
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(2):610-630 | https://dx.doi.org/10.21037/qims-22-235

Original Article

Image-spectral decomposition extended-learning assisted by 
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Background: Multi-energy computed tomography (CT) provides multiple channel-wise reconstructed 
images, and they can be used for material identification and k-edge imaging. Nonetheless, the projection 
datasets are frequently corrupted by various noises (e.g., electronic, Poisson) in the acquisition process, 
resulting in lower signal-noise-ratio (SNR) measurements. Multi-energy CT images have local sparsity, 
nonlocal self-similarity in spatial dimension, and correlation in spectral dimension.
Methods: In this paper, we propose an image-spectral decomposition extended-learning assisted by 
sparsity (IDEAS) method to fully exploit these intrinsic priors for multi-energy CT image reconstruction. 
Particularly, a nonlocal low-rank Tucker decomposition (TD) is employed to utilize the correlation and 
nonlocal self-similarity priors. Moreover, considering the advantages of multi-task tensor dictionary learning 
(TDL) in sparse representation, an adaptive spatial dictionary and an adaptive spectral dictionary are trained 
during the iterative reconstruction process. Furthermore, a weighted total variation (TV) regularization term 
is employed to encourage local sparsity.
Results: Numerical simulation, physical phantom, and preclinical mouse experiments are performed to 
validate the proposed IDEAS algorithm. Specifically, in the simulation experiments, the proposed IDEAS 
reconstructed high-quality images that are very close to the references. For example, the root mean square 
error (RMSE) of IDEAS image in energy bin 1 is as low as 0.0672, while the RMSE of other methods are 
higher than 0.0843. Besides, the structural similarity (SSIM) of IDEAS reconstructed image in energy bin 1 
is greater than 0.98. For material decomposition, the RMSE of IDEAS bone component is as low as 0.0152, 
and other methods are higher than 0.0199. In addition, the computational cost of IDEAS is as low as 98.8 s 
for one iteration, and the competing tensor decomposition method is higher than 327 s.
Conclusions: To further improve the quality of the reconstructed multi-energy CT images, multiple prior 
regularizations are introduced to the multi-energy CT reconstructed model, leading to an IDEAS method. 
Both qualitative and quantitative evaluation of our results confirm the outstanding performance of the 
proposed algorithm compared to the state-of-the-arts.
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Introduction

Multi-energy computed tomography (CT) has huge 
potentials in material identification, tissue characterization 
and metal artifacts reduction (1). Due to the lower costs and 
more flexible implementation, dual-energy CT (DECT) 
has been applied to different clinical applications (2,3). In 
principle, DECTs are the most predominant approaches for 
accurately reconstructing two basis materials by providing 
two distinct energy windows. Yet, many clinical and 
industrial applications require three or more basis material 
images (4). The currently available DECT system uses 
either dual-source with dual-detector, dual-layer detectors, 
or switchable dual sources (5). However, the detector is 
still energy-integrating. It results in significant spectral 
overlap and subjects to spectral blurring. Compared with 
DECT, the state-of-the-art photon-counting detector 
(PCD) based multi-energy CT has remarkably higher 
distinguishability. The PCD hardware usually employs a 
semiconductor sensor (e.g., CdTe, CdZnTe) to capture the 
energy information from the transmitted X-ray spectrum 
passing through materials. Thus, PCD based multi-energy 
CT can sample more data points from a single exposure 
without additional radiation dose for image reconstruction 
and multi-material decomposition. In addition, the beam 
hardening artifacts and spectrum overlap between the 
multi-energy images are minimized. With these unique 
advantages, the multi-energy CT technologies can provide 
abundant spectral-spatial characteristics, which significantly 
improves the quality of reconstructed channel-wise images 
and the accuracy of material decomposition map (6). 
Hence, multi-energy CT plays a critical role in numerous 
applications such as K-edge imaging (7), low-dose CT (8), 
and material decomposition (9). Nevertheless, there are still 
some drawbacks to be solved for multi-energy CT, such as 
the quantum noise, charge sharing and pulse pileup effects. 
These factors can lead to lower signal-noise-ratio (SNR) 
projection datasets, compromising multi-energy images 
and material decomposition accuracy. How to reconstruct 
high-quality images has been of great interest for multi-

energy CT in recent years. To overcome these difficulties, 
some researchers focus on developing more mature higher-
powered PCDs (10). Others pay attention to proposing 
effective multi-energy CT image reconstruction models to 
suppress the noisy artifacts. In this work, we will develop 
advanced reconstruction algorithms.

Multi-energy CT images have local sparsity, nonlocal 
self-similarity in spatial dimension and correlation in 
spectral dimension. The local sparsity is inherited from 
traditional CT image, the correlation property is based on 
the similarity between multi-energy bin images, and the 
nonlocal self-similarity is based on many similar image 
patches. To utilize those intrinsic priors, various multi-
energy CT reconstruction models have been proposed. 
Early multi-energy CT reconstruction algorithms usually 
used two-dimensional (2D) methods to reconstruct single 
energy images individually. Following this strategy, several 
studies have been reported. For example, Xu et al. (11) 
adopted a total variation (TV) regularization to multi-energy 
CT. Meantime, a vector-based dual-dictionary learning (DL) 
method was reported in (12). Zhang et al. proposed a TV-
TV and TV spectral mean model to improve the multi-
energy CT images in (13). However, such algorithms are 
unsatisfactory because they only consider local sparsity 
and ignore the intrinsic correlation priors. To tackle this 
issue, Wang et al. adopted a high-quality full-spectrum 
prior image as a supervision information to optimize the 
multi-energy CT reconstruction images (14). Meanwhile, 
to obtain narrow energy bin images with lower noise, Yu  
et al. applied the prior image constrained compressed 
sensing (PICCS) framework to photon-counting CT, 
generating the spectral PICCS (SPICCS) (15,16). Although 
these channel-wise reconstruction methods exploit both 
local sparsity and the correlation priors to a certain degree, 
they take a great deal of time to optimize the parameters in 
practice due to the large number of energy bins. 

To jointly consider the correlation and nonlocal self-
similarity information for multi-energy CT reconstruction, 
low rank (LR) regularization and tensor-based processing 
methods were introduced to multi-energy CT (4).  
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In (17), a LR constraint is introduced to multi-energy CT 
reconstruction. Gao et al. proposed a prior rank, intensity 
and sparsity model (PRISM) (18) by modeling spectral 
images as the superposition of a low-rank matrix and a 
sparse matrix. Semerci et al. combined the tensor-based 
nuclear norm (TNN) and TV regularizations for multi-
energy CT (19). Tensor dictionary learning (TDL) was 
developed in (20) by considering the advantages of DL 
in sparse representation. Later in (21), encouraged by 
the advantages in edge preservation, the image gradient  
L0-norm regularization was introduced to TDL model 
for low-dose multi-energy CT (22). Moreover, a spectral-
image similarity-based tensor with enhanced-sparsity 
(SISTER) method was proposed in (23). Meanwhile, a 
spatial-spectral cube matching frame (SSCMF) method was 
proposed (24). Then, to address the limitation of SSCMF, 
Wu et al. proposed a non-local low-rank cube-based tensor 
factorization (NLCTF) method (25).

However, the NLCTF still has some limitations. First, 
the cube extraction and aggregation operation methods in 
the NLCTF algorithm can result in the inconsistency issue 
of the overlapped pixels and increase the computational 
complexity per iteration. Second, the DL aims to find a 
set of atoms for a given patch-wise training dataset, where 
each patch can be represented by a few of these atoms. By 

using a well-trained dictionary, noise can be effectively 
removed. However, the NLCTF does not contain a DL 
component, which means the NLCTF does not fully code 
the intrinsic correlation and nonlocal self-similarity priors. 
Third, NLCTF mainly focuses on exploring the correlation 
and nonlocal self-similarity priors by formulating low-rank 
model, and the local sparsity property of single energy-bin 
image is relaxed. 

To address these problems of NLCTF and fully utilize 
the local sparsity, correlation and nonlocal self-similarity 
priors in multi-energy CT images, in this work, we propose 
an image-spectral decomposition extended-learning assisted 
by sparsity (IDEAS) algorithm for multi-energy CT image 
reconstruction. As shown in the flowchart in Figure 1, 
first, a nonlocal low-rank Tucker tensor decomposition 
model is proposed based on the inherent correlation and 
nonlocal self-similarity regularizers. Compared to the 
whole multi-energy images, the rank of similar patch group 
is much lower, and therefore, to simplify the computational 
complexity, we use the k-means++ clustering method to 
explore the nonlocal self-similarity property. Second, 
inspired by the advantages of TDL in sparse representation, 
the multi-task DL is employed in terms of an adaptive 
spatial dictionary and an adaptive spectral dictionary which 
are trained during an iterative reconstruction process. 

Figure 1 Flowchart of the proposed IDEAS method. Here, the convex hull represents low-dimensional manifold space. The “stars” 
indicated by the arrow of noise-free projections and reference images are the mapping of ground-truth solution on low-dimensional 
manifold. Noisy projections, which otherwise lie off the manifold, are mapped as the reconstructed images by using SART algorithm and 
different regularization terms (Tucker decomposition, tensor DL and WTV), thereby reconstructing their corresponding ground-truth. 
IDEAS, image-spectral decomposition extended-learning assisted by sparsity; SART, simultaneous algebraic reconstruction technique; DL, 
dictionary learning; WTV, weighted total variation.
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Third, a weighted TV regularization term is employed to 
encourage local sparsity of single energy-bin image. Due 
to the good capabilities of noise suppression and edge 
preservation of image-domain material decomposition 
method, we consider a linear assumption and use an image-
domain material decomposition method to obtain high-
quality basis material images.

The main contributions of this paper are listed as 
follow. First, IDEAS method is developed to fully encode 
the local sparsity, correlation and nonlocal self-similarity 
properties of multi-energy CT images by combining 
multiple regularizations, including non-local low-rank 
Tucker decomposition, TDL and weighted TV. Second, an 
effective split-Bregman technique is developed to optimize 
the IDEAS algorithm. Third, numerical experiments on 
numerical simulations and physical phantom experiments 
show that the proposed IDEAS method reaches better 
performance than the state-of-the-art algorithms in terms 
of qualitative and quantitative measurements. In addition, 
IDEAS model can be used for multi-spectral image 
denoising and dynamic magnetic resonance imaging.

Methods

Multi-energy CT imaging model

Multi-energy CT provides several sets of projections 
simultaneously by dividing X-ray spectrum into different 
energy channels with appropriate post-processing steps. 
Considering the noise in projections, the forward model for 
fan-beam geometry can be expressed as a linear system:

M= +     [1]

where   1 2,1 

T T S
s s S     Y  denote the multi-energy CT 

projections and { } 1 2,1 I I Ss S × ×= ≤ ≤ ∈sX    is desired multi-
energy images, S denotes the number of energy bins, 1 2T T

s
×∈Y   

is the sinogram for sth energy bin, T1 and T2 represent the 
numbers of view and detector element and their product 
equals to T, 2 2I I

s
×∈X   is the image reconstructed from the sth 

energy bin sinogram, I1 and I2 represent the height and width 
and their product equals to I, M is a linear system operator 

to map the image tensor to projection tensor, and   is the 
noise term. To recover the object image, we can solve the 
following minimization problem:

21min
2 F

M −


   [2]

where 2

F
⋅  represents the square of Frobenius norm. Here, 

Eq. [2] can be minimized by the algebraic reconstruction 
technique (ART) or simultaneous algebraic reconstruction 
technique (SART) methods. In practical applications, Eq. [2] 
is an ill-posed inverse problem, and a common strategy is to 
incorporate regularization term(s) (26). Hence, we have

( )21min
2 2F

M δΨ − + 
 

    [3]

where the first term represents data fidelity, the second 

term ( )Ψ   represents the regularization function, and δ>0 
is regularization parameter to control constraint intensity.

Multidimensional DL

On one hand, small image patches of a medical imaging 
object usually contain only 1–2 materials. This means that 
the image patch has lower rank than the whole images. On 
the other hand, the nonlocal self-similarity property refers 
to the fact that small patches among different locations share 
similar structural information. Moreover, these small image 
patches can form a high-quality training set to enhance the 
image quality of DL reconstruction. Similar to our previous 
work (27), for a multi-energy CT image  , let us define 
a extracting, k-means++ clustering (28), and unfolding 

operator is l . We can obtain a series of similar tensor 
patch groups { }1 2, ,..., LΩ：   , where 1 2 =I I ld d I

l l
S× ×∈    is the 

thl  tensor group of Ω, 
1 2

7I Id d= =  are the size of extracted 
patches, Il is the number of similar patches. Considering 

a tensor training set { }1 2, ,..., LΩ：    extracted from the 
tensor image  . Here, we set each reconstructed tensor 

group 
l  as a sparse representation of a spatial dictionary 

1 1 2 1 2
1

I I I Id d d dϖ ×∈D 

, a spectral dictionary 2
2

S Sϖ ×∈D 

, where 1ϖ  
and 2ϖ  are redundancy ratios corresponding to the spatial 
dictionary and the spectral dictionary, respectively. Then, 
we have
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where 11 22I I ld d S I
l

ϖ ϖ× ×∈  is the sparse coefficient tensor of the thl  
reconstructed tensor group, ×n is the n-mode product of a 
tensor with a matrix, and ql restricts the number of non-zero 

elements. 0l lq≤  is the sparse constraint, and ( ) 2
1 2

:, 1r =D  
and ( ) 2

2 2
:, 1r =D  are normalization constraints. Then,  

Eq. [4] can be further converted into another constrained 
minimization problem

{ }
( )
( ) ( )

1 2 1

1 1, ,

1 2

2
1 1 2 2

1

2 2

2 2

min  

s.t. , :, 1, , :, 1

δ
= =

− × ×

∀ =

+

∀ =

∑L
ll

L

l l lF
l

r r r r

D D 
   D D

D D
 [5]

where δ1>0 is an empirical parameter.

Tucker low-rank tensor decomposition

Tensor decomposition has been widely used in signal processing, 
computer vision and machine learning, etc. Generally, a tensor 
can be decomposed as the summation of rank-1 tensors, the 
number of the rank-1 tensor is called tensor rank. There are 
different forms of tensor rank with respect to different tensor 
decomposition methods, such as canonical polyadic (CP) 
decomposition (29), Tucker decomposition (30), t-singular value 
decomposition (SVD) (31), and kronecker-basis-representation 
(KBR)-based tensor decomposition (32), etc. 

As one of the most popular tensor decomposition 
methods, the Tucker decomposition is a generalization of 
matrix SVD in high dimensional space, which is flexible 
and computationally tractable (33). For the 3rd-order tensor 

groups 
l , the Tucker decomposition can be expressed as

{ }
1

(
1

23

1

3

)

2

1 2 3
1,

min  

s.t. for 1,2,3
= =

= 
 
 

− × × ×

= =

∑L

l
l l i

i

i

i

T
l

L

l l l l l F
l

l i



  
Q

Q

IQ Q

QQ
 [6]

where “T” represents the matrix transpose, l  is a core 
tensor, and ( )1,2,3

il
i =Q  are factors. The optimization 

problem in Eq. [6] is convex and can be solved by higher-
order singular value decomposition (HOSVD) (34) or 
higher-order orthogonal iteration (HOOI) (35).

Weighted TV regularization

Considering the local sparsity of multi-energy CT images, 

we introduce the TV regularization (36,37) to enhance the 
reconstructed image tensor  . The conventional isotropic 
TV regularization is specifically designed to handle 2D 
images. Because the multi-energy CT contains several 
energy bins, the photon energies of different channels 
are different, the corresponding material attenuation 
coefficients are different, and scales of channel-wise image 
are different. To obtain high-quality channel-wise images, 
it is necessary to provide different parameters for different 
channels. That needs high computational cost to deal with 
the parameters in practice with the conventional TV. To 
address this problem, a weighting factor ws is introduced 
to the TV regularization, leading to a weighted TV 
regularization. This can be denoted as

( ) ( ){ }2 1

1 2 2 1 21
2 1

1 2, , , , , 1 ,, ,1,1
1 2 2

−−
= = =

∇ = − + −∑ ∑∑
I IS

s i i i i iw
s

s s
i i

i si i sw      [7]

where ( )1 2 21, , ,,1i s i i si −−   and ( )1 21 2 , , 1 ,, s si ii i −−   represent the values 
of image gradient along height and width directions in 
spatial mode.

IDEAS model and solution

Encouraged by the aforementioned facts, here we combine 
multiple regularizations, including non-local low-rank 
Tucker tensor decomposition, TDL and weighted TV, 
for multi-energy CT reconstruction. Our proposed 
reconstruction model of IDEAS can be formulated as

( )
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iil l

T
lq I iQ Q

 
[8]

where 0,  0υ λ> >  and 0κ >  are three regularization 
factors. To efficiently handle the L1-norm and optimize 
the objective function Eq. [8],  the split-Bregman 
method is utilized in this study (38). L auxiliary tensors 

 ( 1,..., )l l L= , ν and the corresponding feedback error 
tensors ( )1,...,l l L= ,   are introduced into Eq. [8]. Then 
we have
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 [9]
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where 0ρ >  and 1 0κ >  are two coupling parameters, 
which are to balance two regularizes. Because Eq. [9] 
contains multiple variables, we can further divide it several 
subproblems by fixing other variables and removing the 
irrelevant terms.

Updating 

 [10]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 3

2

1 2 3
1

2 2
1

1 1 2 2
1

2  
2

min
 

2 2

1
2

 

L
k

l l Fl
L

k k k k k
l

k k k
l l l

l

F

l F F

M λ

κυ
=

=

 + − ×−

+

× ×  
 
 + − × × − −
  

∑

∑


  

  



 

Q Q

D D

Q

where k  is the iterative index. Eq. [10] is differentiable and 
could be directly solved by the gradient descent method.
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where β is a relaxation factor (27), 1
l
−  is the inverse 

operation of εl.

Updating l  
Noting that each group is independent, and we have

( ) ( ) ( ) ( ) ( )2 2

1 1 2 2

0

1 +min
2

. .  
4
ρ

− × × − −

≤
l

k k k k k
l l l l lF F
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D D
 [12]

Def ining ( ) ( ) ( )
1 2

k k k= ⊗D D D  wi th  the  symbol  “ ⊗ ”  as 
Kronecker product of matrices, Eq. [12] can be solved by 
gradient descent method. The solution is

( )

( ) ( )( ) ( )
( )( ) ( )

( )
( )

( )( ) ( )( ) ( )
3 3 3

1
1

3 2 2
T Tk k k k k k k
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+   = + − +  
  

Z D X B T D D I  [13]

where I  is an identity matrix, ( )
( )

( ) ( )

( )
( )
( )

3 33 3, ,  and k k k
l l lX Z B T  are 

unfolding the ( ) ( ) ( ), ,  and k k k
l l l l     in the 3rd mode. Therefore, 

tensor ( )1k
l

+  can be obtained by folding ( )

( )
3

1k
l
+Z  at the 3rd mode. 

More details about updating l  is given in Appendix 1.

Updating l  and l  

( ) ( )( ) 2
+1

1 1
+ +

2
minδ ρ

−
l

k k
l l l l

F
   

 
[14]

This leads to a closed-form solution in terms of soft-
thresholding filtering

( ) ( ) ( )( )1

1 1softδ
ρ

+ += +k k k
l l l  

 [15]

where soft(•) denotes the soft-thresholding operator. Then, 

l  can be given by derivative decent method directly. 

Updating D1 and D2

Because two dictionaries are shared by all groups, by using 
( ) ( )11 kk
l l

+ +=  , the optimization problem is involved into
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where ( )
( ) 1 21
1

I Id d JSk ×+ ∈A  and ( )
( ) 1 1 21
1

I Id d JSk ϖ+ ×∈H  are unfolding the 
( ) ( )1 1and+ +k k   in the 1st mode. The optimization problem 

in Eq. [17] is a quadratically constrained quadratic 
programming problem and can be solved using a Lagrange 
dual (39). D1 can be updated by

( )
( )
( )

( )
( )( ) ( )

( )
( )
( )( ) ( )

1
1

1 1
1 1 1

1 1 1
k kT Tk k kk+ + +

−
+  = +  

  
D A ΓH H H  [18]

where ( ) ( )1 1 2

1
1diag ,...,

I I

k
d dϖγ γ+  =  Γ  i s  d iagonal  matr ix  and 

( )1 211,...,r I Ir d dγ ϖ=  are dual variables whose values are obtained 
by solving the dual problem. Similarly, D2 can be obtained. 
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Updating l  and 
il

Q

( )

( )( )
1

1 2 33

1
1 2
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s.t. for 1,2,3
=




+

 



− × × ×

= =

l
i

l

i

i

i

F

T
l

k
l l l l l

l i

Q

  

Q Q

Q Q Q

I

 [19]

In this work, we use HOSVD (34) to solve [19], and we 
have

( ) ( ){ } ( ) ( ) ( ) ( )( )1,2,3 1 2 3

1 1 1, HOSVD , , ,
i

k k k k k k
l l l l l lR R R

=

+ + +=  Q  [20]

( ) ( )1, 2,3
i

k
lR i =

 are the rank of ( )1k
l

+   (40).

Updating 
After substituting Eq. [7] into Eq. [9] and removing 
irrelevant terms, we have

( )
( ) ( )( )

( ) ( )

2 1 1 2 2 1 21 1 2

2 1

, , ,1 , 1 ,
1

11 2 2

, , ,

21
arg min

2
2

i iI I i s s i sS ii i i s

s

F

k

i i k ks
wκ

κ +

− −
+

= = =

− + − 
 
 
 
 

=
+ − −

∑ ∑∑


   


   [21]

Assuming the amplitude of boundary gradient are zero, 
for the sth energy bin, Eq. [21] can be further evolved into

( )

( )
( ) ( )

1 2

21 11
1 1

arg min κ
κ

+ + 
= + ∂ + − 


− 

 × ∂
s

k k k
s i s i s s s F

s
swv

V V V X V W
 

[22]

where ( )1 1 2 1 2, , 1 , ,= −∂ −i s i i s i i sV    and ( )2 1 2 1 2,, , 1 ,= −∂ −i s ii si i sV   . Similarly,  
Eq. [22] is solved by split-Bregman algorithm. More details 
about updating   is given in Appendix 2.

Then,   can be given by derivative decent method 
directly. Till now, we have finished all implementation 
procedures of the proposed IDEAS method. To make 
it clear, the pseudocodes of the proposed method are 
summarized as in Table 1.

Results

Numerical mouse simulations, physical phantom and preclinical 
mouse experiments are performed. The SART, TV (11), TV 
and LR (TV+LR) (17), SSCMF (24) and NLCTF are also 
implemented for a comparison study. For all the iterative 
techniques, the initial images are set as zero and all of them 
are stopped after 50 iterations. In the implementation, the 
formulation of a low-rank patch 

1I
d , 

2Id , and the step size 
are set as 7, 7, and 5, respectively. The redundancy ratios 

1ϖ  and 2ϖ  are set as 1.5. The size of the corresponding 
spatial dictionary D1 and spectral dictionary D2 are set 
as 49×73 and 8×12, respectively. Others parameters 
( 1 1 2, , , , , , ,υ δ ρ λ κ κ η β ) need to be tuned. Specifically, β=0.03 
and δ=10 in all experiments. The rest of the parameters are 
empirically selected by comparing the quantitative indexes 
in numerical simulation study. In the physical phantom 
study, we select the parameters based on visual evaluation 
(including features recovery, detail retain and edge 
preservation). By using these parameter tuning strategies, 
all the reconstruction methods reach the best results and 

Table 1 Pseudocodes of the IDEAS algorithm

IDEAS

Input: γ, υ, δ1, ρ, λ, κ1, κ2, η, β;

Initialization: { }
{ } { }

1,2,3

(0) (0) (0)
2

(0) (0) (0

(0) (0

) (0) (0) (0) (0) (0) (0)

1 2 1

1

1 2

)   with randomly normalized columns, , 0,

 ,

a

,

nd ,

0, 0;, , , , , 0,  
il l l l l s s s

L

l s k
= =

=

=

==

D D

Q F F E E

  

   

;

While not convergence do;

Updating ( )1k+  using [11];

Constructing groups ( ) ( )1 1,...,k l L+ =  by extracting, clustering and 
unfolding process of ( )1k+

 ;

For 1:l L= ;

Updating ( )1k
l

+  via folding 
( )

( )
3

1k
l

+Z  by [13];

Updating ( )1k
l

+  using [15];

Updating ( )1k
l

+  via derivative decent method;

End for

Updating ( 1)
1

k+D  using [18];

Updating ( )1
2

k+D  with step 11;

For 1:l L=

Updating ( ) ( ){ }1

1,2,3

1 ,
k

i

k
l l

+

=

+ Q  using [20];

End for 

Updating ( )1k+  using [22];

Updating ( )1k+  via derivative decent method;

1k k← +

End while

Output: 

IDEAS, image-spectral decomposition extended-learning 
assisted by sparsity.
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Figure 2 Numerical simulation setup. (A) The normalized X-ray source spectrum. (B) The employed thorax mouse phantom, where green, 
red and blue stand for soft tissue, bone and iodine, respectively.

the corresponding optimized parameters are listed in Table 2 
(The symbols are consistent with the reference).

Numerical simulation study

In the numerical tests, a digital thorax mouse phantom 
with 1.2% injected iodine contrast agent (Figure 2) (41) 
is employed. A polychromatic 50 kVp X-ray source is 
assumed, and its spectrum is divided into eight energy 
bins: [16, 22), [22, 25), [25, 28), [28, 31), [31, 34), [34, 37), 
[37, 41), and [41, 50) keV. A total of 640 projections are 
uniformly collected in an equidistant fan-beam geometry, 
where the distances from the X-ray source to PCD and 
object are set as 180 and 132 mm, respectively. The PCD 
system consists of 512 elements and each of them covers 
a length of 0.1 mm. A total of 5,000 incident photons 
are assumed for each X-ray path for all the bins, which 
matched the setup of real Medipix all resolution system 

(MARS) PCD (42). To generate multi-energy projections, 
the incident photons were distributed to each energy bin 
according to the X-ray spectrum (Figure 2). By using fan-
beam equal distance projection, we computed the expected 
number of photons in each bin for every spectral detector 
element. Then, we first obtained the noise-free projections 

^
  by a logarithmic operation. To simulate a realistic clinical 
environment, Poisson noise is superimposed to 

^
  to obtain 

the noisy projection 
^

0 0: ln / Poisson exp
   = −      
I I   , where 

I0 is the number of photons before the X-rays penetrate 

the object and the number of photons in 1–8 energy bins 
are 693, 627, 700, 692, 631, 539, 557, 562, respectively. 
The reconstructed and decomposed images are with 
512×512 pixels. For each pixel, the physical dimension is  
0.075×0.075 mm2. The image quality is evaluated in terms 
of the root mean square error (RMSE), and structural 
similarity (SSIM) (43). 
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Table 2 Parameters of all the methods

Methods Numerical simulation Physical phantom study

SART β=0.03 β=0.03

TV γ=0.7, Num =20 γ=0.2, Num =20

TV+LR λ1=5, λ2=1/40, μ1=0.1, μ2=0.25 λ1=1, λ2=1/23, μ1=0.1, μ2=0.02

SSCMF σ=0.05, τ=10 σ=0.005, τ=0.4

NLCTF α=100, τ=0.055, ϑ=250, μ=0.3 α=10, τ=0.025, ϑ=250, μ=0.5

IDEAS ν=0.01, ρ=0.01, λ=0.5, κ1=0.01, κ2=38, η=10 ν=0.005, ρ=0.5, λ=0.25, κ1=0.0005, κ2=30, η=20

SART, simultaneous algebraic reconstruction technique; TV, total variation; LR, low rank; SSCMF, spatial spectral cube matching frame; 
NLCTF, non-local low-rank cube-based tensor factorization; IDEAS, image-spectral decomposition extended-learning assisted by sparsity.
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Figure 3 shows the reconstructed results of three 
representative energy bins (1st, 4th and 8th) by different 
methods, and the noise-free reference images are obtained 
by the SART method. Without any prior knowledge, the 
SART results have heavy noise and severe image artifacts. 
Although the reconstructed images of TV and TV+LR are 
improved (3rd and 4th rows) regularized by prior knowledge, 
they still have blocky artifacts and blurry edges due to the 
drawbacks of TV regularization. The results of SSCMF 
and NLCTF methods have better features without blocky 
artifacts compared with those reconstructed by the TV 
and TV+LR methods. However, some finer structures are 
still lost and some edges are still blurry in the SSCMF and 
NLCTF results. Compared with all the aforementioned 
methods, the IDEAS provides clear image edges and more 
image structures.

To clearly show the differences among the reconstructed 
results of all algorithms, Figure 4 displays magnified 
regions of interest (ROIs) indicated by the red rectangle in  
Figure 3. Evidently, the IDEAS method more effectively 
reduces noise-induced artifacts and obtains more 
reasonable texture information than other methods. From  
Figure 4A-4C, one can see that many finer structures and 
details are disappeared in most reconstructed images. 
However, they always can be seen in the NLCTF and 
IDEAS methods. that as the algorithm is updated, the 
bone structures become clearer and clearer (see the red 
arrow 8). Although the NLCTF preserves some structures, 
these structures are blurred. Compared with the NLCTF, 
we can observe that the IDEAS preserves finer structures 
and details, and it has better performance in image edge 
preservation indicated by the arrows “1”, “2”, “4”, “5” and 
“6”, which are close to the references. Moreover, from 
Figure 4B,4C, one can see the NCLTF results are tarnished 
by severe artifacts indicated by arrows “3” and “7”. They 
make it not easy to discriminate the features and artifacts 
in some cases. Obviously, the proposed IDEAS algorithm 
can suppress these artifacts, preserving finer structures and 
edge information. Table 3 lists the quantitative results of 
reconstructed images. The SSIM measures the similarity 
between the reconstructed images and references. The 
closer to 1.0 the SSIM value is, the better the reconstructed 
image is. One can see that the presented IDEAS produces 
the best RMSE and SSIM values for all energy bins, which 
indicate that IDEAS can yield the best image quality among 
all the methods for all energy bins. From Table 3, we can 
see that the quantitative index of the proposed IDEAS 
algorithm is significantly improved in low energy bins 
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Figure 3 Simulated mouse thorax phantom study. From left to 
right column, the reconstructed images are of bins 1, 4 and 8 by 
different methods, and their display windows are [0, 3], [0, 1.2], [0, 
0.8] cm−1, respectively. REF indicates the reference images. A, B, C 
and D are four regions of interests. SART, simultaneous algebraic 
reconstruction technique; TV, total variation; LR, low rank; 
SSCMF, spatial-spectral cube matching frame; NLCTF, non-local 
low-rank cube-based tensor factorization; IDEAS, image-spectral 
decomposition extended-learning assisted by sparsity.
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comparing to the NLCTF technique.
To further demonstrate the advantages of the proposed 

IDEAS method, an image-domain material decomposition 
method (44,45) is utilized to decompose the reconstructed 
results into material-specific images. Specifically, a 
linear assumption is employed to link the reconstructed 
channel-wise images with the material images, and a 
direct inversion (DI) method is employed to obtain final 
material decomposition results. The decomposition 
system matrix was obtained by computing the averaged 
mass coefficients of reconstructed SART images (46). The 
inaccurately reconstructed images may lead to errors of 
the decomposition system matrix. Besides, the DI method 
can yield amplified image noise and have rather big error in 
the boundary pixels. To address this issue, three additional 
constraints in terms of the volume conservation (47), the bound 
of each material pixel ([0, 1]) (48), and the concentration of 
iodine contrast (no more than 5%) (44) are incorporated 
into the material model to further improve the final results. 
Figure 5 shows the corresponding basis materials and the 
color rendering images of Figure 3. The 1st column of 
Figure 5 shows the bone component. The bony structures 
are blurred in the compared algorithms, and IDEAS results 
produce clear bone edges (see the ROI “E”). Moreover, 

IDEAS provides more soft-tissue features than the 
competing methods (see the ROIs “F” and “G”). In terms 
of iodine contrast component (3rd column), some bony 
region pixels are wrongly introduced by all the competing 
methods, while the presented IDEAS performs well. In 
addition, Table 3 displays the quantitative results of material-
specific images. One can see that IDEAS achieves the best 
RMSE and SSIM values for all the materials. This confirms 
that the proposed method can provide the most accurate 
material decomposition images.

The convergences of different methods are also 
investigated, and the RMSEs of channel 1 image versus 
iteration number are given in Figure 6. By comparison, the 
IDEAS can converge to an optimized solution quickly with 
a smaller RMSE. In addition, for all the reconstruction 
methods, approximately 30 iterations can produce an 
acceptable solution. In this case, we set all the iterative 
methods to stop after 50 iterations. Computational cost 
is an important factor for the reconstruction algorithm 
development. In this work, all  the algorithms are 
programmed by Matlab (2019a) on an Intel(R) Core 
(TM) i9-9920X CPU, 3.70 GHz, PC platform. The 
computational costs of SART, TV, TV+LR, SSCFM, 
NLCTF and IDEAS in one iteration are listed in Table 4. 

Table 3 Quantitative results of reconstructed images and material decomposition obtained by different methods

Index Methods
Reconstructed images (energy bins) Material decomposition

1st 2nd 3rd 4th 5th 6th 7th 8th Bone Soft tissue Iodine

RMSE 
(10−2)

SART 32.84 23.52 18.94 17.04 16.43 16.89 15.80 14.91 3.81 18.41 13.84

TV 10.15 6.68 5.15 4.23 3.83 3.70 3.21 2.78 2.05 6.31 4.00

TV+LR 10.00 6.16 4.55 3.62 3.12 3.31 2.80 2.40 2.15 6.35 3.84

SSCMF 9.20 5.48 4.20 3.69 2.91 2.69 2.24 1.79 2.03 5.46 2.94

NLCTF 8.43 5.29 3.79 2.85 2.27 2.25 1.90 1.58 1.99 4.84 2.87

IDEAS 6.72 4.31 3.16 2.39 1.95 2.00 1.65 1.36 1.52 4.16 2.41

SSIM SART 0.5596 0.5211 0.5038 0.4528 0.4114 0.3545 0.3340 0.2879 0.7164 0.3237 0.4500

TV 0.9533 0.9570 0.9580 0.9512 0.9414 0.9207 0.9109 0.8932 0.9880 0.8355 0.8972

TV+LR 0.9525 0.9649 0.9657 0.9608 0.9524 0.9272 0.9209 0.9040 0.9862 0.8141 0.9106

SSCMF 0.9666 0.9640 0.9670 0.9649 0.9629 0.9518 0.9460 0.9353 0.9906 0.8829 0.9542

NLCTF 0.9751 0.9755 0.9753 0.9742 0.9724 0.9622 0.9598 0.9558 0.9913 0.8749 0.9657

IDEAS 0.9810 0.9789 0.9780 0.9775 0.9745 0.9631 0.9617 0.9561 0.9936 0.8911 0.9705

Quantitative testing. RMSE, root mean square error; SSIM, structural similarity; SART, simultaneous algebraic reconstruction technique; TV, 
total variation; LR, low rank; SSCMF, spatial spectral cube matching frame; NLCTF, non-local low-rank cube-based tensor factorization; 
IDEAS, image-spectral decomposition extended-learning assisted by sparsity. This table is licensed by IEEE publisher.
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Figure 5 Materials decomposed results. The 1st to 4th columns are bone, soft tissue, iodine components and color rendering. The 
corresponding display windows are [0, 1], [0, 1], [0, 0.012]. E is the ROI of bone component, and F and G are the ROIs of soft tissue 
component. ROIs, regions of interest.
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Compared with the NLCTF, the presented IDEAS greatly 
reduces the computational cost.

Physical phantom study

In the physical phantom study, a PILATUS3 PCD from 
DECTRIS with four energy bins (i.e., [13.0, 22.0], (22.0, 
30.8], (30.8, 48.5] and (48.5, 137] Kev) is used to scan a 

phantom, including chicken foot and 5 mg/mL iodine 
solution cylinder (see Figure 7A). Such a PCD consists of 
515 detector elements and each has a length of 0.15 mm. 
The X-ray source (YXLON 225 kV micro-focus tube) 
is operated at 140 kV and 100 µA. The distances from 
the X-ray source to object and PCD are set as 35.27 and  
43.58 cm, respectively. Four energy bin projections with 360 
views are collected by the detector. The channel-wise filtered 
back projection (FBP) reconstruction results (see Figure 
7B) have 512×512 pixels each of which covers an area of 
0.122×0.122 mm2.

Figure 8 presents the reconstructed images and the 
corresponding gradient images of three representative 
energy bins (1st, 2nd and 4th). The results of SART are 
disturbed by noise, and image structures are destroyed. 
For the TV and TV+LR results (2nd and 3rd rows), the 
image noise is well suppressed by TV regularization. 
However, there are still blocky artifacts, and some details 
of the structures are lost. From the 4th and 5th rows, 
one can see the image quality of SSCMF and NLCTF 
methods are improved. Particularly, the NLCTF greatly 
preserves the image edges. Compared with the NLCTF, 
the reconstructed image quality of our IDEAS is further 
improved in image edge preservation and finer structures 
recovery.

To further demonstrate the advantages of the proposed 
IDEAS method, Figure 9 displays magnified ROIs indicated 
by the red rectangle in Figure 8. From Figure 9, one can see 
that the SART, TV and TV+LR have a poor performance 
in all energy bins. The chicken foot contains complex 
structures that require advanced reconstruction algorithms 
to restore, the IDEAS may provide more accurate structural 
information than other competitors. The image structures 
indicated by the arrow “1” and “3” reconstructed by 
NLCTF are slightly lost, and these structures are over 
smoothed in the results of SSCMF, especially in high 
energy bins. However, in the IDEAS results, one can see 
more image structures are restored than the above two 
methods. Moreover, the image edges indicated by the arrow 
“2” of the SSCMF and NLCTF are blurred, and they are 
hardly observed in practice. On the contrary, the IDEAS 
can provide sharp image structure edges.

Figure 10 shows three basis material decomposition 
results from Figure 8. For the bone component in the 1st 
column of Figure 10, the developed IDEAS can produce 
much finer bone components information and obtain better 
edge structures than NLCTF, as indicated by the red ROIs 
“C” and “D”. For the soft-tissue component (2nd column), 
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Figure 6 Convergence curves in terms of RMSEs. RMSE, root 
mean square error; SART, simultaneous algebraic reconstruction 
technique; TV, total variation; LR, low rank; SSCMF, spatial-
spectral cube matching frame; NLCTF, non-local low-rank cube-
based tensor factorization; IDEAS, image-spectral decomposition 
extended-learning assisted by sparsity.

Table 4 Computational costs of all reconstruction methods for one 
iteration (unit: s)

Methods Costs

SART 9.87

TV 11.52

TV+LR 16.44

SSCMF 49.25

NLCTF 327.74

IDEAS 98.8

SART, simultaneous algebraic reconstruction technique; TV, 
total variation; LR, low rank; SSCMF, spatial spectral cube 
matching frame; NLCTF, non-local low-rank cube-based tensor 
factorization; IDEAS, image-spectral decomposition extended-
learning assisted by sparsity. This table is licensed by IEEE 
publisher.
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we can observe that some tiny soft tissue features indicated 
by the ROIs “E” and “F” are lost in the NLCTF, while the 
IDEAS result provides much more soft tissue structures. 
Regarding the iodine contrast component (3rd column), 
because the detector responses of this new PCD are not 
consistent, small ring artifact are still observable in the 
material images from all decomposition methods although 
the ring artifacts correction method has been used (49). 
From Figure 10, we can find that the comparison methods 
wrongly classify the pixels of bone component into iodine 
contrast, while NLCTF and IDEAS can provide more 
accurate iodine contrast images with less misclassification. 
In one word, all the material-specific images demonstrate 
that the IDEAS method can protect material edges and 
recovery finer structures very well compared with other 
methods.

Preclinical mouse study

To further demonstrate that IDEAS outperforms the 
competing methods, an anesthetized mouse is scanned 
by a state-of-the-art MARS multi-energy CT system (see 
Figure 11). The study was conducted in accordance with 
the laboratory animal guideline for ethical review of animal 
welfare and was approved by HKU Li Ka Shing Faculty 
of Medicine Ethics Committee for animal experiments. 
A flat-panel PCD is used. For the central slice, the PCD 
contains 600 detector elements and each of them covers 
a length of 0.11 mm. The emitting X-ray spectrum with  

120 kVp is divided into five energy bins: [7.0, 32.0],  
[32.1, 43], [43.1, 54], [54.1, 70] and [70, 120]. The distances 
from the X-ray source to object and PCD are set as 15.6 and  
25.6 cm, respectively. A total of 720 projections are 
uniformly collected in a full scan. 

Figure 12 shows the reconstructed images of three 
representative energy bins (1st, 2nd and 5th). Since the 
NLCTF can obtain higher reconstructed accuracy than 
other competing methods, only the reconstructed results 
from SART, NLCTF and IDEAS methods are given in 
Figure 12 to save space. From Figure 12, one can see that 
the developed IDEAS technique has the best performance 
to recover fine structures and suppress noise-induced 
artifacts. The results of SART are disturbed by noise, and 
image structures are destroyed. Although the NLCTF can 
recover the structures, the reconstructed images contain 
noisy artifacts. Meanwhile, the results of NLCTF are 
tarnished by ring artifacts. The results of basis material 
decomposition are shown in Figure S1. The SART results 
have heavy noise and NLCTF results have severe image 
artifacts. The proposed IDEAS performs better than the 
competitors. 

Discussion

The IDEAS involves  non-local  low-rank Tucker 
decomposition, multi-task TDL and weighted TV. 
All of those components make IDEAS different from 
the previously developed algorithms. Compared with  

Figure 7 Physical phantom experiment setup. (A) A photon of the phantom. (B) The FBP reconstruction image of bin 1, and its display 
window is [0, 0.5] cm−1. FBP, filtered back projection.

A B

https://cdn.amegroups.cn/static/public/QIMS-22-235-Supplementary.pdf


Wang et al. Multi-energy CT image reconstruction624

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(2):610-630 | https://dx.doi.org/10.21037/qims-22-235

Figure 8 Reconstruction results of physical phantom study by different methods in the representative bin 1, bin 2 and bin 4. The left panel 
are the reconstructed images, and the right panel are the corresponding gradient images. The display windows from left to right column 
are [0, 0.5], [0, 0.5], [0, 0.5], [0.005, 0.03], [0.005, 0.03], [0.005, 0.02] cm−1 in order. A and B are two regions of interest. SART, simultaneous 
algebraic reconstruction technique; TV, total variation; LR, low rank; SSCMF, spatial-spectral cube matching frame; NLCTF, non-local 
low-rank cube-based tensor factorization; IDEAS, image-spectral decomposition extended-learning assisted by sparsity.
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Figure 10 Materials decomposition results of physical phantom. The 1st to 4th columns are bone, soft tissue, iodine components and color 
rendering. The corresponding display windows are [0.2, 0.5], [0.85, 0.95] and [0.001, 0.005] cm−1. C and D are the ROIs of bone component, 
and E and F are the ROIs of soft tissue component. The regions indicated by arrows 4–7 represent image features. ROIs, regions of interest.
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Figure 11 The set-up of Medipix all resolution system for a mouse.

Figure 12 Reconstruction results of preclinical mouse study by three different methods in Bins 1, 2 and 5, and their display windows are [0, 
1.2], [0, 1] and [0, 0.5] cm−1 respectively.
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NLCTF (25), IDEAS employs Tucker decomposition 
to replace KBR-based tensor decomposition, which is 
more flexible and computationally tractable. To encode 
nonlocal self-similarity characteristic, IDEAS employs the 
K-means++ clustering method to replace cube extraction 
and aggregation operation in NLCTF, which greatly 
reduces the computational complexity. Besides, IDEAS 
combines TDL and weighted TV while it inherits the 
non-local low-rank property of NLCTF. Compared with 
the TDL in our previous work (20), an effective multi-
task TDL regularization with two different dictionaries is 
employed in a group of similar patches to further explore 
the sparsity, global correlation across the spectrum and 
nonlocal self-similarity characters. Specifically, two different 
dictionaries (spatial dictionary D1 and spectral dictionary 
D2) are used in the IDEAS. Different from other DL-
based methods for multi-energy CT reconstruction (20,23), 
D1 and D2 are two small dictionaries that respectively 
control spatial and spectral properties. This can faithfully 
deliver the multi-factor affiliation underlying the multi-
energy CT images. Besides, two different dictionaries in 
spatial and spectral dimensions are shared by all the tensor 
groups in the IDEAS. This means the features in space and 
spectrum can be learned from the whole image. Besides, 
the dictionaries are updated adaptively during an iterative 
reconstruction process, and they can reveal details which 
are invisible in the global DL reconstruction. Hence, it 
is necessary to use an adaptive dictionary when a global 
dictionary does not match a specific application closely (50). 
Compared with TV, IDEAS adopts weighted TV which 
can give different weighting parameters for channel-wise 
images.

While the IDEAS algorithm has superior performance 
for multi-energy CT reconstruction, there are still some 
open problems for practical applications. First, the proposed 
IDEAS algorithm contains several parameters that should 
be selected. The parameters are empirically selected based 
on quantitative index and visual evaluation. Note that, the 
parameters of all the competing methods had been carefully 
optimized based on the same strategies with IDEAS for 
a fair comparison. Even so, it still time-consuming to 
tune parameters, the strategy of parameters automatic 
optimization needs to be studied in the future. Second, 
the operations of clustering and tensor decomposition 
integrated in IDEAS are quite time-consuming. This can 
be accelerated by the graphics processing unit (GPU) 
techniques. Third, the proposed IDEAS assumes fan-beam 
CT geometry to demonstrate its merits in principle, and it 

can be directly generalized to a 4th-order tensor to deal with 
cone-beam CT or spiral CT for practical applications.
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