36]. This sys-
tem is a synthetic network within the yeast Saccharomyces
cerevisiae, denoted IRMA, for “in vivo benchmarking of
reverse-engineering and modeling approaches". The net-
work was constructed from five genes: CBF1, GAL4,

Figure 2 Robustness under different levels of data noise. Broad sample of the different pairs of Recall and False Positive Rate (FPR) values for the
top ranked set of parameters. Each one of the three panels represents the stacked column graphs for the pairs of values of Recall and FPR for the
three different levels of noise.
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Figure 3 Inferred networks topologies under different levels of data noise. The different network topologies inferred under different levels of
data noise. We show the best results obtained across the different sets of parameters from the LHS sampling method. a) The true segment polarity
gene network; b) The network topology inferred under 0% of noise; c) The network topology inferred under 1% of noise; d) The network topology
inferred under 5% of data noise. Solid red edges represent the inferred interactions that are not present in the real network, or that have the wrong
direction (false positives), and dotted gray lines represent false negatives.

SWI5, ASH1 and GAL80. Galactose activates the GAL1-
10 promoter, cloned upstream of a SWI5 mutant in the
network, and is able to activate the transcription of all
five network genes. The endogenous transcription fac-
tors were deleted from the organism to constrict the
impact of external factors. The authors measured both
time series and steady-state expression levels using two
gene profiles described as Switch ON and Switch OFF,
obtained by shifting the growing cells from glucose to
galactose medium and from galactose to glucose medium,
respectively.

Input data
Input time series and their discretization. The trans-
lation from continuous data to their discrete equivalent
is a crucial step in preserving the variable dependencies
and thus has a significant impact on the performance of

network inference algorithms [63]. Although it is possi-
ble to manually chose an appropriate discretization for the
data given the size of the network, we followed a system-
atic procedure to find the most appropriate discretization.
We first compared three discretization methods, Quan-
tile (Q), Interval (I) and SSD, a graph-theoretic method
in [63], to discretize the Switch ON and Switch OFF
time courses into binary states. Although none of the dis-
cretizationmethods was able to reproduce every observed
pattern, we selected the quantile binary discretization Q2
as the method that best captures some important dynam-
ical features in the data. In Additional file 3, we have
included the comparative study of the three discretization
methods with their plots.

Prior knowledge of the network topology. In the spe-
cific scenario of the yeast synthetic network, we observed
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Table 2 Steady states retrieved under the different levels
of noise

Boolean steady states 0% noise 1% noise 5% noise
retrieved from [40]

s1 = 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 s1 s1 s1

s2 = 0 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1

s3 = 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 s3 s3 s3

s4 = 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 s4 s4 s4

s5 = 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 s5 s5

s6 = 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 s6 s6

In the first column, the 6 steady states obtained after the simulation of the
Boolean model in [40] for all the input initializations. In the next columns the
steady states retrieved by our method under the different levels of noise are
shown.

that across the different discretization methods used, we
had issues with loss of some dynamic patterns observed in
the continuous data. To counteract the data limitation due
to the 2-state data discretization, we used our inference
method as a meta-algorithm, that is, we input a previously
inferred network topology from the dynamic Bayesian
method BANJO [18]. First, we performed a comparative
study across different data discretization methods beyond
binary, considering also 3, 4 and 5 discrete variable states.
Based on BANJO’s scorings across the different data dis-
cretization methods, the highest scores are obtained when
considering the quantile ternary (Q3) discretized data. In
fact, selecting this more adequate discretization (accord-
ing to BANJO’s scoring) improves BANJO’s performance
from the results originally reported by Cantone et al. in
[36], from [PPV = 0.30, Se = 0.25] to [PPV = 0.44, Se =
0.50] for the SwitchON time series and from [PPV = 0.60,

Se = 0.38] to [PPV = 0.71, Se = 0.63] for the Switch OFF
time series. Therefore, using this more optimal ternary
discretization Q3, we input the BANJO inferred network
as prior knowledge about the topology of the network.

Inference of IRMA’s Static network
An objective benchmarking procedure. Possible bias
can occur when comparing inference methods: 1) Only
methods that are “alike” to the method of interest are used
for comparison purposes and/or 2) A lack of experience
with the methods or software used for benchmarking,
prevent an optimal use of such methods. To avoid these
two biases, we decided to benchmark our method with a
broad spectrum of inferencemethods from fundamentally
different modeling frameworks (e.g., continuous versus
discrete modeling methods) and to exclusively use the
best results reported by the authors in their corresponding
publications of their own methods. With that in mind, we
benchmarked our method with the broad range of infer-
ence methods proposed in [6,64,65] and [66]. They all
used the IRMA network and its time series data to bench-
mark their methods with BANJO and TSNI [18,67], as
reported by Cantone et al.
In Figure 4, we show first a comparison between the true

IRMA network and the networks inferred by our algo-
rithm for both the switch ON and OFF data. We observe
for the switch ON time series data that seven edges are
correctly inferred, one edge has a wrong direction, one
is a false positive (CBF1 → Gal80), and only one edge is
missing. As noted in [64], the Switch OFF data are a chal-
lenge due to a lack of a significant stimulus compared to
the Switch ON data. In this case, our method was able to

Figure 4 Ourmethod applied to experimental gene data. The experiment measured the expression level of 5 genes after a shift from
galactose-raffinose- to glucose-containing medium. a) The true Yeast Synthetic Network; b) The inferred static network from the Switch ON data
set; c) The inferred static network from the Switch OFF data set. Solid gray edges represent inferred interactions that are not present in the real
network, or that have the wrong direction (false positives), and dotted gray lines represent false negatives.
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infer 5 edges correctly, one edge has the wrong direction,
2 are false positives, and 3 edges are missing.
In Table 3 we have also summarized the results obtained

with our method for both IRMA’s Switch ON and Switch
OFF time series and the comparison with the best results
reported in each one of the aforementioned publications.
We observe that in the Switch ON data, our algorithm
obtains better or similar PPV in comparison with the best
results across all the other methods, except for the results
reported in [6], where, while having a high PPV, only 3 out
of 8 edges are inferred. Additionally, for this same data set,
the recall values of our method outperformed those of any
of the other inference methods.
One important aspect to mention is with respect to the

level of noise we assume in the data. Detailed errormodels
have been proposed to attempt to quantify the uncertainty
in gene expression data (e.g., the Rosetta error model [68])
and the impact of noise on the outcome of statistical
analysis of microarray data [69,70]. However, in our case,
in the absence of replicate data, we could not perform
such an analysis. Thus, analogous to the case of the seg-
ment polarity gene network, we selected EA simulations
assuming the data sets to contain 5% noise.

Inference of IRMA’s dynamic networkmodel
One of the goals of modeling gene regulatory networks
is to obtain a predictive model. To assess the prediction
capabilities of our method, we used the Switch ON time
series as input data and we tried to predict the expression
profiles in the Switch OFF experiment time series.
In Figure 5 we represent the predicted dynamic patterns

of each one of the five genes for the Switch OFF data in
IRMA and from our inferred dynamic model. We observe
that the inferred dynamic model is capable of reproduc-
ing fully the dynamic behavior for SWI5 and ASH1. The
behavior of GAL4, which is expected to switch off, shows
no expression at all times in our predicted model, there-
fore predicting the time series except for the initial time
point. Similarly, for GAL80 we observe that the expected
degradation behavior of the Switch OFF time series is
partly reproduced but faster than the actual IRMA time
series.

Because the aforementioned last two variables are rep-
resenting GAL4 and GAL80 mRNA levels when the cell’s
environment is shifted from galactose to glucose medium,
one would expect to observe a degradation of their mRNA
levels. However, as noted by the authors in [36], the tran-
sient increase observed in the mRNA levels at the first
time step of GAL4 and GAL8 is attenuated by an effect
unrelated to their transcriptional regulation. This implies
that the genes responsible for the regulation of such
galactose-related variables will lack this dynamic informa-
tion and, thus, it is natural to expect such behavior not to
be predicted by any method based solely on mRNA data.
The only variable that our method could not capture was
CBF1.

Discussion
Efficient inclusion of prior knowledge
As mentioned in the introductory section, the effective
use of prior knowledge is crucial to overcome the lack
of quantity or quality of data. To illustrate this, consider
again the IRMA network as an example. As noted in
the previous section, the Switch OFF data are a chal-
lenge due to a lack of significant stimulus compared
to the Switch ON data. This scenario is ideal to high-
light that, with a lack of sufficient information provided
by the observational data, the performance of inference
methods can overcome the input data limitations by the
additional consideration of prior knowledge about the
topology of the network. To show this, we set up the next
experiment: with the Switch OFF data as input we ran
our method using as prior knowledge different amounts
of information about the network topology. We created
4 networks with prior information about the network
topology by considering 25%, 50%, 75% and 100% of ran-
domly chosen true positives in the network. Our objective
then is to investigate whether successively adding more
prior knowledge about the network topology will also
show an incremental improvement in themethod’s perfor-
mance. Accordingly, in Table 4, we observe the progressive
improvement of our inference method after successive
addition of prior information about the toplogy of the
network. After the addition of just 25% of the edges of the

Table 3 Benchmarking ourmethod’s performance with the IRMA network

a) Our algorithm b) TD ARACNE c) TSNI d) Porreca et al. e) Zou et al.

Switch ON network

PPV 0.78 0.71 0.80 1 N/A

Recall 0.88 0.67 0.50 0.63 N/A

Switch OFF network

PPV 0.63 0.37 0.60 1 .8

Recall 0.63 0.60 0.38 0.63 .5

In a) the results from our algorithm; in b) the results in [64] which outperforms the standard ARACNE method reported in [36]; in c) TSNI as reported in [36]; in d) the
results reported in [6] after using time series and product synthesis rates and finally, in e) the results reported in [65].
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Figure 5 Dynamic behavior of inferred model. First panel shows the polynomial model inferred using the Switch ON time series. The five graphs
show the Switch OFF time series behavior predicted by the inferred model, for each one of the five variables in the network. On green is shown the
dynamic patterns of IRMA network. On golden is shown the dynamic patterns of the predicted dynamic model.

network as a prior, our method outperforms TSNI, TD
Aracne from [64] and the recall from [6]. After the addi-
tion of 75% of the network’s structure as prior, our method
also outperforms the method described in [65].
In this small example it is possible to highlight the ben-

efit acquired from adding just partial information about
the network. However, reliable sources of information are

Table 4 Network inference from time series data andwith
the successive addition of prior information about the
network topology

%Network’s topology 25% 50% 75% 100%

as prior input

PPV 0.64 0.70 0.89 0.89

Recall 0.88 0.88 1 1

We present PPV and Recall values for the assessment of our method on the
IRMA’s Switch OFF network with successive addition of prior information about
the network topology.

not necessarily easy to retrieve. In our method we have
proposed two main sources of such prior information: 1)
Prior biological knowledge of the network’s topology and,
2) Prior information about the network obtained from
other inference methods applied to available data (input
in our RevEngProbMatrix). The latter source of informa-
tion is particularly useful when different types of data are
available so that ad hoc methods can be applied to each
type of data.
It is possible to imagine other scenarios in which

other kinds of prior biological knowledge can be used
with our method. For instance, suppose that for a given
gene i, the maximum number of binding sites for acti-
vators/repressors is known. Then the upper bound �

for the maximum monomial support of all the variables
(genes/proteins) in the network can be refined for the
polynomial function fi, describing the dynamic patterns
of gene i. First, an unbiased initial run of the EA algo-
rithm can be done, with the � upper bound from the
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input data. From these runs, one might identify the �

most prevalent variables in fi, i.e., the more likely acti-
vators/repressors of the gene in question. With these �

most prevalent variables, the ith row in the BioProbMa-
trix can be fixed with 1′s in the corresponding columns
of these variables and the rest fixed to 0, in order to find
the most optimal polynomial models. In the case that the
number of most prevalent variables is less than �, several
runs of the EA can be done; in each one of these runs,
for the ith row of the BioProbMatrix, one can fix to 1 the
values for these variables while considering combinations
of the other variables to be fixed to 1 and the rest of the
variables fixed to 0, until we find best scored polynomial
models.

Conclusions
The development of algorithms for the inference ofmolec-
ular networks from experimental data has received much
attention in recent years, and new methods are published
regularly. Most of these methods focus on the inference of
the network topology and cannot use information about
the temporal development of the network. Additionally,
there is still a need for methods that can take different
types of prior information about the network. Finally, well
justified search space reductions are needed to improve
the performance of inference methods.
The method we present in this paper combines several

useful features: (1) it effectively uses time series data; (2)
it takes into account prior information about the network;
(3) it infers dynamic models so that it can predict long-
term dynamic behavior of the network; (4) it is robust to
noise in the input data; and, (5) it uses theoretical tools
from computer algebra and a local search algorithm to
efficiently explore the model search space and to optimize
between model fit and model complexity.
Our method compares in general favorably with other

inference methods that also utilize time series data. As
we have shown here, a good strategy for increased per-
formance is the introduction of an effective search space
reduction and the combination of different inference
methods.
Lastly, although our method is within the PDS model-

ing framework, our introduced description of the search
space can be applied as well to other Boolean modeling
approaches. We expect this description to be useful for
Booleanmethods proposed in the future or to improve the
performance of existing ones.
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