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It has been found that the quality of oocytes from obese women has been compromised
and subsequent embryos displayed arrested development. The compromised quality
may be either due to the poor or rich metabolic conditions such as imbalance or
excession of lipids during oocyte development. Generally, lipids are mainly stored in the
form of lipid droplets and are an important source of energy metabolism. Similarly, lipids
are also essential signaling molecules involved in various biological cascades of oocyte
maturation, growth and oocyte competence acquisition. To understand the role of lipids
in controlling the oocyte development, we have comprehensively and concisely reviewed
the literature and described the role of lipid metabolism in oocyte quality and maturation.
Moreover, we have also presented a simplified model of fatty acid metabolism along with
its implication on determining the oocyte quality and cryopreservation for fertilization.

Keywords: lipid metabolism, oocyte development, oocyte maturation, fertilization, obesity

BACKGROUND

The female ovaries are destined for the growth and development of oocytes as well as the production
of sex hormones that influence the menstrual cycle (Zhu et al., 2020). The complete cycle of
oocyte maturation is a complex, continuous and tightly regulated process in mammals (Pepling and
Spradling, 2001; Gunesdogan and Surani, 2016). The key step during this process is the acquisition
of oocyte competence to develop as an embryo after its fertilization. Though all the factors that
control the developmental competence are still not clear, however, it has been known that both
the oocyte quality and competence acquisition are linked to the metabolism of oocytes (Sirard,
2011). The role of lipids in energy production, as the precursors of steroid hormones and signaling
molecules suggest that the intracellular lipid content of oocytes should be carefully estimated during
oocyte maturation. Furthermore, the oocyte activation is also closely linked to the mobilization
of lipid reserves.

To understand the role of lipids in controlling the oocyte development, we have
comprehensively reviewed the literature and described the contribution of lipid metabolism in the
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oocyte maturation and quality. We have also presented a
simplified model of β-oxidation of fatty acid in the process of
oocyte growth and maturation that will further facilitate a better
understanding of lipid metabolism in controlling the oocyte
quality (an oocyte’s intrinsic developmental potential) and its
acquisition of competence.

CUMULUS-OOCYTE COMPLEX: THE
DYNAMIC UNIT OF OOCYTE
METABOLISM

The maturation and competence acquisition of oocyte
is governed by maternal signals and ovarian follicular
microenvironment that are mediated by the bidirectional
communication between somatic and germinal cells (Matzuk
et al., 2002). Specialized granulosa cells surrounding the oocytes
in antral follicles, named cumulus cells, are involved in the
acquisition of oocyte developmental competence. These cells are
physically and metabolically linked with an oocyte and form the
cumulus-oocyte complex (COC), a chief functional and dynamic
unit that is pivotal in oocyte metabolism (Tanghe et al., 2002).
Since oocytes are glycolytically less active and require energy
from carbohydrates, fatty acids and amino acids to achieve full
maturation, these energy sources are provided to oocytes by
cumulus cells from the external follicular fluid (FF) as well as
from internal storage inside the COCs.

To understand the role of cumulus cells in lipid metabolism
of COCs, an elaborative study was conducted on bovine
cumulus cells and it was found that these cells control lipid
metabolism during cytoplasmic oocyte maturation. Transmission
electron microscopy displayed different lipid droplets (LDs) and
membrane-bound vesicles in metaphase II denuded oocytes and
cumulus enclosed oocytes (CEO). Denuded oocytes had lower
lipid contents and the global transcriptomic analysis showed
that various genes are differentially expressed in denuded and
CEO. The local lipogenesis and lipolysis factors, such as fatty
acid synthase and hormone-sensitive phospholipase proteins
were detected in both denuded and oocytes groups, however, a
significant reduction of fatty acid synthase protein was observed
in the denuded oocytes group as compared to the CEOs
indicating impaired lipogenesis in the absence of cumulus cells
(Auclair et al., 2013). Hence, the removal of cumulus cells during
in vitro maturation can affect lipid metabolism in the oocyte
and can lead to suboptimal cytoplasmic maturation. Overall,
cumulus cells may influence oocyte by changing the consumption
of nutritive storage via regulation of local fatty acid synthesis
and lipolysis to provide energy for maturation. Thus, energy
metabolism balance is vital for oocyte maturation and acquisition
of developmental competence.

During the past few decades, little attention has been given
to the lipid or fatty acid metabolism associated with the oocyte
development despite knowing the higher lipid contents in oocytes
and embryos of various mammals such as pig, sheep and cows
(McEvoy et al., 2000). Generally, free fatty acids in FF are
transported in the form of dynamic fatty acid complex and their
main function is to serve as a source of energy (Ferguson and

Leese, 2006). Higher fatty acid concentration in the blood due to
increased lipolysis of adipose tissue can induce lipotoxic effects
on COC morphology and embryo quality (Leroy et al., 2005;
Jungheim et al., 2011). Thus, balanced amount of various fatty
acid concentration is required for optimal oocytes growth and
development. Interestingly, higher concentration of saturated
fatty acids even affects the post-fertilization developmental
competence of in vitro matured oocytes, while monounsaturated
fatty acids like oleic acid initiate the normal developmental
competence. The adverse effects of saturated fatty acids can be
reversed by the addition of a balanced amount of palmitic acid
(C16) (Shibahara et al., 2020), stearic acid (C18) (Ranneva et al.,
2020), and oleic acid during in vitro maturation of oocytes (Wu
et al., 2010; Aardema et al., 2011). Thus, the composition as well
as a balanced amount of saturated and unsaturated free fatty
acids in the FF is critical for the developmental competence of
oocytes. Common fatty acids constituting the composition of FF
in various mammalian species have been summarized in Table 1.

On the other hand, in vitro experiments revealed that higher
free fatty acid concentration in the oocyte growth medium can
cause a massive increase of neutral lipids in the surroundings
of COCs. The increased neutral lipid contents did not affect
the developmental competence of oocytes, however, a lower
blastocyst rate was observed. Subsequent in vivo experiments
displayed that an increased level of free fatty acids can only affect
cumulus cells if there is a substantial increase in the storage of
triglycerides (Aardema et al., 2013). Thus, the cumulus cells of
COCs can protect the maturing oocytes from an elevated level of
free fatty acids by increasing the intracellular lipid storage.

LIPID COMPOSITION AND METABOLISM
IN COC

Generally, free fatty acids, also known as non-esterified fatty
acids (NEFA), are linked with serum albumin that acts as a
carrier protein and helps in the transportation of these insoluble
fatty acid through the circulation system (Simpson et al., 1980).
These fatty acids can also be stored in the form of lipoprotein
particles such as low density lipoproteins (LDLs), very low density
lipoproteins (VLDLs), and high density lipoproteins (HDLs)
(Gautier et al., 2010). Examination of FFs in various species
revealed the presence of triacylglycerol and fatty acids. Human

TABLE 1 | Most common fatty acids constituting lipid polymer in mammals.

Name Carbon
number

Formula Saturation

Myristic acid 14 C14H28O2 Saturated

Palmitic acid 16 C16H32O2 Saturated

Stearic acid 18 C18H36O2 Saturated

Oleic acid 18 C18H34O2 (C-9) Monounsaturated

Linoleic acid 18 C18H32O2 (C-9, 12) Polyunsaturated

α-linoleic acid 18 C18H30O2 (C-9, 12, 15) Polyunsaturated

Arachidonic acid 20 C20H32O2 (C-5, 8, 11,14) Polyunsaturated

Adrenic acid 22 C22H36O2 (C7, 10, 13,16) Polyunsaturated
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FF examination revealed the presence of a major amount of
HDL (Valckx et al., 2012). These HDL particles are serum-
derived and are the major lipoproteins present in the FFs
because the follicle basement membrane is permeable only to
serum proteins ≤300 KDa, thus, excluding LDL and VLDL
(Jordanov and Boyadjieva-Michailova, 1974). However, human
granulosa-derived lutein cells can also generate LDL and VLDL
through ApoB-100 marker. Thus, the LDL and VLDL which
are observed in FFs are originally produced by ovarian cells
(Dunning et al., 2014b).

Oocytes of different mammalian species contain different
lipid droplet contents. Oocytes of pigs, cows and dogs possess
a large amount of lipids and appear dark under an optical
microscope while mouse and human oocytes have a substantially
lower amount of lipid droplets and their cytoplasm is more
transparent (Apparicio et al., 2012). These lipid contents are
used by mammalian eggs to gain most of their ATP through
mitochondrial oxidation. The process of early embryogenesis
in mammals is dependent on β-oxidation derived ATP because
early embryo is glycolytically less active (Dumollard et al., 2009).
Thus, based upon the recent findings about the generation,
mobilization and utilization of fatty acids during oocyte growth
and development, we have presented a model of lipid metabolism
providing ATP for developing oocytes and embryos to underpin
the β-oxidation of fatty acids (Figure 1). To be noted, pyruvate
and fatty acids are the major sources of energy supply
during oocyte development, however, the balance between the
generation of ATP through pyruvate or from fatty acid oxidation
is completely incomprehensible. Furthermore, both proportion
of ATP provided by fatty acid oxidation to developing oocyte
and whether these fatty acids are obtained from endogenous lipid
droplets or exogenous sources are also unclear.

Previously, coherent anti-Stokes Raman scattering (CARS)
was used to determine the number, spatial distribution and
chemical content of lipid droplets in mouse eggs and embryos
(Bradley et al., 2016). Josephine et al. utilized CARS imaging
with deuterium labeling of oleic acid to check the turnover
of fatty acids within lipid droplets of living mouse eggs and
found that pyruvate removal caused the increased loss of labeled
oleic acid and also promoted the dispersion of lipid droplets.
Subsequently, inhibition of β-oxidation leads to increased uptake
of pyruvate and reduced ATP production along with clustering of
lipid droplets (Tatsumi et al., 2018). Further examination revealed
that there is a compensatory relationship between inhibition
of pyruvate uptake and β-oxidation of fatty acids, in which
both reactions caused the successive deletion of ATP (Bradley
et al., 2019). Thus, β-oxidation of fatty acids and pyruvate
oxidation have an equal contribution in ATP production for
mouse oocyte development.

Pig farming is widely used for meat production and mostly
pig embryos are produced in vitro. Generally, immature pig
oocyte contains around 156 ng lipid contents much higher
than cattle and sheep oocytes which usually have 58 and
4 ng, respectively (McEvoy et al., 2000). Interestingly, higher
endogenous lipid contents has been observed in the pig oocytes
and embryos which shows a dark appearance. Recent studies
have been undertaken to show the potential importance and role

of these higher lipid contents in pig oocytes. A comprehensive
study proved that pig oocytes used endogenous triglyceride as
an energy source during in vitro maturation and that most
(91–97%) of the ATP produced during embryo development
comes from oxidative phosphorylation, half of which come from
β-oxidation of NEFA (Sturmey and Leese, 2003). Altogether,
these studies demonstrated that NEFA is the essential source
of ATP production during the mammalian oocyte maturation
and development.

In contrary to that NEFA also play an important role in
the energy metabolism of the developing oocytes in various
mammalian species, some studies have controversial results
about the exact role of lipid metabolism. Higher concentration
of NEFA also caused metabolic stress and jeopardized oocyte
and embryo development in human and dairy cows (Van
Hoeck et al., 2013; Leroy et al., 2015). Higher concentration of
NEFA within the oocytes and in the microenvironment of the
embryo is detrimental for their subsequent development and
competence acquisition (Leroy et al., 2008). Additionally, an
increased level of NEFA in the microenvironment of oocytes
can affect gene expression, alter the DNA methylation level of
imprinted genes and thus can change the fate of the resultant
blastocyst (Van Hoeck et al., 2015). Recently, a study explored
the effect of NEFA concentration by exposing oocytes and
embryos to a high concentration of oleic (OA), palmitic (PA),
and stearic (SA) acid and also performed pyrosequencing for
targeted DNA methylation analysis. The sequencing results
revealed that most of the genes (SIRT1, MAD2L1, FAM3C, CDC7,
CD47, HERC5, HSPD1, SCP2, UBL3, ID3, GPCPD1, CYP11A1,
PDCD10, SCP2, KRT19, GBP4, CCL17, SC4MOL, and TP53)
related to apoptosis, embryo implantation, gene transcription,
immune response and metabolism have an altered expression
(Desmet et al., 2016). Thus, a balanced level of fatty acid is
necessary to ensure the quality of developing oocytes in mammals
which can be useful for the successful maturation of oocytes for
monospermic fertilization.

THE SIGNALING ROLES OF LIPID
MOLECULES DURING OOCYTE
MATURATION

All the biological membranes are constituted by different lipid
molecules and their derivatives, however, the distribution of
lipid contents varies in each developmental stage of mammalian
oocytes. The analysis of the porcine ovary revealed the differences
in compositions of glycerophospholipids, sphingolipids,
and cholesterol derivatives between somatic cells and FFs
(Uzbekova et al., 2015). The localization and intensity of
some lipid derived molecules like phosphatidylinositol and
arachidonic acid continuously vary between pre- and post-
ovulated stages in mouse ovaries indicating their diverse role
in oogenesis (Campbell et al., 2012). The catabolite products of
glycerophospholipids and sphingolipids such as diacylglycerols
(DGs) (Eichmann and Lass, 2015), unsaturated FAs (Choi
et al., 2019), lysophosphatidic acids (LPA) (Jesionowska
et al., 2015), and ceramides (Buschiazzo et al., 2011) perform
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FIGURE 1 | Proposed model of free fatty acid (FFA) mobilization and catabolism in COC. (A) Free fatty acids or non-esterified fatty acids (NEFAs) are incorporated
with serum albumin and are transported to follicular fluids by fatty acid carrier or directly diffused through lipid bilayer. (B) The mobilization of triacylglycerol from
lipoproteins in follicular fluids occurs due to enzymatic action of lipoprotein lipases through which free fatty acids are generated and become available for cellular
uptake. (C) Intracellular triacylglycerols are stored in the cumulus cells and oocytes in the form of lipid droplets. These lipid droplets are activated and further liberate
free fatty acids by lipase mediated hydrolysis. (D) All the liberated free fatty acids either intracellularly from lipid droplets or through transporter molecules from
follicular fluids, are metabolized in the mitochondria and ATP is generated through β-oxidation.

signaling functions, stimulate cell proliferation, migration,
differentiation and survival.

The role of these lipid derivatives in oocyte maturation
and developmental competence has been recently studied in
various mammalian species. LPA receptors perform an essential
role in promoting meiotic maturation and also improve the
pre-implantation embryo developmental competence in mouse,
bovine and porcine oocytes (Komatsu et al., 2006; Jo et al.,
2014; Zhang et al., 2015). Addition of LPA in cultured
bovine and porcine oocytes stimulated the expression of anti-
apoptotic B-cell lymphoma 2 (BCL2) mRNA and decreased
BAX-BCL2 expression (Boruszewska et al., 2015). LPA is also a
major regulator of oocyte maturation by modulating the other
molecules in a cascade manner. It regulates the concentration of
cAMP which induces the germinal vesicle breakdown (GVBD)
by activating MAPK and adenylyl cyclase (AC) pathway (Villa-
Diaz and Miyano, 2004; Yamashita et al., 2009). It also modulates
the activity of PCNA (Proliferating cell nuclear antigen) which
affects the development of ovarian follicles. More importantly,
LPA regulates the activity of some important enzymes including

ACSL3 (Long-chain-fatty acid-CoA ligase 3) and ACADL (Acyl-
CoA dehydrogenase, long-chain) that are involved in fatty acid
oxidation and improved oocyte metabolism (Dunning et al.,
2014a). LPA is also involved in stimulating the uPA (urokinase
plasminogen activator) and uPAR (urokinase plasminogen
activator receptor) in porcine oocytes. Addition of LPA (30 uM)
resulted in higher uPA and uPAR in CCs but not in oocytes,
suggesting that LPA activated MAPK pathway in CCs. Additional
investigation of nuclear maturation of the experimental group
revealed that LPA and EGF (epidermal growth factor) together
have a synergistic effect on the metaphase II stage oocyte nuclear
maturation (Hwang et al., 2018).

The orchestrating events of oocyte maturation is executed
through multiple signaling pathways and one of them is
cyclooxygenase-(COX-2) derived prostaglandin E2 (PGE2), a
well-known lipid mediator that is critical for oocyte development.
PGE2 directs oocyte maturation in cultured mouse ovaries and
inhibition of PGE2 by indomethacin attenuates gonadotropin-
induced cumulus cell expansion which further delays the
GVBD of oocytes (Neal et al., 1975; Downs and Longo, 1983).
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Cox−/− mouse displayed a compromised oocyte maturation
and cumulus cell expansion along with the delay of GVBD.
While the cultured oocytes of Cox−/− mouse restores the
maturation and expansion of CCs when treated with PEG2
indicating that PEG2 is mandatory for oocyte maturation. PGE2
works in coordination with gonadotropin signaling through
its cell surface G-protein-coupled EP2 and EP4 receptors. It
stimulates cumulus cell expansion and oocyte meiotic maturation
in mouse by impinging cAMP-dependent protein kinase, NF-
KB, MAPK, and phosphatidylinositol 3-kinase/Akt pathways
(Takahashi et al., 2006).

Arachidonic acid is another important polyunsaturated fatty
acid (PUFA) that performs various functions in cell behavior
and response. It is the part of membrane phospholipid and
after releasing from the membrane it is further catabolized
into eicosanoids which influences the quality of oocytes (Lapa
et al., 2011). Arachidonic acid regulates the dynamics of gap
junction by modulating the transfer of small metabolites and
regulatory molecules between granulosa cells and oocytes. High
level of arachidonic acid can reduce the number of membrane
channels while inhibition of arachidonic acid is associated with
the increased number of membrane channels (Marandykina
et al., 2013). Arachidonic acid also stimulates the activation
of protein kinase C (PKC) and MAPK signaling pathways
which further promote the production of matrix glycoprotein
laminin and Connexin-43 protein in cultured granulosa cells (Jin
et al., 2009). Thus, it seems that arachidonic acid pathway in
association with kinase activity is necessary for the direct cell-
to-cell communication and synergistically modulate paracrine
signaling during oocyte maturation (Figure 2).

Gangliosides are also key lipid derivative molecules that
belong to the glycosphingolipids family and contain negatively
charged sialic acid residues in their carbohydrate moiety (Mirkin
et al., 2002). Generally, gangliosides regulate the activity of
platelet-derived growth factor receptor (PDGFR), epidermal
growth factor receptor (EGFR), and fibroblast growth factor
receptor (FGFR) (Xu et al., 2005; Kim et al., 2008). Ganglioside
GD1a activates EGFR signaling pathways in vertebrate oocytes
and further initiates the resumption of meiosis and expansion
of cumulus cells (Uhm et al., 2010). GD1a expression is
restricted to COCs and adding GD1a (10 uM) significantly
increased the proportion of metaphase II stage of porcine oocytes.
Subsequently, exogenous treatment of GD1a initiated the meiotic
oocyte maturation and a higher proportion of metaphase I
stage oocytes were observed. The addition of GD1a and EGFR
can improve the quality and developmental competence of
blastocysts in the pre-implantation embryo stage (Kim et al.,
2016). Furthermore, sphingolipid also contributes the activation
of mTOR pathway and Tfap2c translation during mammalian
embryogenesis (Chi et al., 2020).

REGULATORS OF LIPID METABOLISM
DURING OOCYTE MATURATION

It is well known that lipogenesis and lipolysis are important
processes during oocyte maturation and embryo development,

thus, the regulators of lipid metabolism had been thoroughly
studied. Melatonin (N-acetyl-5-methoxytryptamine) which is
synthesized during night time from the pineal gland of
mammals, has antioxidant properties and regulates various
physiological processes such as lipid profile and metabolic
syndrome (Kozirog et al., 2011; Stehle et al., 2011; Kitagawa et al.,
2012; Calvo et al., 2013; Reiter et al., 2016). Beneficial effects
of melatonin on oocyte development have been documented
in various mammalian species including sheep, cows, mice,
cattle and pigs (Wang et al., 2013, 2014). Recently, the effects
of different melatonin concentrations (10−3, 10−5, 10−7, and
10−9 M) on lipid metabolism of the porcine oocytes during
in vitro maturation have been investigated and a significant
increase in the rate of blastocyst formation has been observed
with 10−9 M concentration of melatonin compared to other
experimental groups. Moreover, the upregulated expression
of lipid metabolism-associated genes such as ACACA, FASN,
PPARγ, and SREBF1 were noted in melatonin treated groups.
Subsequently, the role of melatonin in lipolysis has also been
evaluated and a greater uptake of FA has been observed in treated
groups. Expression of fatty acid oxidation-related genes (CPT1a
and b and CPT2 II) was noted to be higher in the melatonin
group (Jin et al., 2017). These observations demonstrated the
importance of melatonin in lipid metabolism for the acquisition
of oocyte developmental competence.

Supplementation of antioxidants during in vitro maturation
of bovine and other mammalian oocytes is necessary to
decrease the generation of reactive oxygen species (ROS) as
well as to neutralize the adverse effects on oocyte and embryo
development (Jeong et al., 2006; Cicek et al., 2012). Ascorbic
acid (AC) and α-tocopherol are well-known antioxidants that
are generally used for ROS scavenging both in vivo and
in vitro (Hossein et al., 2007). The addition of these molecules
to culture media protects the oocytes and embryos from
oxidative damage as well as improves the blastocyst formation.
However, AC is sensitive to high temperature and humidity,
and thus it should be encapsulated in methyl−β−cyclodextrin
(CD) to form an inclusion complex that helps to increase
the bioavailability of AC for the developing embryos (Hu
et al., 2012). The effects of AC-cyclodextrin complex on the
in vitro maturation efficiency and lipid metabolism of bovine
oocytes has been extensively investigated. Interestingly, no
obvious differences had been found in the nuclear maturation
of the control and AC-cyclodextrin treated groups, however,
AC-cyclodextrin treated oocytes and cumulus cells displayed
differential expression of apoptosis and lipid metabolism
associated genes. The expression of apoptosis related genes (BAX
and BMP15) were downregulated in AC-cyclodextrin group
while lipid metabolism associated gene (CYP51A1) expression
was upregulated. Though neither blastocyst formation rate
nor cleavage rate displayed any significant difference, the
increased expression of CYP51A1 in CCs of AC-cyclodextrin
group indicated that AC regulates the cholesterol synthesis
during in vitro maturation of oocytes (Torres et al., 2019).
Overall, these observations might lay the foundation for future
improvement of in vitro oocyte culture by modifying the
metabolism of lipids.
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FIGURE 2 | Lipid signaling pathways during oocyte maturation. The flow chart representative diagram explaining the various signaling events occurs during
mammalian oocyte maturation. Briefly, luteinizing hormone (LH) through its receptor luteinizing hormone receptor (LHR) stimulates the entry of arachidonic acid in
theca cells (TCs) in the form of high density lipoprotein (HDL). Then HSL is activated through cAMP/PKA pathways, and initiates the release of cholesterol from lipid
droplets. In the mitochondria, cholesterol molecules are converted into pregnenolone by action of steroidogenic acute regulatory protein (StAR). Furthermore, COX
pathway is triggered inside the granulosa cells (GCs) via FSH stimulation which initiates the expression of aromatase and converts testosterone (T) into estradiol (E2).
Estradiol further stimulates various pathways in the oocytes which safeguard the degradation of cAMP and concurrent inhibition of maturation-promoting factor
(MPF). On the other hand, activation of progesterone (P4) signaling causes inhibition of cAMP production by blocking adenylate cyclase (AC) activity which results in
MPF activation and GVBD.

ABNORMAL LIPID METABOLISM AND
OOCYTES OR ZYGOTE DEVELOPMENT

Aging and Oocyte Quality
Aging is known to mediate certain types of complications and
pathologies in cellular functions (Kirkwood, 2002). Generally,
aging is associated with increased production of ROS and other
toxic by-products during aerobic respiration which are likely to

affect cellular and mitochondrial genome leading to imbalanced
redox activity and aneuploidy (Fragouli et al., 2015). Most
of the population consulting reproductive and fertility centers
are encountered with women of higher reproductive age. The
quality of oocytes from these women is usually compromised
and the resulting embryos from these oocytes display poor
development (Meldrum et al., 2016; Greaney et al., 2018). Aging
can cause reduced oocyte quality, defects in mitochondrial
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function as well as increased level of mutation and deletion
in oocyte mitochondrial DNA (mtDNA) (Wang et al., 2017;
Liu et al., 2018; Pasquariello et al., 2019). Oocyte maturation,
fertilization potency, cleavage, embryo preimplantation and
embryogenesis require high amount of ATP which is generally
provided by mtDNA mediated β-oxidation of lipid molecules
while increased maternal age is associated with declined energy
production efficiency in oocytes and early embryos (Spikings
et al., 2007; Eichenlaub-Ritter et al., 2011; Ge et al., 2012).
Hence, a prominent change that occurs with age is mitochondrial
dysfunction related to the β-oxidation of fatty acids in the
oocytes. Therefore, both quality and quantity of mitochondria in
the oocytes are important and could be essential indicators for
successful fertilization and embryo growth in aged women.

Effect of Obesity in Oocyte and Zygote
Development
Epidemiological findings have suggested that maternal body
weight is linked with an elevated risk of cardiovascular and
metabolic disorders in the offspring (Lawlor et al., 2012; Reynolds
et al., 2013). It is also generally recognized that maternal diet in
the periconceptional span can affect oocyte production, embryo
development, and offspring health (Gluckman and Hanson, 2004;
Connor et al., 2012; Machtinger et al., 2012).

The ovarian follicular environment is changed in obese
women with elevated levels of glucose, triglycerides, and insulin
which can have phenotypic effects on the oocytes (Robker et al.,
2009; Valckx et al., 2012). Specifically, overweight and obese
women face problem of producing fewer oocytes than normal
body mass index (BMI) women. The oocytes from overweight
and obese women are less likely to enter the blastocyst phase.
Studies have also documented that embryos from overweight
and obese women display impaired developmental and metabolic
phenotypes. The major metabolic anomalies exhibited by these
embryos include elevated endogenous triglyceride content,
reduced glucose intake and altered amino acid metabolism
profile. These finding provide clear evidences of a correlation
of maternal diet, periconceptional environment, and oocyte
development, which may have long-term health consequences in
the offspring (Leary et al., 2015). Overall, these findings pointed
toward the possibility of some altered lipid metabolism and age-
dependent oocyte development which may be impaired with
the growing age. We have also presented all the possible effects
of aging and impaired metabolism in the form of a flow chart
diagram in Figure 3.

Maternal diet-induced obesity can alter mitochondrial
distribution, hyperpolarization of mitochondrial membrane,
oxidized redox, and oxidative stress in both oocytes and zygotes.
It is reported that 46% of obese mothers experienced the failure of
embryo development at the blastocyst stage due to mitochondrial
oxidative stress (Zhang et al., 2020). The lack of blastocysts in
obese females is not attributed to anovulation but more likely
is due to the increased embryonic death. Furthermore, it was
reported that an obesogenic diet raised the concentration of
serum fatty acids and oviductal leptin. Similarly, high exposure
of oocytes and embryos to the obese reproductive environment

was correlated with qualitative and quantitative changes in
mitochondria, oxidized redox status, increased oxidative load,
and impaired antioxidant ability (Igosheva et al., 2010). Thus
impaired mitochondrial metabolism of oocytes or early embryos
resulting from prolonged exposure to nutrients before and during
pregnancy could be responsible for the adverse reproductive
outcomes in obese women. Further analysis of mitochondrial
functions in oocytes and embryos is required, particularly, of
obesity-related alterations in mitochondrial gene expression that
control energy metabolism.

Polycystic Ovary Syndrome and Lipid
Metabolism
Polycystic ovary syndrome (PCOS) is one of the complex and
most prevalent endocrine disorder in women at reproductive age
(Neven et al., 2018). PCOS is manifested with dilute or chronic
anovulation, polycystic ovaries, and hyperandrogenism (Balen
et al., 2016). Functional inactivation and mutations in the genes
that affect steroid hormone functions such as AR (androgen
receptor) and SHBG (sex hormone-binding globulin) have been
reported with PCOS in various ethnic groups (Gottlieb et al.,
2004; Wickham et al., 2011). Similarly, the distorted function
of genes that are necessary for the synthesis of gonadotropin
hormone is an important cause of PCOS. The variations in
the two most well-known genes, FSHR (follicle-stimulating
hormone receptor), and AMH (anti-mullerian hormone), are
associated with PCOS (Wu et al., 2014; Gorsic et al., 2017).
On the other hand, genes that are essential for ovarian and
adrenal steroidogenesis also play important role in the etiology
of PCOS. The defective function of these genes is manifested
through the endocrine system which aggravates an elevated level
of androgen resulting in PCOS. Thus, the variants in ovarian
and adrenal steroidogenesis synthesis genes such as CYPA1A,
CYP11A1, CYP11B2, CYP17A1, CYP1A1, CYP21A2, CYP3A7,
and CYP19A1 are involved in PCOS (Zhao et al., 2003; Esinler
et al., 2008; Unsal et al., 2009; Reddy et al., 2014; Mykhalchenko
et al., 2017). Furthermore, mutations and polymorphisms in
some other genes including FTO, CAPN10, INS, INSR, SRD5A2,
and SRD5A1 are also assumed to be associated with PCOS in
certain ethnic groups (Goodarzi et al., 2006; Baillargeon and
Carpentier, 2007; Cai et al., 2014). Most of these genes are
involved in lipid metabolism and androgen synthesis, suggesting
that impaired lipogenesis and lipolysis can be an important factor
in understanding the etiology of PCOS. We have summarized the
reported genes found to be associated with PCOS in Table 2.

In mammalian females, evolutionary mechanisms integrate
nutritional, environmental and hormonal cues to ensure the
successful reproduction under normal energetic conditions,
beware that alterations in these events can affect the oocyte
development and quality. Impaired metabolism such as obesity
affects the reproductive health of females and also causes
compromised fertility that can lead to PCOS in severe cases.
The role of obesity in PCOS is well-reviewed in many articles
and they have regarded obesity as a cause of infertility in
females (Jeanes and Reeves, 2017; Silvestris et al., 2018; Ajmal
et al., 2019). The impact of obesity on ovulatory disorders
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FIGURE 3 | Flow chart diagram describing the effect of obesity and advanced maternal age on oocyte maturation. Obesity and advanced maternal age cause
improper lipid metabolism in oocyte which further affect spindle formation, lead to aneuploidy and poor embryonic development.

is attributed to a dysregulated endocrine system which in
turn reduces the ovulation homeostasis (Pasquali et al., 2003).
The impaired endocrine system further causes gonadotropin
secretion, enhanced aromatization of androgens to estrogens
as well as insulin resistance. Keeping in view all these linked
metabolic pathways and their involvement in PCOS, we have
summarized the role of each pathway in Figure 4. However,

still the complete mechanism underlying PCOS is unknown and
it is suggested that lipid metabolism including phospholipids,
free fatty acids and epigenetic factors such as methylation
alterations can be new factors in understanding the complete
etiology of PCOS.

The lipidomics approach is utilized to investigate the
concentration of lipid profile in PCOS women. A comprehensive

TABLE 2 | Most common genes associated with PCOS.

Gene Chr. location Type of mutations Function PCOS association References

AR X X inactivation Involved in AR signaling pathway Associated Gottlieb et al., 2004

SHBG 17 Polymorphism rs727428(C:T) Control the level of sex hormones Associated Wickham et al., 2011

FSHR 2 Polymorphism rs6165(997 A/G) Endocrine reproductive system Associated Esinler et al., 2008

and Unsal et al., 2009

AMH 19 Polymorphism rs149082963(254T/G) Marker of ovarian reserve Associated Gorsic et al., 2017

CYPA1A 15 Polymorphism rs4646903(6235 T/C) Metabolization of estrogen Associated Esinler et al., 2008

and Unsal et al., 2009

CYP11A1 15 repeat polymorphism (tttta)n Steroid synthesis Associated Reddy et al., 2014

CYP11B2 8 Polymorphism rs1799998(–344C/T) Aldosterone synthetases Associated Zhao et al., 2003

CYP17A1 10 Polymorphism in promoter rs743572(-34 T/C) Steroidogenesis enzyme Associated Unsal et al., 2009

CYP1A1 15 Polymorphism rs1048943(A > G) Transport pathways of estrogens Associated Unsal et al., 2009

CYP21A2 6 Polymorphism (V281L and P30L) Steroid 21-hydroxylase, Associated Zhao et al., 2003

CYP3A7 7 CYP3A7*1C (promoter region) Metabolism of DHEAS Associated Unsal et al., 2009

CYP19A1 15 Polymorphism rs2414096(A/G) Biosynthesis of cholesterol Associated Mykhalchenko et al., 2017

FTO 16 Polymorphism rs9939609(A/T) Lipid Metabolism Associated Cai et al., 2014

CAPN10 2 Polymorphism rs2975760(4841 T/C) Insulin action Associated Unsal et al., 2009

INS 11 VNTR I/I, I/III, and III/III linkage analysis Production of androgen Controversial Baillargeon and Carpentier, 2007

INSR 19 Polymorphism rs1799817(3364 T/C) Insulin receptor Debatable Unsal et al., 2009

SRD5A2 2 Polymorphism rs523349(c.265C/T) Androgen biosynthesis Associated Goodarzi et al., 2006

SRD5A1 5 Polymorphism rs3822430(c.309A/G) Reduction of testosterone into androgen Debatable Goodarzi et al., 2006
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FIGURE 4 | Pathophysiology of polycystic ovary syndrome (PCOS). The representative illustration of complex interactions underlying the pathophysiology of PCOS.
Generally, insulin resistance occurs in PCOS that further causes hyperinsulinemia which is responsible for the majority of changes in PCOS women. Skeletal muscles
and adipose tissues become insulin resistance with reduced glucose uptake and higher lipolysis, while the ovaries remain insulin sensitive. However, hyperinsulinemia
occurs as a compensatory response to insulin resistance and stimulates enhanced production of androgens from ovaries and adrenal glands in PCOS women. In
short, excess insulin stimulates increased androgen production in ovarian theca cells in response to luteinizing hormone, resulting in follicular arrest and anovulation.
On the other hand, hyperinsulinemia causes suppression of hepatic sex hormone-binding globulin (SHBG) production and leads to hyperandrogenemia.

study was carried out to evaluate the profile of serum lipids
in both obese and lean women with PCOS. The increased
concentration of phosphatidylcholine (PC) and concomitantly
low level of lysophospholipid (LPC) were observed in the obese
PCOS group. Additionally, decreased concentration of PUFA
such as linoleic acid, docosahexaenoic acid (DHA) and a higher
level of saturated fatty acids were evident in obese PCOS
women. Interestingly, downstream bioactive compounds that
are generated by PUFA metabolism were higher in the serum
of control women than in the lean and obese PCOS women
(Li et al., 2017).

Recently, another study was conducted on PCOS women
to explore the role of epigenetic factors in PCOS. The study
revealed that around 92 differentially expressed genes were
unique in PCOS woman granulosa cells and bioinformatic
analysis demonstrated that the synthesis of lipids and steroids
was stimulated in these cells. Furthermore, the 5-methylcytosine
analysis indicated a significant reduction of global methylation
in PCOS granulosa cells. Interestingly, hypomethylation of
promoter regions was evident in the genes that are related to lipid
and steroid metabolism (Pan et al., 2018). Overall, these findings
suggested that aberrant DNA methylation of lipid and steroid

synthesis genes may lead to dysregulation of steroid metabolism
which can stimulate the excess production of androgens and
cause PCOS in women.

Emerging evidences also portrayed that gut metabolic
abnormalities are also involved in the pathogenesis of PCOS
(Zhao et al., 2020). Gut microbes (GM) have the ability
to alter the lipid metabolism associated gene expression of
host organism causing adiposity and weight gain as well as
impacting metabolic, inflammatory pathways and the gut-
brain axis (Ussar et al., 2015; Bauer et al., 2016). The
microenvironment of the human GM consists of about 1000-
1500 species of bacteria (Gill et al., 2006). The dominant
species include Prevotella, Porphyromonas, Clostridium, and
Eubacterium while the less abundant ones are actinomycetes,
proteobacteria, and methanogenic archaea (Lozupone et al.,
2012). Dysbiogenesis of GM is associated with PCOS and
women with PCOS contain fewer species of GM as compared
to normal ones (Torres et al., 2018). Study of GM on the host’s
PCOS phenotype revealed that mice transplanted with fecal
samples from PCOS patients developed insulin resistance, had
an increased number of ovarian cyst-like follicles, a decreased
corpus luteum, higher levels of testosterone, luteinizing hormone
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and produced fewer pups than control mice (Qi et al., 2019).
Lindheim et al. (2017) reported that PCOS patients also harbor
lower levels of Tenericutes ML615J-28 and Bacteroidetes S24-
7 than the normal women. Mice with letrozole-induced PCOS
showed decreased genus of GM while number of Firmicutes
(closely related to obesity and metabolisches Syndrom) increased
(Kelley et al., 2016). Dysbiogenesis of GM also affects the
level of ASH (appetite-stimulating hormone) that regulates the
secretion of GnRH and sex hormones. The metastatic analysis
of PCOS patients displayed lower level of ASH which in
turn activates higher expression of aromatase CYP19A1 (Gao
et al., 2016). Reduced level of ASH is also a major cause
of abnormal metabolism of short chain fatty acids (SCFAs).
Thus, it can be inferred that dysbiogeneis of GM may be
involved in the occurrence and development of PCOS and
the routine investigation of GM may present a new insight to
treat PCOS in future.

Micro-RNAs (miRNAs) are small non-coding RNA molecules,
approximately consisting of 20–23 nucleotides, have the ability
to inhibit the translation of their target genes by a well-
known RNA interference (RNAi) mechanism (Trujillo et al.,
2010). These small RNA molecules are responsible for a
broad range of physiological processes such as proliferation
(Sirotkin et al., 2010), differentiation (Qu et al., 2014), and
cell metabolism (Sang et al., 2013). Aberrant expression of
miRNAs has been linked to the occurrence and development
of PCOS (Cai et al., 2017). For example, normal expression of
miR-145 is required to inhibit the activation of MAPK/ERK
signaling pathways through binding with insulin receptor
substrate 1 (IRS1). However, the granulosa cells of PCOS
women displayed a lower expression of miR-145 that in turn
activates IRS1/MAPK/ERK pathways causing dysregulation of
granulosa cell proliferation in PCOS women (Cai et al., 2017).
MiR-126-5p and miR-29a-5p expression were also found to be
lower in the granulosa cells of PCOS women which induce
apoptosis of granulosa cells through the Klotho-associated
signaling pathway (Mao et al., 2018). Studies reported that the
dysregulated function of miRNAs such as miR-320a (Zhang
et al., 2017) and miR-509-3p (Huang et al., 2016) in granulosa
cells is associated with aberrant metabolism of estrogen and
estradiol secretion which are the common characteristics of
PCOS. Downregulated expression of miR-92a and miR-92b was
observed in theca cells of PCOS women and gene target analysis
confirmed that both of these miRNAs regulate the expression
of GATA6, whose protein products regulate the activity of
human CYP17 promoter which is involved in lipid metabolism
(Lin et al., 2015).

A relationship between miRNAs level in ovarian FF,
development and maturation of oocytes has been suggested
(Matsuno et al., 2019). Microarray profiling of human FF
revealed a significantly increased expression of hsa-miR-9,-18b,-
32,-34c, and miR-135a in PCOS group and normal expression
of these miRNAs is required for a balanced carbohydrate and
lipids metabolism (Roth et al., 2014). Another study reported
that around 100 miRNAs showed differential expression in FF
in PCOS females. Of note, miR-132 and miR-320 which are
the important regulators of steroid synthesis were significantly

downregulated implying their involvement in the pathogenesis of
PCOS (Sang et al., 2013). Further study reported that let-7b and
miR-140 were downregulated while miR-30a was upregulated
in the FF of PCOS women (Scalici et al., 2016). These short
RNAs are involved in the regulation of androgen production and
their dysregulated expression in FF caused excessive androgen
production which in turn lead to poor follicular development and
ovulatory failure in PCOS (Sang et al., 2013).

Ovarian FF of mammals also contains exosome bound
miRNAs. These exosomes encapsulated miRNAs are involved
in regulating follicular development, ovulation, and early
embryonic development (da Silveira et al., 2012, 2015; Gross
et al., 2012; Sang et al., 2013; Di Pietro, 2016; Machtinger et al.,
2016; Martinez et al., 2018). Several reports suggested that
exosome encapsulated miRNAs also maintain intracellular
communication between ovarian function and follicle
development (Sun et al., 2019). Furthermore, bioinformatics
based analysis identified 167 upregulated and 245 downregulated
circRNAs from exosomes of FF obtained from PCOS patients
(Wang et al., 2019). Thus, due to ill defined etiology of
PCOS, understanding the role of miRNAs in the pathogenesis
of PCOS may provide novel therapeutic strategies for the
treatment of PCOS.

CURRENT CHALLENGES AND FUTURE
DIRECTIONS

According to recent world report by the International Committee
for Monitoring ART (assisted reproductive technology), the
use of ATR has increased dramatically worldwide over the
past two decades (Dyer et al., 2016), however, its efficiency
is still low in terms of live birth. For instance, 4.45 cycles
are required for one live birth event following in vitro
fertilization (IVF) across all age groups. It is estimated that
less than 7% of retrieved oocytes develop into normal embryos
that yields a live birth. The low success rate manifests the
poor knowledge of the molecular determinants of oocyte
and embryo viability (Montani et al., 2019). To further
improve the IVF efficiency and to get more information
about the factors affecting the oocyte quality, recent studies
are focusing more on FF composition. Studies have focused
on hormones, growth factors and ROS profile of the FF
and have linked them with oocyte quality (Reinthaller et al.,
1987; Basuray et al., 1988; Enien et al., 1995; Mantzoros
et al., 2000; De Placido et al., 2006). Recently, the role of
lipid metabolism in oocyte maturation and quality control
is also evident. It has been demonstrated that carnitine
palmitoyltransferase I (CPT1B) plays an important role in
the β-oxidation of fatty acids during oocyte maturation and
embryo development (Ye et al., 2010). Cpt1b expression was
noted in murine COCs and its high expression was observed
after injection of hormones that stimulate oocyte maturation
and ovulation. It was also found that the level of β-oxidation
was increased during oocyte maturation, as measured by the
production of 3H2O in the medium. Furthermore, inhibition
of β-oxidation with etomoxir during oocyte maturation caused
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retarded embryo development in 3–5 day of post-coitum
and thus it was deduced that β-oxidation is essential for
oocyte developmental competence. Similarly, supplementation
of L-Carnitine during oocyte maturation increased β-oxidation,
improved developmental competence and also assisted in the 2-
cell cleavage in the absence of carbohydrates supply (Dunning
et al., 2010). Thus, understanding of lipid metabolism of oocyte
and embryo development in the surrounding microenvironment
will pave the way for non-invasive ART in the future.

Lipid profiling of biological systems has been an intensive
area of research since 1960s (Montani et al., 2019). However,
the research has become more prominent with the emergence of
lipidomics. It is a comprehensive understanding of the influence
of all lipids on the biological system with respect to cell signaling,
transcriptional and translational modulation, and response to
environmental changes. The success of lipidomics is attributed to
the powerful detection and quantification method that involves
interdisciplinary integration of biological, analytical, statistical
and bioinformatics approaches (Triebl et al., 2017). On the other
hand, non-invasive tools are much more desirable to study the
change in lipid profiles with the developmental stages. Thus,
recently microprobe capillary electrophoresis (Onjiko et al.,
2016), single-cell capillary electrophoresis high-resolution mass
spectrometry (CE-HRMS) and multiple reaction monitoring
(MRM) are reported for lipid profiling (Onjiko et al., 2017).
For example, MRM-profiling is suitable for the analysis of
oocytes and embryos since it avoids sample chromatographic
dilution, and separation of untargeted lipidomics and has been
successfully employed for lipid profiling of 2–6 cell blastocyst
(de Lima et al., 2018). Additionally, Nomarski interference
differential contrast (NIC) approach was also successfully
utilized to detect lipid alterations in porcine oocytes as an
appropriate and non-invasive technique to evaluate the lipid
content of a single oocyte before or after in vitro maturation
(Prates et al., 2013). Similarly, coherent anti-Stokes Raman
scattering (CARS) microscopy for the comparative quantification
of lipid content in different mammalian oocytes at different
developmental stages with only ∼2 min of laser exposure without
detrimental effects was employed as a new non-invasive tool
(Jasensky et al., 2016). Thus, the non-invasive tools for complete
lipid profiles in a single cell will provide new approaches
that will greatly improve the understanding of the lipid
metabolism during oocyte maturation and embryo development.

It is well known that lipid dysregulation has a strong
correlation with both male and female infertility (Pocate-Cheriet
et al., 2020). Complete information regarding the biochemical,
metabolic and molecular pathways of lipids in oocyte maturation
and early embryonic development is scarce (Dubeibe Marin
et al., 2019). To be noted, the foundation for existing ART
is based on animal studies. A wide range of animal models
including vertebrates (Xenopus, Zebrafish, mouse, and bovine),
urochordates (ascidian), and protostomes are used for egg and
sperm studies, which greatly improved our understating of oocyte
maturation and embryo development (Khoury et al., 2018). The
basic plan of the early development is mostly similar, however,
the intervening events differ among species. For instance, the
pig and ruminant oocytes depend more on lipid metabolism,

whereas, rodent and human oocytes mostly depend on glucose
and pyruvate metabolism (Dalbies-Tran et al., 2020). Due to the
procedural and ethical barriers in using human oocytes, still there
is need to define the best animal model for translational studies of
oocyte lipidomics.

Recent advancement in organoid technology is
revolutionizing knowledge about the function of biological
systems. This organoid technology is recently being used to study
clinical applications, toxicology studies and drug discoveries
(Xiao et al., 2017; Mancini and Pensabene, 2019). The use of
microfluidics technology has already enabled researchers to study
organ-on-chip that may lead to create multi-organoid-on-a chip
plate form and even human-on-a-chip plate form (Heidari-Khoei
et al., 2020). Thus, in future, it may become a powerful tool
for the understanding and exploration of lipid metabolism of
oocytes and their microenvironment.

CONCLUSION

Lipid droplets are active molecules having an important role
in the lipid metabolism. Generally, lipid droplets consist of
neutral lipids, mostly triglyceride (TG) and cholesterol ester
(CE), and offers substrates for energy production, signaling
lipids and membrane components. Usually, lipid droplets
are stored in the cytoplasm during mammalian oogenesis,
although for unknown reasons the exact contents of lipid
droplets vary widely among species. Numerous studies have
demonstrated the important functions of lipid droplets and
free fatty acids in oocyte growth and development. Still, this
topic is under extensive investigation and novel functions
of these molecules in oocyte development and competence
acquisition are being reported on daily basis. Thus, to improve
the efficiency of ART in females, focus on the regulation
of lipid metabolism during oogenesis is required. In short,
extensive information is available about the prevalence of fatty
acids, triglycerides and lipoproteins in the microenvironment
of COC and researchers should pay more attention to
investigate their exact function in oocyte maturation and embryo
development.
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