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with Chk1 Kinase to Regulate Glycolysis

Takumi Mikawa,1,2 Eri Shibata,1,2 Midori Shimada,3 Ken Ito,1,2 Tomiko Ito,1,2 Hiroaki Kanda,4 Keiyo Takubo,5

Matilde E. Lleonart,6 Nobuya Inagaki,2 Masayuki Yokode,1,7 and Hiroshi Kondoh1,2,8,*

SUMMARY

Dysregulated glycolysis, including the cancerous Warburg effect, is closely
involved in pathological mechanisms of diseased states. Among glycolytic
enzymes, phosphoglycerate mutase (PGAM) has been known to exert certain
physiological impact in vitro, whereas its regulatory role on glycolysis remains un-
clear. Here, we identified that PGAM plays a key role in regulating glycolysis in
cancer cells but not in standard cells. Cancer-prone phenotype by PGAM overex-
pression in vivowas associatedwith upregulated glycolytic features. PGAM inter-
acts and cooperates with Chk1 to regulate the enhanced glycolysis in cancer
cells, especially under oncogenic Ras expressing conditions. Genetic or chemical
interference of the PGAM-Chk1 interaction, with intact PGAM activity, abro-
gated themaintenance of cancerous enhanced glycolysis. Thus, the nonenzymatic
function of PGAM is essential for theWarburg effect that accompanies cancerous
proliferation.

INTRODUCTION

Glycolysis constitutes an essential metabolism among various organisms, serving not only as an energy

source but also for the synthesis of macromolecules (Vander Heiden et al., 2009). The regulation of glycol-

ysis depends on several factors including growth conditions, differentiation status, and environmental

stress. In mammalian cells, metabolic adaptation in glycolysis is mediated partly by the activation of spe-

cific signaling modules, followed by the transcriptional upregulation of glycolytic enzymes (Dang and

Semenza, 1999). In addition to transcriptional factors, several other molecules including signals from nutri-

tional stress, oncogenic stimuli, and posttranscriptional regulators are also deeply involved in glycolytic

regulation (Mikawa et al., 2015).

Fine-tuning of glycolysis is required to maintain physiological homeostasis in normal cells and tissues, and

dysregulated glycolysis is closely related to pathological features. Impaired glycolysis in vivo is associated

with dysfunction in various tissues and degenerative disorders (Goyal et al., 2017; Taylor et al., 2001).

Conversely, the pathological enhancement of glycolysis is also observed in several diseased states, such

as inflammation (Chimenti et al., 2015), ischemia, and the cancerous Warburg effect in association with in-

crease of activity and protein levels for multiple glycolytic enzymes (Warburg, 1956). Although normal cells

may adapt to hypoxic conditions by enhancing anaerobic glycolysis and limiting energy demands, cancer

cells in vivo continue to grow even in hypoxia, which requires excess glycolysis as a maladaptive

metabolism in the core of solid tumors. However, the Warburg effect cannot be explained simply as a

consequence of cellular adaptation to hypoxia, as cancer cells maintain enhanced glycolysis even in stan-

dard tissue culture conditions (20% oxygen) or in circulating blood (Koppenol et al., 2011). Therefore, a ris-

ing question is how the Warburg effect is linked to the other cancerous properties besides adaptation to

hypoxia.

Phosphoglycerate mutase (PGAM) is a glycolytic enzyme that converts 3-phosphoglycerate into 2-phos-

phoglycerate as an isomerase (Rodwell et al., 1957). PGAM consists of two isoforms, PGAM1 and

PGAM2, termed also as brain- and muscle-forms, respectively, both of which display a significant similarity

in their sequences (79% identity) and enzymatic activities (Kondoh et al., 2005; Mikawa et al., 2014; Zhang

et al., 2001). Recent reports suggest that PGAM represents a key factor connecting glycolysis to physiolog-

ical homeostasis. PGAM supports anti-oxidative defense not only by the reduction of mitochondrial reac-

tive oxygen species (Kondoh et al., 2005, 2007) but also via activation of the pentose phosphate pathway
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(Hitosugi et al., 2012). Moreover, the p53/Mdm2 axis promotes proteolysis of PGAM during senescence-

inducing stress (Mikawa et al., 2014), which is consistent with reports that p53 inactivation enhances glycol-

ysis in cancer (Bensaad and Vousden, 2007). In addition to the ubiquitination, PGAM activity is post tran-

scriptionally modulated by the phosphorylation or acetylation (Wang et al., 2017; Xu et al., 2014). Several

studies also implicate the involvement of PGAM in human disease. Although PGAMprotein and activity are

upregulated in many cancerous tissues (Durany et al., 1997), patients with PGAM deficiencies are also re-

ported (Naini et al., 2009). However, the precise regulatory role of PGAM in glycolysis remains unclear.

Here, we report a previously unappreciated role for PGAM in cancerous glycolytic regulation. We observed

that PGAM significantly affected the global profiles of glycolysis in cancerous cells. PGAM cooperated with

Chk1, previously known as a checkpoint kinase for p53, to boost glycolysis under oncogenic conditions, but

not in standard cells. The significance of the PGAM-Chk1 interaction in cancerous glycolysis was validated

by several lines of evidence with genetic or chemical ablation of PGAM-Chk1 binding, especially under

oncogenic Ras expressing conditions. Thus, PGAM and Chk1 cooperated to regulate cancerous glycolysis.

RESULTS

PGAM Overexpression In Vivo Promotes Chemically Induced Tumorigenesis with Global

Increase in Glycolytic mRNAs

We previously reported that heart-specific Pgam2-transgenic (Tg) mice displayed almost normal glycolytic

features in the heart (Okuda et al., 2013). However, the impact of global PGAM overexpression in vivo re-

mains unclear. As it has been demonstrated that the overexpression of either PGAM isoform confers similar

physiological impact (Kondoh et al., 2005; Mikawa et al., 2014; Zhang et al., 2001), we utilized Pgam2-Tg

mice, which exhibited a significant increase of PGAM protein in the whole body by the CAG-promoter

driven Pgam2-FLAG transgene (Figure S1A) (Mikawa et al., 2014). Global overexpression of PGAM in vivo

did not affect the profiles for glycolytic mRNAs among the various tissues (skin, liver, kidney, muscle, WAT,

lung, or heart) under physiological conditions or in MEFs under standard culture conditions (Figures S1B

and S1C). Although both isoforms of PGAM were expressed in skin of wild-type mice (Mikawa et al.,

2014), however, we noticed that skin in Pgam2-Tg mice was more vulnerable to inflammation caused by

a proinflammatory agent, 12-O-tetradecanoylphorbol-13-acetate (TPA) (Figures S2A and S2B). These

findings prompted further investigation into the possibility that PGAM overexpression in vivo may affect

glycolysis under TPA stress. For this purpose, we applied a protocol of chemically induced carcinogenesis

utilizing 7,12-dimethylbenz[a]anthracene (DMBA) initiation followed by TPA promotion in mice skin from

control and Pgam2-Tg mice (Figure S2C). We observed that the total number of tumors in Pgam2-Tg

mice was slightly increased (Figure S2D), whereas the tumor sizes were strikingly larger than those of con-

trol mice throughout the protocol. At the early stage of the experimental process (8–12 weeks) small tumors

in Pgam2-Tgmice were already observed (Figure 1A, top panel). Subsequently (12–24 weeks), some tumors

in the Pgam2-Tg mice grew to over 6 mm in their diameters, which was not observed in control mice (Fig-

ure 1A, middle and bottom panels). Notably, some of the largest tumors in the Pgam2-Tg mice were

accompanied by moderate-to-severe ulceration as shown in Figure 1B. At the end of the protocol

(24 weeks), pathologic analysis was performed for all tumors in mice. Histologically, tumors in both groups

showed acanthosis and hyperkeratosis. All tumors in the control mice were pathologically benign (squa-

mous cell papillomas), whereas 3 of 25 tumors that developed in Pgam2-Tg mice showed marked dysker-

atosis, numerous mitoses, and severe disturbances of stratification, which are characteristic of squamous

cell carcinoma (SCC) (Figures 1C and 1D).

Notably, we identified clear differences in the mRNA profiles of glycolytic enzymes in the skins of this

setting. The levels of glycolytic mRNAs were markedly increased both in papillomas and in skins without

tumors from Pgam2-Tg mice compared with those in control mice (Figure 1E). In addition, the expression

of these mRNAs was further enhanced in malignant tumors from Pgam2-Tg skin than in benign papillomas

of the same genetic background (Figure 1E). Thus, the overexpression of PGAM promotes the expression

of glycolytic mRNAs in vivo in chemically induced tumorigenesis.

Abrogation of PGAM Decreases Glycolytic mRNAs in Cancer Cells but Not in Standard Cells

In Vitro

We next examined the impact of PGAM inactivation on glycolytic profiles in vitro. First, PGAM1 siRNA was

transfected into cancer cell types in which PGAM1 is dominantly expressed: non-small cell lung carcinoma

(H1299) and squamous cell carcinoma of human skin (HSC-1) cell lines (Figures S3A–S3C). We observed that
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Figure 1. PGAMOverexpression In Vivo Promotes Chemically Induced Tumorigenesis with Significant Increment

in Glycolytic mRNAs

Chemical-induced skin tumorigenesis was performed. Control (n = 7) and Pgam2-Tg mice (n = 7) were first treated with

DMBA followed by TPA treatment twice a week.

(A) Comparison of tumor numbers between control (wild-type) and Pgam2-Tg mice. Tumors were classified into three

subgroups according to their diameters (top panel for tumor size <3 mm; middle panel, 3–6 mm; and bottom panel,

>6 mm). The average number of tumors per mouse was compared at the indicated time points.

(B) Representative tumors in control or Pgam2-Tg mice at 24 weeks are indicated.

(C and D) Histopathological analysis of skin tumors. (C) Skin papillomas in control (left panel) and SCC in Pgam2-Tg (right

panel) with hematoxylin and eosin staining. Scale bar indicates 200 mm. (D) Summary of pathologic diagnoses of skin

tumors in control and Pgam2-Tg mice.

(E) Comparison of mRNA levels for glycolytic enzymes between control and Pgam2-Tg mice. The results in non-tumor

forming skin, skin papillomas, and skin SCCs are shown. Data for the indicated genes are shown as relative values against

the counterparts in non-tumor-forming skin from control mice. Abbreviations for glycolytic enzymes were shown in

Figure S1. *p < 0.05 and **p < 0.005, Dunnett’s multiple comparison test. Data represent the mean G SEM.

See also Figures S1 and S2.
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PGAM1 knockdown in these cells significantly decreased their proliferative capacities (Figures 2A and S3D),

accompanied by a marked reduction in glycolytic measurements such as glucose consumption, glycolytic

flux, and lactate production (Figures 2B–2D and S3E–S3G). We observed that mRNA, protein levels, and

enzymatic activities of other glycolytic enzymes were also reduced in both cell lines (Figures 2E–2G and

S3H–S3J). Notably, the decline in overall glycolytic mRNAs after PGAM1 knockdown was restored by

ectopic expression of either mouse Pgam1 or Pgam2 (Figures S4A and S4B), probably due to the high sim-

ilarity in their sequences and enzymatic activities.

Next, Pgam1flox/flox MEFs expressing Cre-ER were generated by crossing CAG-Cre-ER-Tg mice and

Pgam1flox/flox mice, which we established (Figure S4C). Pgam1 mRNA and protein were efficiently ablated

after 4-hydroxytamoxifen (4-OHT) treatment of these MEFs (Figures 2H and 2I), followed by a premature

senescent growth arrest (Figures S4D and S4E). However, glycolytic mRNA expression in these cells was

similar to Pgam1-intact cells (Figure 2I). Similar results were obtained following transfection with Pgam1

siRNA in primary MEFs and human fibroblast WI-38 cells, which predominantly express PGAM1 (Figures

S4F and S4G). Collectively, the abrogation of PGAM in standard cells did not affect the levels of other

glycolytic mRNAs, in sharp contrast to our findings in cancer cells.

PGAM Attenuates p53 Phosphorylation and Interacts with Chk1

In addition to the susceptibility of globally PGAM-overexpressingmice to skin carcinogenesis (Figure 1), we

previously reported that PGAM was ubiquitinated via the Mdm2/p53 axis under senescence-inducing

stress (Mikawa et al., 2014). We also noticed that, in prematurely senescent MEFs by Pgam1 ablation,

the levels of several p53 targets (p21Cip, Bax, and Fas) and p16ink4 were significantly increased (Figure 3A).

To gain insights into the molecular mechanism of glycolytic regulation by PGAM, we further investigated

the possible link between PGAM and the tumor suppressor p53. As p53 activity and protein stability are

regulated largely by post-transcriptional modification including its phosphorylation, we examined the

p53 profile under oncogenic stress both in Pgam2-Tg and control MEFs expressing Ras-G12V. The protein

levels of p21 and Mdm2, downstream effectors of p53, were upregulated in Ras-G12V-expressing control

MEFs but were moderately impaired in Ras-G12V-expressing Pgam2-Tg MEFs (Figure 3B). Oncogene-

induced stress also upregulated p53 protein levels in control MEFs, accompanied by the enhanced phos-

phorylation of serine residues 18 and 23 (Di Micco et al., 2006). In contrast, in Ras-G12V-expressing

Pgam2-Tg MEFs, p53 serine 23 phosphorylation was largely impaired compared with control, whereas

serine 18 phosphorylation was moderately downregulated (Figure 3B). We also observed that ectopic

expression of PGAM1 also suppresses p53 serine 23 phosphorylation in MEFs under oncogene-induced

stress (Figure S5A). We also examined the DNA damage response in H1299 cell line with transfected WT

p53. Similarly, p53 phosphorylation at serine 20, corresponding to serine 23 in mouse p53, was attenuated

by ectopic PGAM expression during etoposide-induced DNA damage in H1299 cells (Figure S5B). These

data indicate that PGAM partially interferes with p53 function by impacting phosphorylation at serine 23.

Figure 2. Ablation of PGAM Downregulates Glycolysis In Vitro

The impact of PGAM1 knockdown on glycolysis in cancer cells in vitro. H1299 cells were transfected with siPGAM1 (n = 3)

or scrambled RNA (n = 3) (A–G).

(A) PGAM1-knockdown H1299 cells were passaged according to 3T3 cell culture protocol. The proliferation curves show

population doublings. The glycolytic profiles were evaluated in PGAM1-knockdown H1299 cells (B–G).

(B–D) Glucose consumption was evaluated by measuring glucose concentration in medium (B), whereas glycolytic flux

was evaluated using 3H-labeled glucose (C). Lactate production was determined by the measurements of lactate

concentration in medium (D).

(E) ThemRNA levels for glycolytic enzymes were assessed. Data are relative to those in scrambled RNA-transfected H1299

cells. *p < 0.05 and **p < 0.005, Student’s t test.

(F) The protein levels of the indicated glycolytic enzymes were analyzed by immunoblot using anti-aldolase (ALDO), anti-

GAPDH, anti-PGK1, anti-PGAM, anti-enolase1 (ENO1), and anti-actin antibodies. Intensity of immunoblotting bands was

normalized to that of actin. Relative values were shown, compared with scrambled RNA-transfected H1299 cells.

(G) Enzymatic activity of aldolase, GAPDH, PGK, PGAM, and enolase was measured by spectrometric assay.

(H and I) Pgam1 was ablated in primary MEFs from Pgam1flox/flox mice harboring Cre-ER by treatment with 4-

hydroxytamoxifen (4-OHT) for 4 days. (H) PGAMprotein levels in the indicatedMEFs were analyzed by immunoblotting. (I)

Comparison of glycolytic mRNAs among the indicated MEFs after 4-OHT treatment (n = 3). Cre(�); Pgam1flox/flox MEFs,

Cre(+); Pgam1flox/flox + Cre-ER MEFs.

Data are relative to those in control. *p < 0.05 and **p < 0.005, Dunnett’s multiple comparison test. Data represent the

mean G SEM.

See also Figures S3 and S4.

ll
OPEN ACCESS

iScience 23, 101306, July 24, 2020 5

iScience
Article



p53 phosphorylation at serine 23 after DNA damage and oncogenic stress is mediated either by Chk1 or

Chk2, checkpoint serine/threonine kinases, followed by p53 stabilization and activation (Shieh et al.,

2000). In cells ectopically expressing PGAM, total protein levels and phosphorylation status of Chk1 and

Chk2 (serine 345 and threonine 68, respectively) (Ahn et al., 2000; Zhao and Piwnica-Worms, 2001) were

comparable with control cells (Figure 3B). However, we observed that both PGAM1 and PGAM2 physically
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Figure 3. PGAM Interacts with and Modulates p53 Phosphorylation by Chk1

(A) The mRNA levels for p16Ink4 and p53 targets (p21Cip, Bax, and Fas) were analyzed by quantitative PCR in the indicated

MEFs. Indicated MEFs were treated with or without 4-OHT for 4 days, as in Figure 2H.

(B) The assessment for the effect of PGAM overexpression on the profiles of p53, Mdm2, p21, Chk1, and Chk2. Oncogenic

Ras (Ras-G12V) was ectopically expressed in control (wild-type) and Pgam2-Tg MEFs via retroviral infection.

(C) Immunoprecipitation assay was performed using p53�/�MEFs expressing Chk1-myc-his with or without PGAM-FLAG.

MEFs expressing PGAM1-FLAG (upper) or PGAM2-FLAG (lower) were examined. After treatment with 20 mM MG132 for

3 h, cells were lysed and immunoprecipitated with an anti-FLAG antibody and immunoblotted for Chk1 and FLAG.

(D) Schematic diagram of various fragments of PGAM2: full-length (T1), N-terminal (TN), middle-region (T4), and

C-terminal (TC) fragments (upper panel). The binding of each fragment to Chk1 was assessed by co-immunoprecipitation

(lower panels). Extracts from p53�/�MEFs transfected with the indicated plasmids were immunoprecipitated with an anti-

FLAG antibody.

(E) Interaction between endogenous Chk1 and PGAM protein was evaluated with immunoprecipitation in H1299 and WI-

38 cells.

(F) In vitro phosphatase activity against various peptides, phospho-p53 (Ser15), phospho-p53 (Ser20), and phospho-p53

(Ser15/Ser20) was determined using recombinant PGAM1, PGAM2, or lPPase. The peptide sequences of phospho-p53

are shown in Figure S5F. The amount of released phosphate from phosphopeptides was monitored.

*p < 0.05 and **p < 0.005, Dunnett’s multiple comparison test. Data represent the mean G SEM.

See also Figure S5.
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interacted with Chk1, but not with Chk2, in p53�/�MEFs, as shown with an immunoprecipitation assay (Fig-

ures 3C and S5C). To identify the Chk1-interacting domain in PGAM, a series of deletions in PGAM1- and

PGAM2-FLAG were assessed for their ability to bind Chk1 (Figures S5D and 3D). Chk1-myc-his efficiently

co-immunoprecipitated with full-length PGAM1- and 2-FLAG (T1) and the N-terminal one-third of PGAM

(TN) but not with the other central (T4) or C-terminal fragments (TC). Consistently, endogenous PGAM

protein co-immunoprecipitated with endogenous Chk1 protein in H1299 cancer cells but not in human

standard cells WI-38 (Figure 3E).

Although PGAM has been shown to function as a phosphatase for metabolite (White and Fothergill-Gil-

more, 1992), it is unclear whether PGAM possesses activity as a protein phosphatase. We assessed the po-

tential of PGAM to display protein phosphatase activity. Recombinant PGAM1 or PGAM2 proteins with

intact PGAM activity were prepared from Escherichia coli (Figure S5E). None of the recombinant PGAM

proteins displayed any phosphatase activity against phospho-Ser/Thr peptides as a substrate, at any con-

centrations (125, 250, or 500 ng) or in any pH conditions tested (pH 6.2, 7.2, 8.2, and 9.2), whereas lPPase

exhibited clear phosphatase activity (Figures S5F–S5H). In addition, recombinant PGAM proteins exhibited

no phosphatase activity in vitro against phosphopeptides that mimicked phospho-p53 (Ser15, Ser20, or

Ser15/Ser20; Figures 3F and S5F). Taken together, these data imply that PGAM interacts with and impairs

p53 phosphorylation by Chk1, although PGAM is less likely to function as a protein phosphatase.

PGAM and Chk1 Cooperate to Regulate Glycolytic mRNAs

We noticed that the interaction of PGAM with Chk1 in p53�/� MEFs was enhanced under TPA stress

(Figures 4A and S6A), which upregulates glycolytic mRNAs during in vivo chemical tumorigenesis protocol

(Figure 1E). To investigate the physiological significance of the interaction between PGAM and Chk1, we

evaluated the impact of Chk1 on glycolytic mRNA profiles in vitro. We observed that Chk1 knockdown in

the p53-null cell line H1299 was followed by a significant reduction in glucose consumption, glycolytic

flux, and lactate production (Figures 4B–4D). Significant reductions in glycolytic mRNAs and proteins

were also observed in these cells (Figures 4E and 4F). Treatment with the Chk1 kinase inhibitor UCN01,

but not that with the Chk2 kinase inhibitor (Chk2-inhibitor II), induced the downregulation of glycolytic

flux and glycolytic mRNAs in H1299 cells (Figures S6B and S6C). Interestingly, although a low concentration

of UCN01 (50 nM) did not affect glycolytic mRNA levels in wild-type MEFs, the downregulation of glycolytic

mRNAs was observed in Pgam1+/�MEFs (Figure 4G), which displayed the same glycolytic profiles and pro-

liferative capacity as those in wild-type MEFs under standard culture condition (Figures S6D–S6G). These

data support the notion that PGAM and Chk1 cooperatively affect glycolytic mRNA profiles.

Oncogenic Ras Pathway Is Required for the PGAM-Chk1 Interaction

To evaluate the clinical relevance of PGAM-Chk1 cooperation, the impact of PGAM/Chk1 axis on prognosis

of patients with cancer was evaluated. According to the database of non-small cell lung cancer (NSCLC;

jacob-00182-MSK) (Director’s Challenge Consortium for the Molecular Classification of Lung Adenocarci-

noma, et al., 2008) in PrognoScan (http://dna00.bio.kyutech.ac.jp/PrognoScan/) (Mizuno et al., 2009), we

divided 104 patients with NSCLC into four groups in terms of the abundance of PGAM1 and Chk1 in can-

cers; Low-PGAM1 + Low-Chk1 (n = 23), Low-PGAM1 + High-Chk1 (n = 12), High-PGAM1 + Low-Chk1 (n =

29), and High-PGAM1 + High-Chk1 (n = 40) (Figure S7A). We noticed that the prognostic values were most

significantly declined in High-PGAM1 + High-Chk1 group, compared with the others (Figure 5A).

Then, we addressed the question of whether the PGAM/Chk1 axis is involved in any cancer-related genetic

events. In addition to H1299 and HSC-1 (Figures 2E and S3H), we evaluated the impact of PGAM1 siRNA

among thirteen other cancer cells, including skin, breast, colon, bone, and liver cancer cell lines. Among

these 15 in total, four cancer cell lines (H1299, HSC-1, SW480, and DLD-1) displayed the most prominent

changes in glycolytic mRNAs (ALDO1, TPI, GAPDH, and ENO1) following PGAM1 knockdown (Figures

5B and S7B). For the clinical practice of precision medicine, subsets of oncogene and tumor suppressors

are tested to select tailor-made therapy for individuals; for example, 50 cancer-related genes are listed ac-

cording to Tsongalis et al. (2014) (Table S1). We surveyed 15 cancer cell lines we tested, regarding the mu-

tations in these 50 cancer-related genes according to previous studies (Cancer Genome Atlas Research,

2008; Fujii et al., 1995; Hori et al., 2009; Klijn et al., 2015; Oliner et al., 1992). We noticed that aberrations

both in the p53 and Ras pathways were the most common genetic features, shared in these four cell lines

(H1299, HSC-1, SW480, and DLD-1) displaying significant glycolytic decline by PGAM1 knockdown (Table

S1). As patients with NSCLC with High-PGAM1 + High-Chk1 were classified in low-prognosis subgroup
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(Figure 5A), we also analyzed the PGAM/Chk1 axis in 26 human lung adenocarcinoma cells. Based on the

database of Kashiwa Encyclopedia for human genome mutations in Regulatory regions and their Omics

contexts (DBKERO; http://kero.hgc.jp/) (Suzuki et al., 2015), these 26 cells are classified into two subgroups;

cells with genetic aberrations either in the p53 or Ras pathway (n = 14) and those with aberrations in both

(n = 12) (Table S2). Then, we analyzed Pearson correlation between the levels of Chk1 and glycolytic en-

zymes. Correlation coefficient betweenChk1 andmost glycolytic enzymes (HK2, GPI, ALDOA, TPI, GAPDH,

PGK1, PGAM1, ENO1, and PKM1) is high (over 0.4) in the subgroup with aberrations in both, whereas only

that between Chk1 and TPI is high in the former subgroup (Figures 5C, S7C and S7D).

Consistent with these implications on the significance of Ras pathway against PGAM/Chk1 axis, we noticed

that PGAM-Chk1 binding is enhanced by the expression of oncogenic Ras-G12V in p53�/� MEFs (Fig-

ure 5D). To gain the molecular insight on the impact of Ras pathway against PGAM-Chk1 interaction, we

applied several inhibitors for the downstream kinases of canonical Ras pathway in H1299; U126 (MEK inhib-

itor), BI-D1870 (inhibitor for ribosomal S6 kinase [RSK], a downstream kinase of MEK), and Triciribine (Akt

kinase inhibitor). Although Akt inhibition unlikely affected the PGAM-Chk1 interaction (Figure S8A), the
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Figure 4. Cooperation between PGAM and Chk1 Regulates Glycolytic mRNAs

(A) The impact of TPA treatment on the interaction between PGAM1 and Chk1. p53�/� MEFs with expression of Chk1-

myc-his and PGAM1-FLAG were treated with or without 0.1 mg/mL TPA for 48 h, followed by treatment with MG132 for 3 h.

The cell lysates were immunoprecipitated with an anti-FLAG antibody.

(B–F) Impact of Chk1 inactivation on glycolytic profile in Chk1 siRNA-transfected H1299 cells (n = 3). Glucose

consumption, glycolytic flux, and lactate production were shown (B–D). The mRNA and protein levels of glycolytic

enzymes were evaluated in indicated cells (E and F). Intensity of immunoblotting bands was normalized to that of actin.

Relative values were shown, compared with scrambled RNA-transfected H1299 cells.

(G) Comparison of glycolytic mRNAs between WT (n = 3) and Pgam1+/� MEFs (n = 3) with or without mild treatment of

UCN01, a Chk1 kinase inhibitor at a very low UCN01 concentration (50 nM) that exhibits minimal effect in WT MEFs. Data

are relative to WT MEFs, respectively.

*p < 0.05 and **p < 0.005, Student’s t test.

See also Figure S6.
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Figure 5. Oncogenic Ras Enhances PGAM-Chk1 Interaction

(A) Association between the survival and PGAM1/Chk1 levels was analyzed in patients with non-small cell lung cancer

(NSCLC) by PrognoScan database. The survivals of 104 patients with NSCLC (Dataset Jacob-00182-MSK) were plotted

with Kaplan-Meier curve. Patients with NSCLC were divided into four groups: Low-PGAM1+Low-Chk1 (black; n = 23),

Low-PGAM1+High-Chk1 (blue; n = 12), High-PGAM1+Low-Chk1 (green; n = 29), and High-PGAM1+High-Chk1 (orange;

n = 40). *p < 0.05 and **p < 0.005, Log rank test.

(B) Summary of glycolytic mRNA downregulation by PGAM1-knockdown in 15 cancer cell lines tested. Original data of

glycolytic mRNA expression were shown in Figure S7B. (�), <20% reduction; (+), reduction from 20 to 40%; (++), >40%

reduction. *p < 0.05 and **p < 0.005, Student’s t test.

(C) Summary of correlation coefficients between Chk1 and glycolytic genes, which were evaluated in dataset of 26 NSCLC

cell lines. All data were obtained from DBKERO. NSCLC cell lines were classified into two subgroups according to gene

aberrations of p53 and Ras pathways as shown in Table S2.

(D) The impact of Ras-G12V expression on PGAM-Chk1 binding. His-tagged protein pull-down assay was performed in

indicated cells. PGAM1- or PGAM2-FLAG proteins were detected in left or right panel, respectively.

(E–H) The impact of MEK and RSK inhibition against PGAM-Chk1 interaction. H1299 cells were treated with either U126

(MEK inhibitor) or BI-D1870 (RSK inhibitor). Immunoprecipitation assay was performed to evaluate the interaction
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inactivation of MEK/RSK interferes the binding between PGAM-Chk1 (Figures 5E and 5F), followed by sig-

nificant reduction in glycolytic flux (Figures 5G and 5H). Thus, oncogenic Ras signals via MEK/RSK pathway

are much involved in PGAM-Chk1 interaction.

Nutlin-3a Interferes with the PGAM-Chk1 Interaction

Next, we addressed the question of whether interference with the PGAM-Chk1 interaction affects glycol-

ysis. Nutlin-3a is a compound originally designed to inhibit the physical binding between p53 and Mdm2

(Figure S8B) (Vassilev et al., 2004). We examined the effect of Nutlin-3a on PGAM protein, as PGAM also

binds Mdm2 under senescence-inducing stress (Mikawa et al., 2014). Nutlin-3a did not affect the enzymatic

activity of recombinant PGAM in vitro, even with the increased concentrations tested (Figure S8C).

Although PGAM-Mdm2 binding was not affected by Nutlin-3a (Figures 6A and S8D), Nutlin-3a treatment

strikingly abolished PGAM-Chk1 binding in p53�/� MEFs (Figures 6B and S8E). We also treated p53-null

H1299 cells with Nutlin-3a to disrupt PGAM-Chk1 binding to evaluate the effect on glycolytic regulation

(Figure S8F). Indeed, glycolytic flux and glycolytic mRNAs in H1299 cells were downregulated by Nutlin-

3a in a dose-dependent manner (Figures 6C and 6D).

Recently, the consensus sequence ([L/I/V/M]-[W/Y/F]-x-x-[L/I/V/W]) for Nutlin-3a responsive proteins,

including p53, was determined by proteomic analysis (Nicholson et al., 2014). We noticed that two repeats

of this consensus motif are located and conserved in the N terminus of human and mouse PGAM, which

overlap with the Chk1-interacting domains (Figures 3D and 6E). PGAM mutants (W68A and W78A) with

amino acid substitutions in these two repeats of the consensus sequence were generated by PCRmutagen-

esis (Figure 6E). Although the enzymatic activity and protein levels were maintained in both W68A and

W78A mutants (Figures 6F and S8G), PGAM-Chk1 binding was largely impaired (Figures 6G and S8H).

Thus, Nutlin-3a interferes with the PGAM-Chk1 interaction and the maintenance of glycolytic features

but not with the enzymatic activity of PGAM.

Physical Interaction between PGAM and Chk1 Is Essential for BothMaintenance of Glycolysis

and Proliferative Potential in Cancerous Cells

As PGAM mutants for Nutlin consensus motif (W68A and W78A) attenuate the interaction with Chk1 in

p53�/� MEFs with or without Ras-G12V expression (Figures S8I and S8J), we evaluated the physiological

impact of these mutants (W68A and W78A) in the conditions with or without Ras-G12V. For this purpose,

Chk1-expressing p53�/� MEFs with or without Ras-G12V were prepared, followed by retroviral infection

with various versions of PGAM. In the absence of Ras-G12V, co-expression of Chk1 with WT-, W68A-, or

W78A-PGAM resulted in similar profiles for overall glycolytic mRNAs and proliferative capacity (Figures

S8K, S9D, 7F, S8L, S9F, and S9G). In sharp contrast, in the presence of Ras-G12V, ectopic expression of

PGAM-WT in Chk1-expressing p53�/� MEFs increased the glycolytic parameters (glucose consumption,

glycolytic flux, and lactate production), compared with the vector control (Figures 7A–7C and S9A–S9C).

Consistently, the expression of glycolytic mRNAs and proteins were upregulated in these cells (Figures

7D, 7E, S9D, and S9E). In the same genetic background, however, PGAM-W68A and W78A mutants dis-

played no such enhancement in glycolytic profiles (Figures 7A–7E and S9A–S9E).

Strikingly, in the presence of Ras-G12V, both the in vitro proliferative capacity and in vivo tumor growth of

PGAM-WT overexpressing cells weremuch enhanced than control (Figures 7F–7H, S8L, and S9F–S9I). In the

same genetic background, however, the cells with binding-deficient mutations (W68A and W78A) showed

the similar proliferative potentials in vitro and in vivo to those in control (Figures 7F–7H, S8L, and S9F–S9I).

Next, we addressed the question whether W68A or W78A mutation abolished PGAM-Chk1 binding

through modulating PGAM dimerization. For this purpose, NanoLuc Binary Technology (NanoBiT) system

(Promega) is applied, which enables us to quantify protein-protein interaction between the proteins with

large and small NanoBiT tag (Figure S10A) (Dixon et al., 2016). We purified recombinant PGAM1, 2-WT,

W68A, andW78A proteins with NanoBiT tags from the extract of bacteria (Figure S10B). We observed these

recombinant PGAM proteins displayed similar intact enzymatic activity (Figure S10C). Consistently, the

Figure 5. Continued

between PGAM and Chk1 (E and F). Phosphorylation of Thr202/Tyr204 on ERK1/2 and Ser112 on Bad, which is

downstream target of MEK/RSK pathway, was analyzed for assessment of U126 and BI-D1870, respectively. Glycolytic

flux was measured in indicated cells (G and H).

See also Figures S7 and S8.
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Figure 6. Cooperation of PGAM and Chk1 for Glycolytic Regulation Is Abolished by Interfering with Their Binding

(A and B) Immunoprecipitation assay or His-tagged protein pull-down assay was performed to evaluate the effect of

Nutlin-3a on the interaction between PGAM andMdm2 (A) or PGAM-Chk1 binding (B). p53�/�MEFs expressing indicated

vectors were prepared. Cells were exposed to 5 or 10 mMNutlin-3a for 48 h. After treatment with 20 mMMG132 for 3 h, cell

lysates were collected. PGAM2-FLAG proteins were immunoprecipitated by anti-FLAG antibody (A) or Chk1-myc-his

proteins were precipitated by Ni-NTA beads (B).

(C and D) The effect of Nutlin-3a on glycolytic profile. Comparison of glycolytic flux (C) and glycolytic mRNAs (D) among

H1299 cells treated with indicated concentration of Nutlin-3a for 48 h (n = 3). Data are relative to control cells. *p < 0.05

and **p < 0.005, Dunnett’s multiple comparison test.

(E) Diagram of the consensus motif of Nutlin-3-target proteins in the amino terminus of PGAM and p53. Consensus motifs,

[L/I/V/M]-[W/Y/F]-x-x-[L/I/V/W], are indicated in blue and green. The alignments of the conserved consensus sequence in

the amino terminus of PGAM1, 2, and p53 (human and mouse) are also presented. Orange bar, a site for Chk1 binding

identified in Figure 3D. Purple bar, site for Mdm2 binding.

(F)PGAMenzymaticactivitywasmeasured inChk1-expressingp53�/�MEFsretrovirally infectedwith the indicatedvectors (empty

vector, PGAM2-WT-FLAG, PGAM2-W68A-FLAG, and PGAM2-W78A-FLAG) (n = 3 each; upper panel). Protein levels for various

versions of PGAM2-FLAG were shown by western blotting (lower panels). **p < 0.005, Dunnett’s multiple comparison test.

(G) The Chk1-binding activity of PGAM2mutants (W68A andW78A) compared with that of PGAM2-WT was analyzed with

a His-tagged protein pull-down assay. Data represent the mean G SEM.

See also Figure S8.
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Figure 7. W68A and W78A in PGAM, Binding-Deficient Mutations with Intact Enzyme Activity, Abolished the

Enhancement of Glycolytic Profiles and Proliferative Capacity in the Presence of Ras-G12V.

(A–E) Comparison of glycolytic profiles among the cells expressing PGAM2 variants (WT, W68A, or W78A) in the presence

of Ras-G12V. Glucose consumption (A), glucose flux (B), and lactate production (C) were analyzed among indicated cells

on the common genetic background of p53�/�with Ras-G12V and Chk1 (n = 3). The mRNA and protein levels of glycolytic

enzymes were also evaluated in indicated cells (D and E). Intensity of immunoblotting bands was normalized to that of

actin. Data are relative to controls expressing the empty vector.

(F) The effect of indicated PGAM2 variants on cell growth was assessed by crystal-violet staining in Chk1-expressing p53�/�

MEFs with or without Ras-G12V.

(G and H) In vivo tumor growth assay in nude mice. p53�/� MEFs, expressing Ras-G12V, Chk1, and the indicated versions

of PGAM2, were injected subcutaneously into nudemice (n = 6). (G) Representative images of tumors. (H) Measurement of
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dimerization of either PGAM versions displayed the similar values of Kd (dissociation constant), shown by

the saturation curves of NanoBiT detection; 62.5 to 67.1 nM for various versions of PGAM1 and 60.6 to

65.9 nM for those of PGAM2 (Figure S10D). Thus, PGAM-W68 and W78A did not affect dimerization and

enzymatic activity of PGAM. However, we noticed that monomer forms of PGAM were much abundant

in H1299 cancer cells, compared with those in standard WI-38 cells (Figure S10E). These findings support

the possibility that nonenzymatic PGAM is more accumulated in cancer cells.

Finally, we evaluated the impact of enzymatic PGAM mutants in the same setting. As the patients with

PGAM deficiency were previously reported (Naini et al., 2009), the point mutation R90W in the patients

abolished PGAM enzymatic activity (Tsujino et al., 1995). We generated cDNA clone of PGAM1 and 2

with R90W mutation. We observed that such mutation in both PGAM isoforms abolished PGAM activity

(Figures S11A and S11B) but still retains proliferative advantage compared with vector control, in Chk1

and Ras-G12V-expressing p53�/� MEFs (Figures S11C and S11D).

Thus, in accordance with the observation of chemically interfering by Nutlin, the genetical interference of

PGAM-Chk1 binding with intact PGAM activity (W68A,W78Amutations) abolished cancerous proliferation

and enhanced glycolytic profiles, in the presence of oncogenic Ras (Figure 7I).

DISCUSSION

Here we demonstrated a previously unappreciated regulatory mechanism for cancerous glycolysis via the

PGAM-Chk1 interaction. Genetic and chemical dissection for its interaction disclosed a ‘‘non-enzymatic’’

role for PGAM, especially under oncogenic Ras expressing conditions. Thus, we unveiled the noteworthy

impact of interfering with the PGAM/Chk1 axis in the cancerous glycolysis.

First, our data indicate the evident genetic link between PGAM and the global enhancement of glycolytic

profiles frequently observed in cancerous cells. We found amolecular interaction between PGAMandChk1

as notable glycolytic regulator, which is operating in cancer cells, not in standard cells. Moreover, in addi-

tion to the data on the prognosis of patients with cancer, several close correlations between Chk1/PGAM

and glycolytic enzymes identified oncogenic Ras mutations, which are highly prevalent both in human can-

cers and DMBA-treated tissues (Karnoub and Weinberg, 2008), as enhancer of PGAM-Chk1 interaction.

Although the other research has also emphasized the distinct impact of PGAM in cancer metabolism (Evans

et al., 2005; Vander Heiden et al., 2010), we identified the essential effect of PGAM on the boost of glycol-

ysis in the cancerous conditions.

Second, our study also disclosed the key metabolic role of Chk1 for glycolytic regulation in cancer. Chk1,

initially identified as a checkpoint kinase, was known to induce cell-cycle arrest after its activation during

DNA damage or senescence-inducing stress (Sancar et al., 2004). Other studies, however, have suggested

the opposing notions that Chk1 would be the critical driver of cellular proliferation in ES cells and cancer

cells in vitro (Liu et al., 2000; Shimada et al., 2008) and in carcinogenic events in vivo (Tho et al., 2012). Inter-

estingly, Chk1 was reported to be regulated by RSK, the downstream kinase of Ras pathway, during cell

cycle progression (Li et al., 2012). RSK is upregulated in many types of cancer including lung cancer and

promotes cancerous proliferation (Houles and Roux, 2018), whose impacts on the Warburg effect were

scarcely reported. As our findings suggest that oncogenic Ras/RSK activation are closely involved in

PGAM-Chk1 binding, the opposing roles of Chk1 with respect to cell proliferation would be cellular-

context dependent, including the modulation of Ras/RSK pathway.

Third, our findings in the binding-deficient mutants of PGAM implicate that regardless of its enzymatic ac-

tivity, PGAM plays a critical role in the regulation of glycolytic upregulation. Although neither the phospha-

tase nor enzymatic activity of PGAMwas found to be required for the functional cooperation with Chk1, the

physical interaction between PGAM and Chk1 is essential for glycolytic upregulation. These findings are

Figure 7. Continued

tumor volumes are shown. *p < 0.05 and **p < 0.005, Dunnett’s multiple comparison test. Data represent the mean G

SEM.

(I) Schematic model on the significance of PGAM-Chk1 interaction in cancerous glycolysis. Oncogenic Ras augmented

PGAM-Chk1 interaction, followed by enhanced glycolysis in cancer. Genetic or chemical ablation of the interaction

abrogated such enhancement.

See also Figures S8–S11.
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rather consistent with the previous notion that the multifaceted roles of some enzymes are independent of

their catalytic activity (Mdm2 for Poyurovsky et al. [2003]; PP2A for Takemoto et al. [2009]). It is possible that

in cancerous cells with accumulation of PGAM proteins, ‘‘nonenzymatic’’ PGAM cooperates with the Chk1

pathway to boost glycolysis, whose activation is required for the survival of cancers bearing oncogenic Ras

mutation (Dietlein et al., 2015). A plausible explanation for the Warburg effect has been proposed as fol-

lows: besides hypoxic adaptation, it might not only enable cancer cells to meet demands both for energy

and biosynthesis (Lunt and Vander Heiden, 2011) but also protect them from oxidative damages (Kondoh

et al., 2007). Interestingly, the recent studies suggested that PGAM interacts with actin proteins as nonen-

zymatic role, to facilitate cancer motility (Huang et al., 2019; Zhang et al., 2017). In addition to the above, the

identification of nonenzymatic role for PGAM suggested that enhanced glycolysis might support prolifer-

ative capacity of rapidly dividing cells through the cooperation with Chk1.

Finally, our analysis also supported the clinical significance of PGAM-Chk1 interaction. Nutlin-3a, an anti-

cancer drug as inhibitor of p53-Mdm2 binding (Burgess et al., 2016), interfered with the PGAM-Chk1 inter-

action in a p53-independent manner but not with PGAM enzymatic activity. Thus, Nutlin-3a likely also func-

tions as a glycolytic modulator through interfering with the PGAM-Chk1 interaction. Since the discovery of

the Warburg effect, cancer metabolism has long been assumed to be a potential anticancer therapeutic

target. However, enzymatic inhibition of glycolysis has failed in clinical trials as anticancer drugs owing

to their profound adverse effects (Granchi and Minutolo, 2012). Therefore, targeting the binding between

PGAM and Chk1 would represent a potential candidate strategy for anti-cancer therapy.

Limitation of the Study

Skin carcinogenesis protocol was performed in Pgam2-Tg mice, whereas in vivo tumor formation assay in

nude mice was performed in PGAM1- or PGAM2-expressing cells. In the future, it would be worthy to

explore the PGAM/Chk1 axis in human clinical samples.
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Figure S1. Glycolytic profiles in Pgam2-Tg mice. Related to Figure 1 
(A) Ectopic expression of PGAM2-FLAG was detected by immunoblotting in various

tissues from control (wild-type) and Pgam2-Tg mice. Anti-FLAG, anti-PGAM, and anti-

GAPDH antibodies were used. (B) Relative mRNA levels for glycolytic enzymes in

control (WT; n = 4) and Pgam2-Tg (n = 4) mice. Total RNA was extracted from various

tissues, including skin, liver, kidney, muscle, white adipose tissue (WAT), lung, and

heart. (C) Relative mRNA levels for glycolytic enzymes in control (n = 3) and Pgam2-

Tg MEFs (n = 3). Data are relative to those expressed in control. Hk1: hexokinase1;

Hk2: hexokinase2; Hk3: hexokinase3; Gpi: glucose phosphate isomerase; Pfkl:

phosphofructokinase L; Pfkm: phosphofructokinase M; Aldoa: aldolase A; Aldob:

aldolase B;Tpi: triose phosphate isomerase; Gapdh: glyceraldehyde 3-phosphate

dehydrogenase; Pgk1: phosphoglycerate kinase1; Pgam1: phosphoglycerate

mutase1;Eno1: enolase1; Eno3: enolase3; Pkm1: pyruvate kinase M1.

2



A

Mikawa et al Figure S2

B

Time (h)

Control Pgam2-Tg

Control

Pgam2-Tg

R
el

at
iv

e 
ea

r t
hi

ck
ne

ss *

*

**

* *

C D

Tu
m

or
s 

/ m
ou

se

Control Pgam2-Tg

Weeks

3



Figure S2. TPA-induced skin inflammation and chemically induced 
tumorigenesis in Pgam2-Tg mice. Related to Figure 1 
(A-B) Comparison of proinflammatory TPA-treated ears between control (wild-type) 
(n=3) and Pgam2-Tg mice (n=3). (A) Mice at 35 weeks were treated with 10 ng TPA 
on the ears whose thickness were monitored for 8 hours. (B) Representative pictures 
of TPA-treated ears in control and Pgam2-Tg mice. *P<0.05, Student’s t-test. Data 
represent the mean ± SEM. (C) Schematic of the chemically-induced skin 
tumorigenesis protocol. Mice were treated with DMBA on Day 0, followed by treatment 
with TPA twice a week for 20 weeks. Histological examination of tumors was performed 
at 24 weeks. (D) Summary of total tumors during the protocol. 
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Figure S3. Abrogation of PGAM inHSC-1 cells. Related to Figure 2 

 (A-C) The profiles of PGAM isoforms in H1299, HSC-1, and WI-38 cells. 

(A) Validation of antibodies against PGAM1 and 2. Western blotting was performed 

using the extracts from the transfected cells with indicated plasmids. Antibodies 

against PGAM1 (Abcam, ab129191) or PGAM2 (Abcam, ab183027) were applied. (B) 
The mRNA profiles of PGAM isoforms in indicated cells were evaluated by RT-PCR. 

(C) The protein profiles of PGAM isoforms in indicated cells. Anti PGAM antibody 

detects both isoforms, while anti PGAM1 or PGAM2 antibody detects relevant 

isoforms, as shown in panel (A). (D-J) The impact of PGAM1 knockdown in HSC-1 

cells in vitro. HSC-1 cells were transfected with siPGAM1 (n=3) or scrambled RNA 

(n=3). (D) The proliferation curves of PGAM1-knockdown HSC-1 cells. Cells were 

passaged according to 3T3 cell culture protocol. (E-I) The glycolytic profiles were 

evaluated in PGAM1-knockdown HSC-1 cells. Glucose consumption was evaluated 

by measuring glucose concentration in medium (E), whereas glycolytic flux was 

evaluated using 3H-labeled glucose (F). Lactate production was determined by the 

measurements of lactate concentration in medium (G). (H and I) The mRNA and 

protein levels for glycolytic enzymes were assessed. The protein levels of the 

indicated glycolytic enzymes were analyzed by immunoblot (I). (J) Enzymatic activity 

of aldolase, GAPDH, PGK, PGAM and enolase was measured by spectrometric 

assay. *P < 0.05 and **P < 0.005, Student’s t-test. 
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Mikawa et al  Figure S4
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Figure S4. Abrogation of PGAM in H1299 and standard cells.  
Related to Figure 2 

(A-B) H1299 cells with retroviral expression of empty vector, mouse PGAM1-FLAG, 

or mouse PGAM2-FLAG were prepared. Indicated cells were transfected with siRNA 

against endogenous human PGAM1 or scrambled RNA. (A) The levels of glycolytic 

mRNAs were evaluated (n = 3). *P < 0.05 and **P < 0.005, Dunnett’s multiple 

comparison test. (B) Immunoblotting detected both ectopically-expressed mouse 

PGAM-FLAG and endogenous human PGAM proteins in the indicated cells. (C) 
Construction of Pgam1-conditional KO mice is illustrated by a schematic diagram of 

the wild-type (WT), floxed, and Pgam1 (exon 2–4) deleted alleles. (D and E) 
Pgam1flox/flox MEFs with or without Cre-ER were treated with 4-OHT, followed by serial 

passages according to the 3T3 cell culture protocol. Cre (−) and (+) indicate 

Pgam1flox/flox MEFs without or with Cre-ER, respectively. (D) Growth curves of 

indicated cells during 3T3 protocol. (E) SA-β-Gal staining was performed at passage 

6 (PD6) and passage 10 (PD10) in Pgam1 ablated MEFs (Pgam1flox/flox + Cre-ER with 

4OHT) or control MEFs (Pgam1flox/flox with 4OHT). Scale bar indicates 200 µm. (F and 
G) Levels of glycolytic mRNAs in siPgam1-transfected standard cells. Primary MEFs 

(F) or human WI-38 (G) cells were prepared. Data are relative to expression in cells 

transfected with scrambled RNA. *P < 0.05 and **P < 0.005, Student’s t-test. Data 

represent the mean ± SEM. 
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Mikawa et al  Figure S5
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Figure S5. The impact of PGAM on p53 phosphorylation and the assessment of 
protein phosphatase activity of PGAM. Related to Figure 3 
(A-B) The impact of PGAM on the phosphorylation status of p53 was evaluated by 
western blotting. Primary MEFs were stressed by oncogenic Ras-G12V expression (A), 
while H1299 cells with indicated plasmids were treated with 100 µM Etoposide for 3 h 
(B). (C) The interaction between PGAM and Chk2 was examined in p53−/− MEFs 
transfected with HA-Chk2 and PGAM1- or 2-FLAG (upper and lower panels, 
respectively). (D) The evaluation of the interaction between Chk1 and various versions 
of PGAM1-FLAG. Left panel shows schematic diagram of various fragments of PGAM1. 
The binding of each fragment to Chk1 was assessed by co-immunoprecipitation (right 
panels). Extracts from p53−/− MEFs transfected with the indicated plasmids were 
immunoprecipitated with an anti-FLAG antibody. (E) Assessment of enzymatic activity 
for recombinant PGAM1 and PGAM2 protein. (F) The sequence of the 
phosphopeptides used for the in vitro phosphatase assay. RRAT(p)VA phosphopeptide 
(Phospho Ser/Thr) is compatible as a substrate for several serine/threonine 
phosphatases such as protein phosphatases 2A, 2B, and 2C. Phospho p53 (Ser15, 
Ser20, and Ser15/Ser20) phosphopeptides mimicked the p53 fragment phosphorylated 
at Ser15, Ser20, or Ser15/Ser20, respectively. (G and H) Phosphatase activity of 
recombinant PGAM1 and PGAM2 was evaluated. 5000 pmol phosphopeptides were 
incubated with recombinant PGAM1, PGAM2, or λPPase for 30 min, and the amount 
of released phosphate from phosphopeptides was monitored. (G) Phosphatase activity 
against phospho-Ser/Thr peptides was assessed with increasing amounts of 
recombinant PGAM (125, 250, and 500 ng) or λPPase (62.5, 125, and 250 ng). (H) 
Phosphatase activity against phospho-Ser/Thr peptides was assessed using 500 ng 
PGAM1 or PGAM2, or 250 ng λPPase in the indicated pH conditions. Data represent 
the mean ± SEM. 
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Mikawa et al Figure S6

HK1
GPI

PFKL
TPI

ALDOA

GAPDH

PGK1
PGAM1

ENO1
PKM1

H1299 UCN01control

*********** * ** **

C

R
el

at
iv

e 
va

lu
e 

of
 m

R
N

A
R

el
at

iv
e 

va
lu

e 
of

 m
R

N
A

HK1
GPI

PFKL
TPI

ALDOA

GAPDH

PGK1
PGAM1

ENO1
PKM1

Chk2 inhibitor II control

α-Chk1
α-FLAG
(PGAM)

PGAM2-FLAG

Total
lysate

IP: 
α-FLAG

+ +
+-

Chk1-myc-his

TPA --
+
+
+

+ +
+-
--

+
+
+

-63
-36
(kDa)

p53-/- MEFs

F

D

R
el

at
iv

e 
ac

tiv
ity

 o
f P

G
AM

E

G

Pgam1-/+
Hk1

Gpi
Pfkl

Tpi
Aldoa

Gapdh

Pgk1
Pgam1

Eno1

MEFs

**

R
el

at
iv

e 
la

ct
at

e
 p

ro
du

ct
io

n

R
el

at
iv

e 
gl

uc
os

e
co

ns
um

pt
io

n

Passages

Po
pu

la
tio

n 
do

ub
lin

gs

N.S. N.S. N.S.

WT Pgam1-/+

WT
Pgam1+/-

WT
Pgam1+/-

WT
Pgam1+/-

WT
Pgam1+/-

Pkm1

*

WT

R
el

at
iv

e 
va

lu
e 

of
 m

R
N

A
R

el
at

iv
e 

de
tri

tia
te

d
 g

lu
co

se

H1299

*

UCN01 - +

B

R
el

at
iv

e 
de

tri
tia

te
d

 g
lu

co
se

Chk2
inhibitor II - +

R
el

at
iv

e 
de

tri
tia

te
d

 g
lu

co
se

N.S.

A

11



Figure S6. Impact of Chk1 on glycolytic mRNAs. Related to Figure 4 
(A) The impact of TPA treatment on the interaction between PGAM and Chk1. p53-/- 

MEFs with expression of Chk1-myc-his and PGAM2-FLAG were treated with or without 
0.1 µg/ml TPA for 48 hours, followed by treatment with MG132 for 3 h. The cell lysates 
were immunoprecipitated with an anti-FLAG antibody. (B and C) Effect of UCN01 
(Chk1 inhibitor) or Chk2-inhibitor II on glycolytic profiles in H1299 cells (n = 3). H1299 
were exposed to 500 nM UCN01 or 10 µM Chk2 inhibitor II for 12 h (upper and lower 
panel, respectively). (B) Glycolytic flux was evaluated in indicated cells (n=3). (C) The 
glycolytic mRNA expression was detected by qRT-PCR. Data are relative to expression 
in control cells. *P < 0.05 and **P < 0.005, Student’s t-test. (D-G) Cytological 
characterization of Pgam1 heterozygous KO MEFs. (D) Measurement of total PGAM 
enzymatic activity in WT (n = 3) and Pgam1+/- MEFs (n = 3). (E) Glucose consumption 
(left), glucose flux (middle), and lactate production (right) in WT (n = 3) or Pgam1+/- 
MEFs (n = 3). (F) Comparison of glycolytic mRNAs by real-time qRT-PCR between 
wild-type (WT) (n = 3) and Pgam1+/- MEFs (n = 3). Data are shown as relative values 
against those in WT. (G) Growth curves of WT and Pgam1+/- MEFs Three independent 
lines of each MEF were passaged according to 3T3 cell culture protocol. *P < 0.05 and 
**P < 0.005, Student’s t-test. Data represent the mean ± SEM.  
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Mikawa et al.  Figure S7
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Figure S7. Analysis of patient prognosis and cell lines for lung cancer. 
Related to Figure 5 
(A) The comparison plot for PGAM1 and Chk1 levels in 104 NSCLC patients (Dataset 
Jacob-00182-MSK). According to the expression levels of PGAM1 or Chk1, NSCLC 
patients were categorized into four groups, as shown in Figure 5A. Cut-off points for 
PGAM1 and Chk1 were 7.546 and 4.509, respectively. (B) The levels of the glycolytic 
mRNAs, ALDO1, TPI, GAPDH and ENO1, were evaluated in PGAM1-knockdown 
cancer cell lines (n = 3 per cell line). Values for indicated targets are relative to those 
in cells transfected with scrambled siRNA. *P < 0.05 and **P < 0.005, Student’s t-test. 
(C and D) Association of expression levels among indicated genes was evaluated in 
dataset of 26 non-small cell lung adenocarcinoma cell lines as shown in Figure 5C. (C) 
Association between Chk1 and glycolytic enzymes in two indicated subgroups; 14 cells 
with genetic aberration either in p53 or Ras pathway, and 12 cells mutated in both. (D) 
Association between expressions of Chk1 and TUBA1A. Correlation-coefficient and 
significance-probability were presented as r-value and p-value, respectively.  
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Mikawa et al.  Figure S8
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Figure S8. Nutlin and binding-deficient mutations in PGAM interfere with the 
interaction between PGAM and Chk1, but not with PGAM enzymatic activity. 
Related to Figure 5, 6 and 7 
(A) The impact of AKT inhibition against PGAM-Chk1 interaction. H1299 cells were 
treated with Triciribine. Immunoprecipitation assay were performed using anti-Chk1 
antibody. Ser473 phosphorylation on AKT was evaluated. (B) The interaction between 
p53 and Mdm2 during Nutlin-3a treatment was evaluated by immunoprecipitation 
assay. p53−/− MEFs expressing the indicated vectors were exposed to 5 µM or 10 µM 
Nutlin-3a for 48 h, followed by treatment with 20 µM MG132 for 3 h. The lysates were 
immunoprecipitated with anti-p53 antibody. (C) Enzymatic activity of recombinant 
PGAM1 and 2 proteins was assessed in the presence of Nutlin-3a. Various amounts 
of recombinant PGAM1 and 2 proteins (2.5, 5, 10, and 20 ng) were incubated with 
indicated concentrations of Nutlin-3a (upper and lower panel, respectively). Data 
represent the mean ± SEM. (D) The effect of Nutlin-3a on PGAM1 and Mdm2 
interaction was evaluated by the immunoprecipitation assay. (E) The evaluation of 
PGAM1 and Chk1 interaction under Nutlin-3a treatment by the immunoprecipitation 
assay. (F) The effect of Nutlin-3a on endogenous PGAM-Chk1 binding in H1299 cells. 
Cells were exposed to Nutlin-3a for 48 h. After treatment with 20 µM MG132 for 3 h, 
the immunoprecipitation assay was performed, using the indicated antibodies. (G) 
PGAM enzymatic activity in Chk1-expressing p53−/− MEFs retrovirally infected with 
the indicated vectors (empty vector, PGAM1-WT-FLAG, PGAM1-W68A-FLAG, and 
PGAM1-W78A-FLAG) (n = 3 each; right panel). Protein levels for various versions of 
PGAM1-FLAG were shown by western blotting (left panels). (H and I) His-tagged 
protein pulldown assay. The Chk1-binding activity of PGAM1 mutants (W68A and 
W78A) compared to that of PGAM1-WT was analyzed in the absence or presence of 
oncogenic Ras (H and I, respectively). (J) The interaction of PGAM2-W68A or -W78A 
mutant with Chk1. The Chk1-binding activity in various versions of PGAM2 (WT, 
W68A, or W78A) was assessed by His-tagged protein pulldown assay in the 
presence or absence of Ras-G12V. Chk1-expressing p53−/− MEFs with indicated 
genes were analyzed. (K) Comparison of mRNA levels for glycolytic enzymes in 
indicated Chk1-expressing p53−/− MEFs with PGAM2 variants (WT, W68A, or W78A) 
(n = 3). The data are relative to expression in control cells with the empty vector. (L) 
Comparison of cell proliferation in vitro. The effect of PGAM2 variants (WT, W68A, or 
W78A) on cell growth was assessed by crystal violet staining in Chk1-expressing 
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p53−/− MEFs with or without Ras-G12V as shown in Figure 7F. The staining intensities 
for three independent assays were shown as relative cell numbers against control. 
**P < 0.005, Dunnett’s multiple comparison test. Data represent the mean ± SEM. 
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Figure S9. PGAM1 mutants with W68A or W78A abolished the enhancement of 
glycolysis and proliferation in oncogenic Ras expressing cells. Related to 
Figure 7 
(A-E) Comparison of glycolytic profiles among the cells expressing PGAM1 variants 
(WT, W68A, or W78A) in the presence of Ras-G12V. Glucose consumption (A), 
glucose flux (B), and lactate production (C) were analyzed among indicated cells on 
the common genetic background of p53−/− with Ras-G12V and Chk1 (n = 3). The 
mRNA and protein levels of glycolytic enzymes were also evaluated in indicated cells 
(D and E). (F and G) The effect of indicated PGAM1 variants on cell growth in vitro. 
Crystal-violet staining was assessed in Chk1-expressing p53−/− MEFs with or without 
Ras-G12V (F). Intensities of crystal-violet staining were measured (G). (H and I) in 
vivo tumor growth assay in nude mice. p53−/− MEFs, expressing Ras-G12V, Chk1, 
and the indicated versions of PGAM1, were injected subcutaneously into nude mice 
(n=6). (H) Representative images of tumors. (I) Measurement of tumor volumes are 
shown. *P < 0.05 and **P < 0.005, Dunnett’s multiple comparison test. Data represent 
the mean ± SEM. 
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Figure S10. The dimerization efficiency in various versions of PGAM1 and 
PGAM2. Related to Figure 7 
(A) Schematic diagrams of NanoBiT systems. Dimerization of PGAM proteins with 
large and small NanoBiT tag produces luminescence. (B) Coomassie Brilliant Blue 
staining for indicated recombinant proteins prepared from bacteria. (C) Measurement 
of PGAM enzymatic activity in indicated LgBiT-tagged PGAM recombinant proteins. 
(D) Saturated binding of SmBiT-PGAM to LgBiT-PGAM was assessed. 0.25 nM 
SmBiT-PGAM proteins were incubated with various concentration of indicated LgBiT-
PGAM proteins. NanoBiT luminescence of dimerized PGAM proteins was measured. 
The left panels show dimerization of PGAM1 WT (top), PGAM1 W68A (middle), 
PGAM1 W78A (bottom), while the right panels indicate those of PGAM2 WT (top), 
PGAM2 W68A (middle) and PGAM2 W78A (bottom). Triangle; total binding curve of 
the complex between LgBiT and SmBit proteins. Square; background curve of LgBiT 
proteins only. Specific binding curve (circle) is obtained by subtracting background 
signals from total binding ones. Binding dissociation constant (Kd) was estimated 
from the curve of specific binding. (E) Evaluation of monomer and dimer forms of 
PGAM in H1299 and WI-38 cells. After 100kd cutoff filtration, the protein extracts from 
indicated cells were immunoprecipitated by anti-PGAM1 antibody. After the elution of 
PGAM protein from PGAM1 antibody-conjugated beads by specific peptides, eluted 
proteins were cross-linked by 0.5% glutaraldehyde for 5 min. Immunoblotting 
detected monomer or dimer of PGAM proteins (right panel). Left panels showed the 
immunoblotting in total cell lysates of indicated cells without cross-link. 
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Figure S11. The impact of enzymatic mutant PGAM-R90W on cell growth. 
Related to Figure 7 
(A and B) Enzymatic mutation R90W was introduced in PGAM1 (A) and PGAM2 (B). 
Western blotting was performed to detect FLAG tagged PGAM proteins (left panels). 
PGAM enzymatic activities were measured in indicated cells (right panels). (C and D) 
Crystal-violet (CV) staining was assessed in indicated cells to evaluate their 
proliferative capacity (left panels). The intensities of CV staining were evaluated (right 
panels). 
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Table S1. The list of cancer-related genetic aberrations  
 

 

 H1299 HSC-1 HSC-5 Hs578T 
MDA-MB-

231 
BT-474 HCT116 RKO SW480 DLD-1 HT-29 SJSA-1 U2OS Hek293 HepG2 

ABL1  *1 *1 K7R   Y257C F747I      *1  

AKT1  *1 *1           *1  

ALK  *1 *1           *1  

APC  *1 *1     K1454E Q1338* 
I1417fs*2 

K993N 
R727M 

E853* 
T1556fs*3 

  *1  

ATM  *1 *1  N1005I E2468K A1127V  R2461P     *1 V2906I 

BRAF  *1 *1  G464V   V600E   V600E 
T119S 

  *1  

CDH1  *1 *1    H121fs*94       *1  

CDKN2A  *1  c.1_471 de  c.1_471 de   R24fs*20 
E74fs*15 

      *1  

CSF1R  *1 *1           *1  

CTNNB1  *1 *1    S45del       *1 W25_I140de  

EGFR  amp*2   L469W         *1  

ERBB2  *1 *1     L796P      *1  

ERBB4  *1 *1           *1  

EZH2  *1 *1     E169K  R418Q    *1  

FBXW7  *1 *1           *1  

FGFR1  *1 *1    A343V P150L  A268S    *1  

FGFR2  *1 *1    P582L       *1  

FGFR3  *1 *1           *1  

FLT3  *1 *1    V197A 
P986fs*>8 

      *1  

GNA11  *1 *1           *1  

GNAS  *1 *1    Y316C   K338N    *1  

GNAQ  *1 *1    A102G       *1  

HNF1A  *1 *1 K273E  Q495* P174fs*51 P379fs*5      *1  

HRAS  *1 *1 G12D          *1  

IDH1  *1 *1    S261L   G97D    *1  
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Table S1. The list of cancer-related genetic aberrations (continued) 
 

 
 

 H1299 HSC-1 HSC-5 Hs578T MDA-MB-
231 BT-474 HCT116 RKO SW480 DLD-1 HT-29 SJSA-1 U2OS Hek293 HepG2 

IDH2  *1 *1       G190D          *1   

JAK2   *1 *1                    *1   

JAK3   *1 *1                    *1   

KDR  *1 *1                   *1  

KIT   *1 *1             R135H      *1   

KRAS   *1 *1   G13D   G13D   G12V G13D   Q61H   *1   

MET   *1 *1       L238fs*25            *1   

MLH1   *1 *1       S252* L323M   A120S      *1   

MPL   *1 *1                    *1   

NOTCH1   *1 *1       P915L 
G1195R Q2343R          *1   

NPM1   *1 *1                    *1   

NRAS Q61K *1 *1                 Q61K   *1 Q61L 

PDGFRA   *1 *1   Y172F                *1   

PIK3CA   *1       K111N H1047R H1047R   D549N 
E545K P449T    *1   

PTEN   *1                      *1   

PTPN11   *1 *1                    *1   

RB1   *1 *1                    *1   

RET   *1 *1                   *1   

SMAD4   *1 *1               Q311*    *1   

SMARCB1   *1 *1                    *1   

SMO   *1 *1       V404M     T640A      *1   

SRC   *1 *1                    *1   

STK11   *1 *1                    *1   

TP53 del V173L *1 V157F R280K E285K     P309S 
R273H S241F R273H Mdm2 amp*2   *1   

VHL   *1 *1                        
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Table S1. List of cancer-related mutations in 15 cancer cell lines. Related to Figure 5 
Summary of identified mutations in 15 cancer cell lines. These cells were tested in Figure 5B and S7B. Fifty cancer-
related genes were proposed by Tsongalis et al (Tsongalis et al., 2014). 
Gene mutations in 15 cancer cells were described in the following literatures (Cancer Genome Atlas Research, 2008; 
Fujii et al., 1995; Hori et al., 2009; Klijn et al., 2015; Oliner et al., 1992). 
*1 Not determined,  
*2 amp stands for amplification,  
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Table S2 Genetic aberrations of lung adenocarcinoma cell lines 
 
Cells having genetic aberrations either in p53 or Ras pathway 

 Genetic aberrations 
EGFR KRAS NRAS HRAS p53 

A427  G12D    

A549  G12S    

H1437     R267P 

H1648     L35Fs*8 

H1703     c919+1G>T 

H1819     c933+1G>T 

H2126     E62* 

H2228     Q331* 

H2347  L19F 
R481H 

Q61R   

H322     Arg248Leu 

PC-3     K139fs*31 

RERF-LC-KJ     E224D 

VMRC-LCD     R175H 
LC2     S241C 
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Table S2. Genetic aberrations of lung adenocarcinoma cell lines (continued) 
 
Cells having genetic aberrations both in p53 and Ras pathways 

Table S2. Classification of 26 non-small cell lung cancer (NSCLC) cell lines. 
Related to Figure 5 
26 NSCLC cell lines were classified into two subgroups according to gene aberrations 
of p53 and Ras pathways. 
Upper list shows 14 cells harboring genetic aberrations either in p53 or Ras pathway, 
while lower list indicates 12 cells with genetic aberrations in both pathways. 
Gene mutations of NSCLC cells were described in the following literatures  
(Barretina et al., 2012; Chen et al., 1993; Fujita et al., 1999; Iwakawa et al., 2010; Kashii 
et al., 1994; Kaufman et al., 2017; Nagai et al., 2005; Notsuda et al., 2013; Wei et al., 
2003) 
  

 Genetic aberrations 
EGFR KRAS NRAS HRAS p53 

ABC-1 L858R    P278S 

H1299   Q61K   c1_954>AAG 

H1650 E746_A750del    c673-2A>G 

H1975 T790M, L858R    R273H 

II-18 L858R    K164* 

PC-14 E746_A750del    Arg248Trp 

PC-7 G719S G12V   His214Arg 

PC-9 E746_A750del 
L858R 

   Arg248Gln 

RERF-LC-MS  K12S   F134fs*14 

RERF-LC-OK L858R    F113C 

RERF-LC-ad1  G12A   P278F 

RERF-LC-ad2 L747_A750>P    A159V 
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Table S3. The primer sequences for real-time qRT-PCR 
Name    Sequence 

mouse Rpl13a qRT Fw 5’- TGC TGC TCT CAA GGT TGT TCG -3’ 
mouse Rpl13a qRT Re  5’- GCC TTT TCC TTC CGT TTC TCC -3’ 
mouse Hk1 qRT Fw 5'-AAG AAT GGC CTC TCC CGG-3 
mouse Hk1 qRT Re 5'-CGC CGA GAT CCA GTG CAA TG-3' 
mouse Hk2 qRT Fw 5'-ATA TGG TTG CCT CAT CTT GG-3' 
mouse Hk2 qRT Re 5'-CTC CCT CCC TCC CAA TG-3' 
mouse Hk3 qRT Fw 5'-ATT CCT GGA TGC ATA CCC CGT -3' 
mouse Hk3 qRT Re 5'-GCC GCT GCA CCT AAA ACC TTT -3' 
mouse Gpi qRT Fw 5'-CCA ATG CAG AGA CAG CAA AGG-3' 
mouse Gpi qRT Re      5'-CACTTTGGCCGTGTTCGTAGA-3' 
mouse Pfkm qRT Fw 5'-TGG AGC GAC TTG CTG AAT GAT -3' 
mouse Pfkm qRT Re 5'-TCA TTG TCG ATT GAG CCA ACC -3' 
mouse Pfkl qRT Fw 5'-GCT GCA ATG GAG TTG TG-3' 
mouse Pfkl qRT Re 5'-GTA GCC AGG TAGC CAC AG-3' 
mouse Tpi qRT Fw 5'-TGC CAA ACA ATG AGC ACT GC-3' 
mouse Tpi qRT Re 5'-ATC AGA AGC ATG TGA CCG GTG-3' 
mouse Aldoa qRT Fw 5'-CTG GCC ATC ATG GAA AAT GC-3' 
mouse Aldoa qRT Re 5'-TCA AGT CAT GGT CCC CAT CAG-3' 
mouse Aldob qRT Fw 5'-ATC GGC GGA GTG ATC CTT TT-3' 
mouse Aldob qRT Re 5'-TCC AAC TTG ATG CCC ACC A -3' 
mouse Gapdh qRT Fw 5'-AGC CTC GTC CCG TAG ACA AAA-3' 
mouse Gapdh qRT Re 5'-TGG CAA CAA TCT CCA CTT TGC-3' 
mouse Pgk1 qRT Fw 5'-TTT GGA CAA GCT GGA CGT GAA-3' 
mouse Pgk1 qRT Re 5'-GCT TGG AAC AGC AGC CTT GAT-3' 
mouse Pgam1 qRT Fw 5'-GTT GCG AGA TGC TGG CTA TGA-3' 
mouse Pgam1 qRT Re 5'-CAC ATC TGG TCA ATG GCA TCC-3' 
mouse Pgam2 qRT Fw 5’-TGG AAT GAG GAG ATC GCA CCT -3’ 
mouse Pgam2 qRT Re  5’-TCG GAC ATC CCT TCC AGA TGT -3’  
mouse Eno1 qRT Fw 5'-TAT TGC GCC TGC TCT GGT TAG-3' 
mouse Eno1 qRT Re 5'-GGA TGG CAT TTG CAC CAA AT-3' 
mouse Eno3 qRT Fw 5'-GGA GAA GAA GGC CTG CAA TTG -3' 
mouse Eno3 qRT Re 5'-CCC AGC CAT TAG ATT GTG CAA -3 
mouse Pkm1 qRT Fw 5'-CTG TTT GAA GAG CTT GTG GCG -3 
mouse Pkm1 qRT Re 5'-CTG CTA AAC ACT TAT AAG AGG CC -3 
mouse p16INK4 qRT Fw 5'-CCC AAC GCC CCG AAC T -3' 
mouse p16INK4 qRT Re 5'-GCA GAA GAG CTG CTA CGT GAA -3 
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Table S3. Primers for real-time qRT-PCR (continued) 
Name    Sequence 

mouse p21CIP1 qRT Fw 5’-AGA CAT TCA GAG CCA CAG GCA-3’ 
mouse p21CIP1 qRT Re 5'- ATG AGC GCA TCGCAA TCA C -3 
mouse Bax qRT Fw 5'-AGC AAA CTG GTG CTC AAG G -3' 
mouse Bax qRT Re 5'-AGA CAA GCA GCC GCT CAC -3 
mouse Fas qRT Fw 5'-CAG ACA TGC TGTGGA TCT GG -3' 
mouse Fas qRT Re 5'-CCT CAG CTT TAA ACT CTC GGA -3 
human Rpl13a qRT Fw 5’-CTG GAC CGT CTC AAG GTG TT -3’ 
human Rpl13a qRT Re  5’-GCC CCA GAT AGG CAA ACT T -3’ 
human Hk1 qRT Fw 5’-ACA TTG TCT CCT GCA TCT CTG -3’ 
human Hk1 qRT Re  5’-GCC TTA AAA CCC TTT GTC CAC -3’ 
human Gpi qRT Fw 5’-GCT TCT ACC AAT GGG CTC ATC -3’  
human Gpi qRT Re  5’-TGT CCA GGA ACA TGC AGT G -3’ 
human Pfkl qRT Fw 5’-AAC GAG AAG TGC CAT GAC TAC -3’ 
human Pfkl qRT Re  5’-GTC CCA TAG TTC CGG TCA AAG -3’ 
human Tpi qRT Fw 5’-TCA TCG CAG ATA ACG TGA AGG -3’ 
human Tpi qRT Re 5’-CAT CAG AGA CGT TGG ACT TCA G -3’ 
human Aldoa qRT Fw 5’- GGT GTC ATC CTC TTC CAT GAG -3’ 
human Aldoa qRT Re  5’-GTA GTC TCG CCA TTT GTC CC -3’ 
human Gapdh qRT Fw 5’-CTT TGT CAA GCT CAT TTC CTG G -3’ 
human Gapdh qRT Re 5’-TCT TCC TCT TGT GCT CTT GC -3’ 
human Pgk1 qRT Fw 5’- GCT TCT GGG AAC AAG GTT AAA G-3’ 
human Pgk1 qRT Re  5’- CTG TGG CAG ATT GAC TCC TAC -3’ 
human Pgam1 qRT Fw 5’-GGA GGC GCT CCT ATG ATG TC -3’ 
human Pgam1 qRT Re 5’-ATC TTC TGT GAG GTC TGC ATA C -3’ 
human Eno1 qRT Fw 5’- TTG GAG CAG AGG TTT ACC AC -3’ 
human Eno1 qRT Re  5’- TTC CCA ATA GCA GTC TTC AGC-3’ 
human Pkm1 qRT Fw 5’- CCA TAA TCG TCC TCA CCA AGT C-3’ 
human Pkm1 qRT Re  5’- GGA AGA TGC CAC GGT ACA -3’ 
human Chk1 qRT Fw 5’-GAG AAT CCA TCA GCA AGA ATT ACC -3’ 
human Chk1 qRT Re  5’-GAA TGT GCT TAG AAA ATC CAC TGG-3’ 
human Hif1 qRT Fw 5’-AAC ATA AAG TCT GCA ACA TGG AAG -3’ 
human HIf1 qRT Re  5’-TTT GAT GGG TGA GGA ATG GG -3’ 
 
Table S3. Primers for real-time qRT-PCR. Related to Figure 1 to 7 
Sequences of primer used for real-time qRT-PCR in this study. 
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Transparent Methods 
 
Cell culture 
The human cell lines H1299, RKO, SW480, DLD-1, HT-29, Hs578t, MDA-MB-231, 
BT-474, U2OS, and SJSA-1 were obtained from American Type Culture 
Collection, and HCT116, Hek293, HepG2, and WI-38 were from RIKEN 
Bioresources Center. HSC-1 and HSC-5 were obtained from the Japanese 
Collection of Research Bioresources. The PLAT-A packaging cell line was a kind 
gift from Dr. Toshio Kitamura (University of Tokyo). The human cell lines (H1299, 
Hs578t, MDA-MB-231, BT-474, HCT116, RKO, SW480, DLD-1, HT-29, HEK293, 
HepG2, SJSA-1, U2OS, and WI-38) were cultured in Dulbecco’s modified Eagle 
medium (DMEM) containing 10% fetal bovine serum (FBS). HSC-1 cells were 
cultured in DMEM with 20% FBS. HSC-5 cells were cultured in Iscove’s modified 
Dulbecco’s medium with 10% FBS. MEFs isolated from embryos (postcoital day 
13.5) of C57BL/6 mice were grown in DMEM with 10% FBS and antibiotics 
(Carnero et al., 2000). Pgam1flox/flox ER-Cre MEFs were generated by crossing 
between CAG-ER-Cre mice (Hayashi and McMahon, 2002) and Pgam1flox/flox mice. 
At passage 4, Pgam1flox/flox ER-Cre MEFs or Pgam1flox/fox MEFs were treated with 
0.5 µM 4-OHT for 4 days. Ablation of PGAM was detected by immunoblotting. All 
cell lines were tested and shown to be negative for mycoplasma contamination. 

Cytochemical staining for SA-β-Gal was performed (Dimri et al., 1995). At 
passage 6 and 10, Pgam1flox/flox ER-Cre or Pgam1flox/flox MEFs were washed twice 
with ice-cold phosphate-buffered saline (PBS) buffer and were treated by fixation 
solution (2% formaldehyde and 0.2 % glutaraldehyde in PBS buffer) for 5 min at 
room temperature. After removing the fixation solution, cells were washed twice 
with PBS buffer and were incubated with staining solution (40 mM citric acid /Na 
phosphate buffer, 5 mM K4[Fe(CN)6] 3H2O, 5 mM K3[Fe(CN)6], 150 mM NaCl, 2 
mM MgCl2, 1 mg/ml X-gal) for overnight at 37°C. Images were recorded using a 
microscope (IX-73, Olympus, Tokyo, Japan),  

Cells were subjected to retroviral infection or transfection of plasmids. For 
the proliferation assay, 5 × 103 cells were plated on 6-cm dishes. After 10 days of 
culture, cells were fixed with 2% glutaraldehyde, followed by crystal violet staining. 
Then the staining was resolved by 1% sodium dodecyl sulfate. The optical density 
was determined at 590 nm. 
 
Plasmid DNA 
Expression of full-length mouse Pgam1 and Pgam2 with a C-terminal 3X FLAG tag 
and deletion mutants of Pgam2 (TN, T4, and TC) with a C-terminal 3X FLAG tag 
driven by the CMV promoter of the p3xFLAG-CMV14 expression vector were 
constructed previously (Mikawa et al., 2014). The deletion mutants of Pgam1 (TN, 
T4, and TC) with a C-terminal 3X FLAG tag were generated by PCR. The relevant 
variants of Pgam1 and Pgam2 mutamts (W68A, W78A and R90W) were generated 
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by PCR-based mutagenesis. pHygro MarxIV retroviral vectors encoding mouse 
Pgam1 and Pgam2 variants were also generated. The relevant variant Pgam1 and 
Pgam2 cDNAs were ligated into the XhoI site of Hygro Marx IV vectors. The pBabe-
puro-Ras-G12V plasmid was a gift from Dr. Kayoko Maehara (Kio University, Nara, 
Japan). The pcDNA3.1 Chk1-myc-his vector was previously described (Niida et al., 
2007). Chk1 cDNAs were sub-cloned into WZLneo retroviral vectors. Human p53 
cDNA was sub-cloned into the pcDNA3.1 vector containing a 3X HA sequence 
between the NheI and XhoI sites. Expression of full-length p53 with an N-terminal 
3X HA-tag was driven by the CMV promoter. Expression vector of human Mdm2 
with an N-terminal HA-tag was constructed previously (Mikawa et al., 2014). 
NanoBiT vectors were generated using Flexi Vector Systems (Promega). In brief, 
wild type and relevant mutants of Pgam1 and Pgam2 (W68A, W78A) were 
subcloned into pF4A plasmid. Subsequently, those relevant variants of Pgam were 
subcloned into N-terminus LgBiT-tagging plasmid (pFN33K) or SmBiT-tagging 
plasmid (pFN35K).   
 
Reagents 
Reagents were obtained as follows. UCN01, DMBA, TPA, and Nutlin-3a from 
Sigma–Aldrich (St. Louis, MO). MG132 from Peptide Institute, Inc. (Osaka, Japan). 
U126 and Triciribine from FUJIFILM Wako Pure Chemical Corporation (Osaka, 
Japan). BI D-1870 from Selleck (Houston, TX). 
 
 
Mouse models 
All procedures for animal experiments were performed in accordance with the 
principles and guidelines of the Animal Care and Use Committees of Kyoto 
University Graduate School of Medicine. 

Pgam2-Tg mice were generated previously (Mikawa et al., 2014). Pgam2-
Tg is a strain of transgenic C57BL/6 mice that overexpresses the Pgam2 with a 
3xFLAG tag under the cytomegalovirus immediate-to-early enhancer element and 
chicken β-actin promoter (CAG) (Niwa et al., 1991) For generation of the Pgam1 
KO mouse, the targeting vector was constructed as follows. Exons 2–4 of mouse 
Pgam1 were flanked by two loxP sequences, and a FLP recognition target (FRT)-
flanked neo-cassette was inserted upstream of exon 2. The targeting vector was 
introduced into mouse embryonic stem cells (C57BL/6), which were injected into 
blastocysts (BALB/c). Generated founder mice (Pgam1flox/+ [neo+]) were crossed 
with FLP transgenic mice for removal of the neo-cassette from heterozygous flox 
mice. Pgam1+/- mice were generated by crossing Pgam1flox/+ mice and CAG-Cre 
Tg mice, which ubiquitously express Cre recombinase under the CAG promoter. 
Genotyping was performed using PCR.  
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Mouse experiments 
For assessment of inflammatory response, control or Pgam2-Tg mice (18 weeks 
old, male) were treated with 10 ng TPA on the ears, and the thickness of the ears 
was measured by constant pressure thickness gauge (PG-201, TECLOCK, 
Japan). 

Chemically induced skin tumorigenesis was performed (Takeuchi et al., 
2010). Briefly, seven age-matched (12–15 weeks old, male) pairs of control or 
Pgam2-Tg mice were shaved and treated with 100 µg DMBA in 100 µl acetone. 
Mice were subsequently treated twice weekly with 12.5 μg TPA in 100 µl acetone 
for 20 weeks. The number and size of papillomas per mouse were recorded every 
2 weeks. The nude mouse xenograft assay was performed (Mikawa et al., 2014). 
CAnN.Cg-Foxnnu/CrlCrlj mice (8 weeks old, male) were injected subcutaneously 
with 5 × 106 cells suspended in 100 µl phosphate-buffered saline. Tumor formation 
was assessed after 2 weeks.  

 
Transfection and retroviral infection 
Transfection of siRNA for mouse Pgam1, human Pgam1 (Life Technologies, 
Carlsbad, CA), and human Chk1 (Sigma–Aldrich, St. Louis, MO) was performed 
using Lipofectamine siRNA MAX (Invitrogen, Carlsbad, CA). Expression vectors 
were transfected by polyethylenimine MAX (Polysciences, Warrington, PA). The 
PLAT-A packaging cell line was used for retroviral production (Morita et al., 2000). 
Retrovirus-infected cells were treated with hygromycin (75 µg/mL), G418 (400 
µg/mL), or puromycin (2 µg/mL) for positive selection of infected cells. 
 
Immunoblotting and immunoprecipitation 
For immunoblotting, cell lysates were prepared (Carnero et al., 2000). Cells were 
washed twice with ice-cold PBS and lysed in buffer containing 50 mM Tris–HCl (pH 
7.5), 200 mM NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), 10% glycerol, 
0.5% Triton-X100, 50 mM NaF, 1 mM dithiothreitol (DTT), 1 mM Na3VO4, 1 mM 
phenylmethanesulfonyl fluoride (PMSF), and protease inhibitor cocktail (Sigma–
Aldrich). After 30 min on ice, lysates were cleared by centrifugation. Equivalent 
amounts of protein were resolved by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE). Anti-PGAM antibody (1:1000), which recognizes both 
PGAM1 and PGAM2 (Mikawa et al., 2014). Anti-FLAG (F1804, 1:1000), anti-human 
Chk1 (C9358, 1:3000), and anti-Actin (A4700, 1:1000) from Sigma–Aldrich. Anti-
p21CIP1 (ab7960, 1:500), anti-phospho-p53 (Ser23; ab59206, 1:500), anti-Chk2 
(ab8108, 1:1000), anti-Aldolase (ab169544, 1:1000), anti-PGK1 (ab38007, 1:1000), 
anti-ENO1 (ab155102, 1: 1000), anti-PGAM1 (ab129191, 1:1000) and anti-PGAM2 
(ab183027, 1:1000) from Abcam (Cambridge, UK). Anti-c-myc (9E10, 1: 200), anti-
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human p53 (DO-1, 1:1000), anti-mouse Chk1 (Sc-8404, 1:1000) and anti-Mdm2 
(SMP-14, 1:200) from Santa Cruz Biotechnology (Dallas, TX). Anti-mouse p53 
(1C12; #2524, 1:1000), anti-phospho-p53 (Ser20; #9287, 1:200), anti-phospho-p53 
(Ser15; #9284, 1:1000), anti-phospho-Chk1 (Ser345; #2341, 1:1000), and anti-
phospho-Chk2 (Thr68; #2661, 1:500), anti-ERK1/2 (#4370, 1:2000), anti-phospho-
ERK1/2 (Thr202/Tyr204, #4370, 1:2000), anti-Bad (#9339, 1:1000), anti-phospho-
Bad (Ser112, #9391, 1:500), anti-Akt(pan) (#4691, 1:1000) and anti-phospho-Akt 
(Ser473, #9271, 1:1000) from Cell Signaling Technology (Danvers, MA). Anti-
GAPDH (MAB374, 1:3000) from Merck Milipore (Burlington, MA). 

For immunoprecipitation assays, cell lysates were precipitated with the 
relevant antibody for 2 h. Immune complexes were recovered with protein G-
agarose beads, washed four times with lysis buffer, and boiled in 2× Laemmli 
sample buffer for 5 min. Denatured immune complexes were resolved by SDS-
PAGE. The quantification of the immunoblot bands were performed using ImageJ. 

Dimer and monomer forms of proteins were detected by the modification 
of the previous protocol as follows (Jagemann et al., 2008). Cultured cells were 
lysed with lysis buffer (50 mM Tris–HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 10% 
glycerol, 0.5% Triton-X100, 50 mM NaF, 1 mM Na3VO4, 1 mM PMSF and protease 
inhibitor cocktail (Sigma–Aldrich). After the fractionation by centrifugal 100 kDa 
cutoff filter (Amicon Ultra-4, Merck Milipore Ltd) for 45 min, the resulting extracts 
were immunoprecipitated by anti-PGAM1 antibody (ab2220, Abcam) for 2 hours. 
Immunoprecipitants were incubated with 100 µg/ml synthetic peptide 
(KAMEAVAAQGKAKK), whose sequence matched with those in C-terminus of 
PGAM1 protein, the antigenic determinant of anti-PGAM1 antibody. Eluted PGAM 
proteins were cross-linked by 0.5% glutaraldehyde for 5 min at 37°C. Forms of 
PGAM proteins were evaluated by immunoblotting. 
 
Measurement of glycolytic enzyme activity 
Enzymatic activity of aldolase, GAPDH, PGK and enolase were measured 
spectrophotometrically using enzyme activity assay kit (BioVision, Milpitas, CA). 
PGAM enzymatic activity was measured (Kondoh et al., 2005). Briefly, cell lysates 
or recombinant proteins were incubated in reaction buffer (100 mM Tris–HCl [pH 
8.0], 100 mM KCl, 0.5 mM EDTA, 2 mM MgCl2, 0.2 mM NADH, 3 mM ADP, and 10 
µM 2,3-diphosphoglycerate) with enzyme mixture (0.6 U lactate dehydrogenase, 
0.5 U pyruvate kinase, and 0.1 U enolase). Next, 1mM 3-phosphoglyceric acid 
was added and incubated at 37°C. Activity was measured as NAD+ release. 
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Glycolytic flux measurement 
Glycolytic flux was measured (Kondoh et al., 2005). After cells were cultured for 11 
h in DMEM containing 25 mM glucose, medium was exchanged for DMEM 
containing 4.25 mM glucose. After 10 h, D-[3-3H] glucose was added to the 
medium. After 6 h, an aliquot of medium was precipitated with perchloric acid. The 
supernatant was applied to a column filled with DOWEX 1X8 200–400 MESH Cl 
resin (Sigma–Aldrich), and the amount of [3H] water in the flow through was 
normalized to protein content. The glucose and lactate concentrations in the 
culture medium were determined using a glucose or lactate assay kit (BioVision), 
respectively. The value of glucose consumption or lactate production was 
normalized to the protein content of the corresponding cell lysate. 
 
RNA analysis 
Total RNA was extracted with TRIzol (Invitrogen). cDNA pools were generated 
using the ReverTra Ace qPCR RT kit (Toyobo, Osaka, Japan). Real-time 
quantitative PCR was performed using the Thermal Cycler Dice Real-Time system 
(Takara Bio., Kusatsu, Japan) and Thunderbird SYBR qPCR mix (Toyobo). Gene 
expression levels were normalized to Rpl13a mRNA and presented as values 
relative to controls. The primers used are shown in Table S3. 
 
In vitro phosphatase assay 
Phosphatase activity was determined using a serine/threonine phosphatase assay 
system (Promega). Phosphopeptides were obtained from Scrum Inc. (Tokyo, 
Japan). Briefly, 5000 pmol phosphopeptide was preincubated in various pH 
conditions (pH 6.2, 7.2, 8.2, and 9.2) in phosphatase reaction buffer (50 mM 
imidazole, 0.2 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic 
acid, 5 mM MgCl2, 0.02% beta-mercaptoethanol, and 0.1 mg/mL bovine serum 
albumin) for 3 min at 30°C (Dhananjaya and D'Souza, 2011). Recombinant PGAM 
protein or λPPase was added to the reaction and incubated for 30 min at 30°C. 
Free phosphate was detected as the absorbance by the complex of molybdate, 
malachite green, and phosphate, according to the manufacturer’s protocol. 
RRA(pT)VA phosphopeptide is compatible as a substrate for several 
serine/threonine phosphatases such as protein phosphatases 2A, 2B, and 2C 
(Donella Deana et al., 1990). For assessment of phosphatase activity against 
phospho-p53 (Ser15), phospho-p53 (Ser20), and phospho-p53 (Ser15 and Ser20) 
peptides, 5000 pmol phosphopeptides were incubated with 500 ng recombinant 
PGAM1 or PGAM2 protein or 250 ng λPPase in phosphatase reaction buffer (pH 
7.2). The phospho-p53 peptide sequences were described previously (Shreeram 

35



et al., 2006). 
 
NanoBiT assay 
NanoLuc Binary Technology (NanoBiT) assay (Promega) is utilized to quantify 
protein-protein interaction between the proteins with large and small NanoBiT tag 
(Dixon et al., 2016). NanoLuc is newly invented smaller luciferase than standard 
luciferase, but much more stable with production of much brighter luminescence. 
NanoBiT comprises two complementary small and large subunits (SmBiT and 
LgBiT, respectively), whose assembly generates luminescence. This technology 
was applied for accurate measurement of protein interactions (Song et al., 2020). 
We generated recombinant PGAM1, 2-WT, W68A, and W78A proteins with 
NanoBiT tags from the extract of bacteria. A saturation assay was performed using 
low levels (0.25 nM) of SmBiT fusion proteins for the binding with LgBiT partners 
at increasing concentrations (0.98 to 500 nM). LgBiT fusion proteins were 
incubated with or without SmBiT fusion protein in binding buffer (1% BSA in PBS) 
for 60 min. At the end of incubation, binding intensity was measured as 
luminescent emission by GloMAX navigator (Promega). Specific binding intensity 
was obtained by subtraction of background signal (luminescence of LgBiT protein 
only) from total binding signal (luminescence of LgBiT protein with SmBit protein). 
For estimation of binding dissociation constant (Kd), we used 1:1 binding model 
and the curve of specific binding was fitted using GraphPad prism 8 (GraphPad 
software, CA).  
 
Prognosis analysis 
The correlation between the expression level of PGAM1 or Chk1 and the survival 

rates of NSCLC patients was assessed by the minimum P-value approach using 

the PrognoScan database (Mizuno et al., 2009). Dataset of Jacob-00182-MSK 

was evaluated (Director's Challenge Consortium for the Molecular Classification of 

Lung et al., 2008). NSCLC patients were classified into two groups according to 

PGAM1 or Chk1 expression levels in their tumors at all possible cutoff points. The 

P-value of risk differences between any two groups were analyzed using the log-

rank test. The cutoff was selected at the point giving the most significant P-value. 
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Statistical analysis 
All data are expressed as the mean ± standard error of the mean (SEM) from at 
least three independent experiments. Comparisons between two independent 
groups were analyzed using an unpaired Student’s two-tailed t-test. Comparisons 
between multiple groups were analyzed using one-way analysis of variance and 
Dunnett’s multiple comparison test.  
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