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Autophagy is a stable self-sustaining process in eukaryotic cells. In this process,
pathogens, abnormal proteins, and organelles are encapsulated by a bilayer membrane
to form autophagosomes, which are then transferred to lysosomes for degradation.
Autophagy is involved in many physiological and pathological processes. Nucleotide-
binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome,
containing NLRP3, apoptosis-associated speck-like protein containing a caspase
recruitment domain (ASC) and pro-caspase-1, can activate caspase-1 to induce
pyroptosis and lead to the maturation and secretion of interleukin-1 β (IL-1 β) and IL-
18. NLRP3 inflammasome is related to many diseases. In recent years, autophagy has
been reported to play a vital role by regulating the NLRP3 inflammasome in inflammatory
nervous system diseases. However, the related mechanisms are not completely clarified.
In this review, we sum up recent research about the role of the effects of autophagy
on NLRP3 inflammasome in Alzheimer’s disease, chronic cerebral hypoperfusion,
Parkinson’s disease, depression, cerebral ischemia/reperfusion injury, early brain injury
after subarachnoid hemorrhage, and experimental autoimmune encephalomyelitis and
analyzed the related mechanism to provide theoretical reference for the future research
of inflammatory neurological diseases.
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INTRODUCTION

Autophagy, which is a closely coordinated process, isolates aged/damaged organelles and misfolded
and mutated proteins into bilayer membrane vesicles named autophagosomes and then fuses
into lysosomes, leading to the degradation of isolated components (Lv et al., 2021). Autophagy
can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy
according to the inducing signal, action time, target type, and transport pathway into lysosomes.
Macroautophagy involves the formation of a double membranous vesicle that isolates the
cytoplasm. The complete vesicles, called autophagosomes, then fuse with lysosomes for subsequent
degradation (Wang et al., 2019a; Zhu et al., 2019). In microautophagy, the substances destined for
degradation reach lysosome cavity through invagination of lysosome or endoplasmic membrane
(Sahu et al., 2011). Chaperone-mediated autophagy occurs only in mammalian cells, allowing
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selective degradation of proteins with specific amino acid
sequences (Figure 1; Kaushik and Cuervo, 2012). Among
these three autophagy processes, macroautophagy, referred
to as autophagy, is the most active form and has been
widely studied in diseases (Ueno and Komatsu, 2017; Galluzzi
and Green, 2019). Beclin1, LC3, P62, and other conserved
proteins participate in the autophagy process and are regarded
as autophagy-related proteins (Wang et al., 2019a). Among
them, LC3, a ubiquitin-like protein, promotes autophagosome
formation (Fujita et al., 2008; Pyo et al., 2012). It regulates
the elongation and closure of the autophagic membrane by
binding with phosphatidylethanolamine (Ichimiya et al., 2020).
Autophagy is affected by many factors, such as endoplasmic
reticulum stress (ERS), immune or inflammatory stimulation,
nutritional deficiency, Ca2+ concentration and accumulation
of organelle damage (Tooze and Yoshimori, 2010; Mizushima
et al., 2011). Autophagy is usually maintained at the basic
level under physiological conditions. In the pathological state,
the upregulated autophagy can eliminate the dysfunctional
proteins in cells and help them survive (Glick et al., 2010).
Autophagy is a double-edged sword because, if autophagy is
maintained at a high level, autophagy leads to cell death (Liu
and Levine, 2015; Garcia-Huerta et al., 2016). Many studies find
that autophagy played an important role in neurodegenerative
diseases (Menzies et al., 2015), cardiovascular diseases (Shirakabe
et al., 2016), infection, and immunity (Deretic et al., 2013).
In particular, the role of autophagy in inflammatory nervous
system diseases is reported by many researchers; for example,
MiR-124 inhibits the secretion of proinflammatory mediators by
promoting autophagy in Parkinson’s disease (PD) (Yao et al.,
2019), and the upregulation of autophagy of hippocampal cells
improved memory impairment led by ethanol through an anti-
inflammatory mechanism (Liu et al., 2019). The mechanism
about autophagy in inflammatory nervous system diseases needs
to be further studied.

Inflammasomes, first proposed by Martinon and coworkers
in 2002 (Martinon et al., 2002), are a kind of protein cytoplasmic
complex, which can activate the effective inflammatory
mediators. As a part of the innate immune response against
invading pathogens, inflammasomes are activated by cell
infection or pressure stimulation and induce the expression,
maturation, and release of a variety of proinflammatory
cytokines; therefore, triggering a series of inflammatory reactions
(Schroder and Tschopp, 2010; Yaribeygi et al., 2019). The
nucleotide-binding oligomerization domain-like receptor (NLR)
family can be divided into three subfamilies: the NLRPs (NLRP1-
14), the NODs (NOD1-2, NOD3/NLRC3, NOD4/NLRC5,
NOD5/NLRX1, and CIITA), and the IPAF subfamily, including
NAIP and IPAF (Schroder and Tschopp, 2010). The NLRP3
inflammasome is the most extensively studied one and contains
NLRP3, pro-caspase-1, and apoptosis-associated speck-like
protein (ASC). The NLRP3 inflammasome can be activated
by different stimuli, including damage-associated molecular
patterns (DAMPS) and pathogen-associated molecular patterns
(PAMPs). The first stimulation is mediated by pro-inflammatory
pathways, such as toll like receptor (TLR)-mediated activation
of nuclear factor kB (NF-kB), which upregulates the protein

expressions of NLRP3 and pro-IL-1β (Munoz-Planillo et al.,
2013; Lu et al., 2014; Abais et al., 2015; Toldo and Abbate,
2018) and reduces the activation threshold of NLRP3 through
additional post-translational modifications (Swanson et al.,
2019; Yang et al., 2019). The second stimulation includes
Ca2+ signaling disturbance, K+ efflux, ROS production,
mitochondrial dysfunction, and lysosomal rupture, which
promotes the assembly of inflammasome and activates caspase-1,
thus catalyzing the conversion of pro-IL-1β to active IL-1β

(Figure 2; Schroder and Tschopp, 2010; He et al., 2016).
Activated caspase-1 also cleaves gasdermin D to trigger a
specific cell death form named pyroptosis (Shi et al., 2015).
Pyroptosis is a new form of pro-inflammatory cell death
program and characterized by the pore formation induced
by the Gasdermin family and subsequently cellular lysis as
well as the release of several pro-inflammatory intracellular
cytokines. Two signaling pathways participate in pyroptosis,
including caspase-4/5/11 and caspase-1mediated pathways
(Shi et al., 2015). The NLRP3 inflammasome is involved in
the pathogenesis of many complex diseases, including type 2
diabetes (Hong et al., 2018), atherosclerosis (Grebe et al., 2018),
obesity, and gout (Kim et al., 2014). It is reported that the
NLRP3 inflammasome also played a vital role in central nervous
system (CNS) diseases (Song et al., 2017), including Alzheimer’s
disease (AD) (Ising et al., 2019) PD (Saresella et al., 2016; Wang
et al., 2019b), and HIV-associated neurocognitive disorders
(Walsh et al., 2014). The main neurotoxicity of NLRP3 is the
release of IL-1β. The neuroinflammation mediated by IL-1β

plays a vital role in CNS diseases, including AD, stroke, multiple
dementia, and sclerosis. IL-1β, which is a pleiotropic cytokine,
activates microglia and astrocytes to induce the synthesis of
other pro-inflammatory and chemotactic mediators in the CNS.
Peripherally, IL-1β can induce the expansion of brain-derived T
cells (Mendiola and Cardona, 2018).

Autophagy can negatively regulate the activation of the
NLRP3 inflammasome by scavenging endogenous activators
of inflammasome, including reactive oxygen species (ROS)
of damaged mitochondria, inflammatory components, and
cytokines. In contrast, NLRP3 inflammasome activation
can inhibit autophagy by cleaving signal molecule Toll/IL-
1R domain-containing adaptor-inducing IFN-β (TRIF)
with caspase-1. The decrease of signal molecule TRIF
inhibits autophagy induced by the TLR4-TRIF signaling
pathway. The inflammasome activation can also suppress
mitophagy in macrophages in a caspase-1-dependent
manner, which leads to mitochondrial dysfunction. The
interaction between inflammasome and autophagy is
necessary to the balance host defense against inflammation
and prevent excessive inflammation (Cao et al., 2019;
Biasizzo and Kopitar-Jerala, 2020).

It is reported that autophagy plays an important role by
influencing the NLRP3 inflammasome in many diseases,
including nephropathy, inflammatory bowel disease,
inflammatory lung disease, and sepsis (Cao et al., 2019); however,
the relevant mechanism has not been fully explained. To study
the mechanism of the effects of autophagy on the NLRP3
inflammasome in inflammatory nervous system diseases may
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FIGURE 1 | The general processes of macroautophagy, microautophagy, and chaperone-mediated autophagy. In the process of macroautophagy, the inclusion is
wrapped by a double membrane structure to form an autophagosome and then fuses with a lysosome to degrade. Microautophagy refers to the direct invagination
of the lysosomal membrane and the encapsulation of the cell contents. In chaperone-mediated autophagy, cytoplasmic proteins combine with chaperones, and are
transported to lysosomal chambers and then digested by lysosomal enzymes.

provide a new strategy for the treatment of diseases. Therefore,
in this review, we are the first to sum up the recent studies
about the effects of autophagy on the NLRP3 inflammasome in
inflammatory nervous system diseases including AD, Parkinson’s
disease, Chronic cerebral hypoperfusion (CCH), depression,
cerebral ischemia/reperfusion injury, Early brain injury (EBI)
after Subarachnoid hemorrhage (SAH), and Experimental
autoimmune encephalomyelitis (EAE) and analyzed the related
mechanism to provide reference for future research.

THE EFFECTS OF AUTOPHAGY ON
NLRP3 INFLAMMASOME IN
ALZHEIMER’S DISEASE

Alzheimer’s disease is a destructive neurodegenerative disease
characterized by extensive loss of neurons and synapsis and
gradual loss of memory. The main pathological features of AD
are amyloid plaques and neurofibrillary tangles consisting
of hyperphosphorylated filaments of the microtubule-
associated protein tau. The extracellular accumulation of
amyloid beta (β-amyloid) in senile plaques is the main cause
of neurodegeneration (Lane et al., 2018). β-amyloid activates
the NLRP3 inflammasome to release proinflammatory cytokine
IL-1β in microglia. The activated NLRP3 inflammasome
leads to neuroinflammation in the brains of AD patients
(Bodles and Barger, 2004; Heneka et al., 2013). ASC, a NLRP3

inflammasome component, is elevated in the blood of AD
patients and may serve as a biomarker of AD (Scott et al., 2020).
Cho et al. (2014) speculate that the autophagy of microglia
might be involved in the degradation of extracellular amyloid
fibers and play an important role in regulating β-amyloid
fiber-mediated inflammatory response. Their research shows
that autophagy was induced in microglia by extracellular
β-amyloid fibers and involved in the degradation of extracellular
β-amyloid fibers. The NLRP3 inflammasome was upregulated
in microglia induced by β-amyloid fibers. In addition, the
inhibited autophagy enhanced the activation of the NLRP3
inflammasome, indicating that autophagy negatively regulates
the NLRP3 inflammasome induced by β-amyloid fibers (Cho
et al., 2014). Collectively, it can be deduced that autophagy
can eliminate β-amyloid fibers and inhibit the β-amyloid
fiber-induced NLRP3 inflammasome to ameliorate AD. Heavy
metals, including manganese, are involved in the etiology of
neurodegenerative diseases. Manganese (Mn) is an important
trace element, which is widely distributed in the earth’s crust.
Excessive intake of Mn can lead to neurodegenerative diseases
(Iregren, 1999; Erikson and Aschner, 2003). In Mn-induced
microglia within the hippocampus of mice, Mn induced
NLRP3 inflammasome-mediated inflammation by increasing
the protein expression level of the NLRP3 inflammasome
and the levels of caspase-1 and IL-1β. Mn treatment also
dramatically inhibited autophagy by impairing autophagic
lysosomal degradation activity, which mediated the activation
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FIGURE 2 | The NLRP3 inflammasome is activated by signal 1 and signal 2. Signal 1, which is mediated by microbial ligands recognized by TLR, activates NF-KB
pathway to upregulate pro-IL-1β and NLRP3 expression. Signal 2, which consists of three ways, induces the assembly of NLRP3 inflammasome complex. (1) In the
noninfectious condition, K+ efflux activates the NLRP3 inflammasome. (2) The endogenous and exogenous particles, such as uric acid crystallization, induce
lysosome damage to activate NLRP3 inflammasome. (3) The increase of intracellular Ca2+ concentration increases mtROS level to activate NLRP3 inflammasome.
NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; ASC, apoptosis-associated speck-like protein containing a C-terminal caspase recruitment
domain; ROS, reactive oxygen species; TLR, toll-like receptor.

of the NLRP3 inflammasome. In conclusion, Mn could induce
NLRP3 inflammasome-mediated neuroinflammatory injury in
the hippocampus of mice through inhibiting autophagy (Wang
et al., 2017). Autophagy-NLRP3 inflammasome is a potential
target for the treatment of neurotoxicity caused by heavy metals.

Eicosapentaenoic acid (EPA), mainly in the form of
eicosapentaenoic acid-enriched phosphatidylcholine (EPA-
PC), is mainly in marine products, including antarctic krill
and marine cucumber (Burri et al., 2012). EPA-PC upregulated
β-amyloid-suppressed autophagy through promoting the ratio
of LC3II/LC3I and autophagosome formation and suppressed
β-amyloid-induced the NLRP3 inflammasome to mitigate
AD (Wen et al., 2019). Autophagy can clear β-amyloid;
therefore, the protective effect of EPA-PC on AD is through
inducing autophagy to eliminate β-amyloid-induced NLRP3
inflammasome. Another study shows that the reduction of Beclin
1 and the impairment of autophagy promoted IL-1β and IL-18
release from microglia (Houtman et al., 2019). In addition,
microglia isolated from the brains of AD patients showed
reduced level of Beclin 1, suggesting that microglial autophagy
was impaired in the brains of AD patients (Lucin et al., 2013).
Progesterone (PG) is an endogenous neurosteroid, which plays
a neuroprotective role in several neurodegenerative disease
models (Borowicz et al., 2011; Espinosa-Garcia et al., 2014). It
is found that PG can improve the cognitive impairment of AD

(Liu et al., 2013; Qin et al., 2015). To elucidate the molecular
mechanism of PG neuroprotection, Yang Hong et al. treated
astrocytes with PG and found that PG could significantly inhibit
β-amyloid-induced neuroinflammatory response and regulated
the function of astrocytes by inhibiting ERS and activating
autophagy (Hong et al., 2016, 2018). β-amyloid activated
NLRP3 inflammasome-mediated inflammation and inhibited
autophagy in astrocytes, and PG inhibited β-amyloid-induced
activation of NLRP3 inflammasome-mediated inflammation
by upregulating astrocyte autophagy (Hong et al., 2019).
In conclusion, enhancing autophagy to suppress an NLRP3
inflammasome-mediated neuroinflammatory response is a new
strategy for the treatment of AD.

THE EFFECTS OF AUTOPHAGY ON THE
NLRP3 INFLAMMASOME IN
PARKINSON’S DISEASE

Parkinson’s disease is the second most common
neurodegenerative disease and currently still incurable. It is
characterized by major motor dysfunction and other nonmotor
symptoms, such as cognitive changes, autonomic nervous
dysfunction, sleep disorders. The pathological property of
Parkinson’s disease is the progressive loss of dopaminergic
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neurons and the accumulation of Lewy bodies (LBS) in the
neuron with fiber α-synuclein aggregates as the main protein
component (Hou et al., 2020; Schwab et al., 2020). New evidence
suggests that the low-grade systemic inflammation contributes
to the development of degenerative changes in the brain in PD
(Wang et al., 2014; Goldberg and Dixit, 2015; Poewe et al., 2017).
Therefore, the precise control of excessive neuroinflammation
can ameliorate PD. The NLRP3 inflammasome can cause
chronic low-degree inflammation (Lu et al., 2014) and is
activated in several PD models (Wang et al., 2019b; Haque
et al., 2020). Zhou et al. (2016) found that the levels of mature
IL-1β and activated caspase-1 in the plasma of PD patients
were increased, indicating the inflammation was activated in
the pathological process of PD. Consistent with the clinical
data, the same results were confirmed in the serum of PD
mice. Kaempferol (Ka), a natural polyphenolic small molecule,
inhibited neurodegeneration by relieving neuroinflammation
in a PD mouse model induced by lipopolysaccharide (LPS).
Ka also decreased the protein expression level of the NLRP3
inflammasome and the levels of caspase-1 and IL-1β induced
by LPS. The inhibition of Ka disappeared completely in the
primary microglia from the NLRP3 knockout PD mouse
model, indicating that the NLRP3 inflammasome mediated the
neuroprotective effect of Ka. Further mechanism studies show
that Ka could counteract LPS-induced inhibition of autophagy
and inhibit LPS-induced NLRP3 inflammasome expression
by inducing NLRP3 degradation, which were reversed by the
autophagy inhibitor (3-MA). Therefore, it can be inferred that
Ka inhibits the NLRP3 inflammasome through promoting
autophagy. In addition, Ka can promote the ubiquitination
of NLRP3. In summary, by inducing NLRP3 ubiquitination-
modified degradation, Ka improves LPS-induced NLRP3
inflammasome-related neurodegeneration via promoting NLRP3
degradation through autophagy (Han et al., 2019). Whether Ka
can suppress the NLRP3 inflammasome through autophagy via
the other ways, such as scavenging reactive oxygen (ROS), needs
further study. With the NLRP3 inflammasome and autophagy as
targets, Ka has a potential therapeutic effect on PD.

THE EFFECTS OF AUTOPHAGY ON THE
NLRP3 INFLAMMASOME IN CHRONIC
CEREBRAL HYPOPERFUSION

Chronic cerebral hypoperfusion, which is a state of chronic
cerebral blood flow reduction, is associated with some
cerebrovascular and neurodegenerative diseases, such as
Alzheimer’s disease (AD) and carotid artery stenosis (Hainsworth
and Markus, 2008; Arsava et al., 2018; Choi et al., 2019; Shang
et al., 2019). CCH is reported to increase the levels of NLRP3,
caspase-1, and IL-1β in the hippocampus and thalamus of AD
mice (Shang et al., 2019; Matsuyama et al., 2020). However,
the effects of autophagy on the NLRP3 inflammasome in
CCH has not been studied. To determine whether autophagy
is involved in the activation of the NLRP3 inflammasome
and its possible mechanism in CCH, Shao-Hua Su et al.
conducted a series of studies and found that CCH caused

proinflammatory cytokine release, lysosome dysfunction, and
autolysosome accumulation, resulting abnormal autophagy
(Su et al., 2017, 2018). Mechanism research revealed that, in
rat hippocampus, CCH activated the NLRP3 inflammasome
and impaired autophagy, which was significantly attenuated
by URB597 (the fatty acid amide hydrolase inhibitor). The
autophagy inhibitor 3-MA and lysosome inhibitor CQ could
neutralize the effects of URB597 on the CCH-induced NLRP3
inflammasome, suggesting that URB597 alleviated CCH-induced
NLRP3 inflammasome activation through promoting restoring
CCH-inhibited lysosomal function of autophagy. URB597 could
promote CCH-induced defective autophagy by preventing
ROS accumulation, and ROS could activate the NLRP3
inflammasome, suggesting that URB597 inhibited CCH-induced
NLRP3 inflammasome partly via clearing ROS. In conclusion,
URB597 alleviated inflammatory injury by suppressing the CCH-
induced NLRP3 inflammasome through promoting autophagy
and inhibiting ROS accumulation. Autophagy consisted of three
steps, including autophagy formation, transport to lysosome,
and degradation in lysosome (Su et al., 2019). Whether the
first two participated in CCH-induced NLRP3 inflammasome
needs further study.

THE EFFECTS OF AUTOPHAGY ON
NLRP3 INFLAMMASOME IN
DEPRESSION

Depression is a chronic recurrent and debilitating mental disease
characterized by depression, loss of pleasure, inferiority complex,
poor sleep or appetite, and inattention. Depression seriously
impairs one’s ability to work or study and even has adverse
effects on one’s daily life. In developed countries, depression
is the main cause of disability (Smith, 2014; Wang et al.,
2020). Increased inflammation is involved in the progression
of depression, and the activation of NLRP3 inflammasome
in microglia is an important feature of CNS inflammation
under chronic stress (Pan et al., 2014; Pariante, 2017). Studies
show that the NLRP3 inflammasome level in peripheral blood
mononuclear cells is increased in depressive patients (Alcocer-
Gomez et al., 2014). In rodents, depression induced by LPS
is associated with activation of NLRP3 inflammasome in the
brain (Pan et al., 2014). Inflammatory inhibitors have therapeutic
effects on depression (Raison et al., 2013). Andrographolide
is a diterpenoid lactone with anti-inflammatory and antitumor
activities, and it exerts potential neuroprotective effects in
diseases of the CNS (Wang et al., 2016; Islam et al.,
2018). Andrographolide significantly inhibited inflammatory
response in the prefrontal cortex of chronic unpredictable mild
stress (CUMS)-induced mice to alleviate depression. In the
prefrontal cortex of CUMS mice, Andrographolide inhibited
NLRP3 inflammasome-mediated inflammation by decreasing
the assembly of the NLRP3 inflammasome and induced
autophagy. CQ, an autophagy flux blocker, could attenuate the
antidepressant and anti-inflammatory effect of andrographolide,
suggesting that andrographolide might ameliorate depression
by inhibiting NLRP3 inflammasome-mediated inflammatory
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injury through inducing autophagy in CUMS mice, which needs
further study (Geng et al., 2019). The underlying mechanism of
andrographolide in improving depression by affecting autophagy
and the NLRP3 inflammasome, including how andrographolide
induced autophagy, remains to be elucidated. Autophagy and
NLRP3 are potential targets for the treatment of depression.

THE EFFECTS OF AUTOPHAGY ON
NLRP3 INFLAMMASOME IN CEREBRAL
ISCHEMIA/REPERFUSION INJURY

Ischemic stroke is still the leading cause of acquired disability
and death in adults worldwide. Reperfusion is the main
method for the treatment of ischemic stroke, but it can cause
serious secondary brain tissue injury, which is called cerebral
I/R injury (Donnan et al., 2008; Zhang et al., 2020). Much
evidence suggests that inflammation plays a vital role in the
occurrence and development of ischemic stroke (Dirnagl et al.,
1999). The NLRP3 inflammasome participates in cerebral I/R
injury after stroke (Wang et al., 2015; Qiu et al., 2016).
Qingkailing alleviates cerebral I/R injury by inhibiting AMPK-
mediated activation of NLRP3 inflammation (Ma et al., 2019).
Edebenone improves cerebral I/R injury by inhibiting the activity
of the NLRP3 inflammasome (Peng et al., 2020). Autophagy
and the NLRP3 inflammasome are proven to be related to
cerebral I/R injury (Qiu et al., 2016; Sun et al., 2020), but
its mechanism is not fully clear. Resveratrol (3,4,5-trihydroxy-
trans-stilbene, RSV), a natural polyphenolic compound, is shown
to have protective effects in cerebral I/R injury (Burns et al.,
2002; Shrikanta et al., 2015; Lu et al., 2020). The results
of He et al. (2017) show that resveratrol could improve
rat cerebral I/R injury by reducing brain water content and
cerebral infarct volume and increasing neurological scores.
The mechanism research revealed that RSV suppressed NLRP3
inflammasome-mediated inflammation through decreasing the
levels of NLRP3 inflammasome, caspase-1, IL-1β, and IL-18
induced by cerebral I/R injury. Moreover, RSV upregulated
Sirt1 expression and promoted autophagy in rat cerebral I/R
injury, and 3-MA (an autophagy inhibitor) inhibited autophagy
and NLRP3 inflammasome, suggesting that RSV suppressed
NLRP3 inflammasome activation through autophagy promotion.
Sirt1 siRNA downregulated Sirt1 expression and abolished the
effects of RSV on autophagy and NLRP3 inflammasome. Given
these results, it can be deduced that RSV ameliorates cerebral
I/R injury by inhibiting the NLRP3 inflammasome through
autophagy induction via increasing Sirt1expression (He et al.,
2017). The Sirt1-AMPK pathway plays a protective role in
ischemic stroke (Wang et al., 2011), so whether RSV ameliorates
cerebral I/R injury by inhibiting the NLRP3 inflammasome
through autophagy induction via Sirt1-AMPK pathway is worth
studying. GSK3β is a serine/threonine kinase, which participates
in the signal pathway through a phosphorylation-mediated
signaling cascade, is activated by phosphorylation. Inactivation
of GSK-3β promotes neuronal survival (Zhou et al., 2011; Chen
et al., 2016; Chien et al., 2018). The expression of p-GSK-3β

was increased in the 24 h following reperfusion after middle

cerebral artery occlusion (Chen et al., 2016). GSK-3β siRNA
and GSK-3β inhibitor alleviated cerebral I/R injury in rats,
demonstrating that inhibition of GSK-3β could alleviate cerebral
ischemia/reperfusion injury. The NLRP3 inflammasome played
a vital role in cerebral I/R injury, and I/R significantly elevated
the levels of the NLRP3 inflammasome, cleaved-caspase-1, IL-
1β, and IL-18, which was abrogated by treatment with GSK-3β

inhibitor or GSK-3β siRNA, indicating that the inhibition of
GSK-3β alleviated I/R-induced brain injury by inhibiting NLRP3
inflammasome-mediated inflammation. The inhibiting GSK-3β

could enhance autophagic activity under I/R stimulation, and the
autophagy inhibitor could abrogate the effects of the inhibition
of GSK-3β on I/R-induced brain injury, which suggested that
the suppression of GSK-3β ameliorated cerebral I/R injury
in rats by suppressing NLRP3 inflammasome activation via
promoting autophagy (Wang et al., 2019c). The signaling
pathways of GSK-3β regulating autophagy and NLRP3 are still
to be elucidated.

THE EFFECTS OF AUTOPHAGY ON
NLRP3 INFLAMMASOME IN EARLY
BRAIN INJURY AFTER SUBARACHNOID
HEMORRHAGE

Subarachnoid hemorrhage is a stroke with high mortality and
a high incidence rate (Ciurea et al., 2013). Early brain injury
occurs by increasing intracranial pressure and then decreasing
cerebral perfusion at the moment of hemorrhage (Schneider et al.,
2018). Recent studies show that EBI plays an important role in
the poor prognosis of SAH patients. In the past decade, more and
more evidence has shown that NLRP3 inflammasome-mediated
neuroinflammation promotes the progression of EBI (Sercombe
et al., 2002; Dumont et al., 2003; Ostrowski et al., 2006; Chen et al.,
2013, 2016; Fann et al., 2013; Cho et al., 2014). Mitophagy is a
selective form of autophagy that specifically scavenges damaged
mitochondria and can negatively regulate NLRP3 inflammasome
(Bienert et al., 2007; Youle and Narendra, 2011). It has been
reported that melatonin could improve brain edema by reducing
brain water content and attenuated neurological dysfunction by
increasing the neurological scores after SAH. Mechanism studies
show that melatonin could enhance mitophagy by increasing
the LC3-II/LC3-I ratio and the expression levels of mitophagy-
associated proteins (PINK1/Parkin) and Atg5, and inhibit
NLRP3 inflammasome-mediated inflammation by decreasing
the levels of ROS generation, NLRP3 inflammasome, and
pro-inflammatory cytokine secretion, and microglial activation
induced by SAH. Although 3-mA pretreatment reversed the
above effects of melatonin. Moreover, melatonin treatment
significantly reduced neuronal cell death induced by SAH. From
all above, it could be inferred that melatonin-induced mitophagy
protected EBI after SAH by inhibiting the activation of NLRP3
inflammasome (Cao et al., 2017). The relationship between
mitophagy and reduced ROS generation needs to be further
studied. Whether inflammasome activation affects mitophagy is
still to be elucidated.
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FIGURE 3 | The mechanism of autophagy inhibiting NLRP3 inflammasome. Autophagy can inhibit the activation of the NLRP3 inflammasome by decreasing ASC,
increasing NLRP3 phosphorylation and clearing ROS. ASC, apoptosis associated speck like protein; ROS, reactive oxygen species.

THE EFFECTS OF AUTOPHAGY ON
NLRP3 INFLAMMASOME IN
EXPERIMENTAL AUTOIMMUNE
ENCEPHALOMYELITIS

Multiple sclerosis (MS) is a chronic inflammatory autoimmune
disease characterized by immune-mediated demyelination and
neurodegeneration of the CNS. EAE is an animal model of
MS that has been widely studied in recent years (Zepp et al.,
2011). Cannabinoid receptor 1 (CB2R) is mainly expressed in
immune cells intimately and has been reported to be related to
the inflammation in MS. A large number of studies show that
CB2R and the NLRP3 inflammasome play an important role in
the development of EAE (Rossi et al., 2011; Lou et al., 2012; Inoue
and Shinohara, 2013). Activating CB2R could ameliorate clinical
symptoms and leukocyte infiltration in EAE. CB2R-deficiency
notably increased NLRP3 expression and the secretion of IL-
1β and activated Casp-1 activation in EAE, and HU-308 (CB2R
agonist) had the opposite effects, indicating that CB2R inhibited
NLRP3 inflammasome-mediated inflammation. CB2R-deficiency
also decreased the levels of LC3-II/LC3-I ratio and Beclin 1
in EAE, and HU-308 had the opposite effects, suggesting that
CB2R promoted autophagy. Inhibition of autophagy with ATG5
siRNA attenuated the inhibitory effect of HU-308 on the NLRP3
inflammasome, suggesting that the induction of autophagy
mediates, at least partly, the inhibitory effect of CB2R on NLRP3
inflammasome formation. Collectively, activation of CB2R can
improve EAE through suppression of NLRP3 inflammasome via
upregulating autophagy, which provides a good strategy to treat

MS (Shao et al., 2014). The mechanism of autophagy inhibiting
NLRP3 inflammasome in EAE remains to be studied. Contrary
to the above conclusion, there has been a report that inhibition of
autophagy of dendritic cells attenuated inflammatory infiltration
in EAE mice (Bhattacharya et al., 2014), which might be due to
the different species of target cells.

CONCLUSION

In conclusion, autophagy plays an important role in the
development and treatment of many nervous system diseases
by affecting NLRP3 inflammasome. The relevant mechanism is
very complex and needs to be further clarified. At present, most
studies confirm that autophagy attenuates inflammatory injury
by inhibiting the NLRP3 inflammasome. Autophagy inhibits
the NLRP3 inflammasome by reducing ASC, phosphorylating
NLRP3, and scavenging ROS (Figure 3; Cao et al., 2019). In
contrast, autophagy also promotes the NLRP3 inflammasome
in yeast cells (Dupont et al., 2011). Whether autophagy can
promote the NLRP3 inflammasome in mammalian cells needs to
be further explored. Although autophagy plays an important role
by regulating the NLRP3 inflammasome in neuroinflammatory
injury, there are still many problems to be solved. For example,
can autophagy affect NLRP3 inflammasome through other
pathways? Are there side effects of promoting autophagy to
inhibit inflammatory injury? With the continuous progress of
research, targeting autophagy and NLRP3 inflammation may
offer a new way for the treatment of inflammatory nervous
system diseases.
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