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Sepsis is a global health emergency, which is caused by various sources of infection that
lead to changes in gene expression, protein-coding, and metabolism. Advancements in
“omics” technologies have provided valuable tools to unravel the mechanisms involved in
the pathogenesis of this disease. In this study, we performed shotgun mass spectrometry
in peripheral blood mononuclear cells (PBMC) from septic patients (N=24) and healthy
controls (N=9) and combined these results with two public microarray leukocytes
datasets. Through combination of transcriptome and proteome profiling, we identified
170 co‐differentially expressed genes/proteins. Among these, 122 genes/proteins
displayed the same expression trend. Ingenuity Pathway Analysis revealed pathways
related to lymphocyte functions with decreased status, and defense processes that were
predicted to be strongly increased. Protein-protein interaction network analyses revealed
two densely connected regions, which mainly included down‐regulated genes/proteins
that were related to the transcription of RNA, translation of proteins, and mitochondrial
translation. Additionally, we identified one module comprising of up‐regulated genes/
proteins, which were mainly related to low-density neutrophils (LDNs). LDNs were
reported in sepsis and in COVID-19. Changes in gene expression level were validated
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using quantitative real-time PCR in PBMCs from patients with sepsis. To further support
that the source of the upregulated module of genes/proteins found in our results were
derived from LDNs, we identified an increase of this population by flow cytometry in PBMC
samples obtained from the same cohort of septic patients included in the proteomic
analysis. This study provides new insights into a reprioritization of biological functions in
response to sepsis that involved a transcriptional and translational shutdown of genes/
proteins, with exception of a set of genes/proteins related to LDNs and host‐
defense system.
Keywords: LDNs, omics, transcriptional shutdown, translation shutdown, protein-protein interaction
1 INTRODUCTION

In the past few decades, sepsis has gained immense attention as a
global health emergency that affects millions of people
worldwide. Clinically, it is defined as a life‐threatening organ
dysfunction caused by the dysregulated host response to
infection (1). Despite the advancements in the diagnosis and
treatment strategies, high prevalence and mortality rates of sepsis
have been recorded over the last 20 years (2). Additionally, the
high cost of treatment associated with sepsis makes it one of the
most expensive healthcare problems.

The complex pathophysiology of sepsis is largely dependent
on the host’s immune response against microbial infections (3,
4). The patients’ outcome is determined by fine regulation of a
variety of genes, proteins, metabolites, and other molecules,
which are associated with different pathways that play a pivotal
role in disease pathogenesis (4–6). In particular, a fine balance
between the molecules involved in inflammatory and anti‐
inflammatory responses increases the likelihood of infection
control and organ function recovery. However, the predominance
of either of the two responses might result in poor disease
outcomes, which could be attributed to organ dysfunction and
persistence of primary infection or breakthrough of secondary
infections (4–6).

In the last decades, the development and advancement of
“omics” technologies revolutionized the field of sepsis research.
These technologies ensured a better understanding of disease
pathogenesis (7, 8) and enabled the discovery and validation of
important disease biomarkers (9). The application of
transcriptomics to whole blood leukocytes provided important
insights into the pathophysiology of sepsis. In particular, these
studies mediated the identification of sepsis genomic signatures
(9, 10) and provided useful information regarding the alteration
of associated biological pathways, which further enabled the
discovery of potential therapeutic strategies (11, 12). In
addition to this, the analyses and conclusions drawn from
these initial studies encouraged the in‐depth search to unravel
any hidden information present in the high‐dimensional
transcriptomic data (13). Proteomics studies previously
conducted for sepsis provided valuable information regarding
changes in various biological pathways, including lipid
metabolism, cytoskeleton and cellular assembly (7, 14). In
some of the studies, the application of protein-protein
org 2
interaction networks (PPINs) and transcriptome/proteome
profiling enabled the identification of biomarkers, disease‐
related pathways, and proteins associated with patients’
survival (7, 15–17).

In the present study, concepts of network biology were
employed to evaluate the systemic host response in patients
with sepsis. The study aimed to utilize PPIN analysis to gain
better insights into the interconnections present between the
genes/proteins with highly altered expression, and thus unravel
the functional modules involved in the biological processes
associated with clinical sepsis. For this purpose, we performed
shotgun mass spectrometry in a cohort of septic patients
combined with two publicly microarray dataset to identify co-
differentially expressed genes/proteins and overrepresented
pathways. Results were validated by qPCR and flow-cytometry.
2 MATERIALS AND METHODS

2.1 Transcriptome Analysis
2.1.1 Collection of Microarray Data
Two publicly available microarray datasets GSE65682 (SD1) and
E-MTAB-5273 (SD2) were obtained from the Gene Expression
Omnibus and Arrayexpress, respectively. These datasets were
selected from other datasets with reference to the following
criteria: i) dataset providing data information about gender
and age; ii) the presence of corresponding controls in the same
dataset (healthy individuals or individuals scheduled for elective
surgery); iii) available processed data and iv) samples collected
within 24 h after ICU admission. The exclusion criteria include:
i) animal and pediatric studies and ii) datasets with small number
of samples (Table 1 and Supplementary Material 1).

2.1.2 Microarray Data Analysis
We read the processed data into the R environment (v. 4.0.2).
First, the transcripts were collapsed to unique genes by
TABLE 1 | Datasets information.

Access # Patients:
Controls

Samples Reference

GSE65682 (SD1) 478:42 Whole blood Scicluna, van Vught (9)
E-MTAB-5273 (SD2) 46:10 Blood leukocytes Burnham, Davenport (11)
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calculating the mean expression of transcripts from the same
gene locus using tidyverse and dplyr packages. The annotation
file used to map the probes to genes was previously published in
Khan, Perlee (18). Comparisons were performed using limma
with Benjamini-Hochberg (BH) adjusted p-value < 0.05 and Log2
Fold-Change (FC) < −0.26 or > 0.26 significance thresholds.

2.1.3 Venn Diagram Analysis of Differentially
Expressed Genes
The InteractiVenn tool (http://www.interactivenn.net/) was used
to overlap the lists of differentially expressed genes (DEGs) from
the two different datasets. Then, a set of DEGs was selected based
on those overlapping and following the same direction of
expression (up-regulated or down-regulated). In addition, we
selected only genes classified as “protein-coding” for
further analysis.

2.2 Proteome Analysis
2.2.1 Study Design and Sample Collection
Blood samples were collected from healthy volunteers and from
patients with a clinical diagnosis of severe sepsis and septic
shock, who were admitted to the intensive care units of Sao Paulo
Hospital, Albert Einstein Hospital, and Sirio-Libanes Hospital
during 2014–2016. The prospective study was approved by the
ethics committees of the participating hospitals, and written
informed consent was obtained from all participants or
relatives before blood sampling. The diagnosis was made
according to the ACCP/SCCM consensus conference (19) and
then later adjusted to the revised concepts of sepsis and septic
shock (1). The samples were obtained within 48 h of the first
organ dysfunction or shock and stored in the biobank BR047
(CEP/UNIFESP-HSP). Patients aged <18 years, who were
participating in any experimental treatment, undergoing
chemotherapy, or in imminent death were excluded. After
approval by the institutional ethics committee (CEP/UNIFESP
1171/2017), we selected 24 patients with sepsis secondary to
community-acquired infections among the 134 patients enrolled
in the cohort (Table S1 in Supplementary Material 1) and 9
healthy age- and gender-matched volunteers for the proteomic
analysis. For the gene expression analysis by qPCR, we selected
seven patients and seven healthy volunteers.

2.2.2 Preparation of PBMCs and Protein
Sample Preparation
PBMC were isolated from blood samples using the Ficoll
gradient method (Ficoll-Paque PLUS; GE Healthcare Bio-
Sciences, Sweden) and stored in liquid nitrogen before use.
After thawing, the protein extracts were obtained by lysis in 7
M urea, 2 M Thiourea, and 200 mM Dithiothreitol (DTT) with
the Protease Inhibitor Cocktail (Sigma, USA). After
centrifugation at 13,000 g for 15 min at 4°C, the protein
concentration in the supernatants was determined using the
Bradford method (20). The samples were reduced with 5 mM
DTT at 65°C for 30 min and then alkylated with 15 mM
iodoacetamide at room temperature for 30 min in the dark.
The proteins were precipitated in acetone/methanol (8:1, v:v)
Frontiers in Immunology | www.frontiersin.org 3
at −80°C for 16 h and, after two washes with methanol, recovered
by centrifugation at 14,000 g for 10 min at 4°C. They were then
dissolved in 100 mM NaOH (5 µL/100 µg protein) and the
volume was adjusted with 50 mM HEPES (pH 7.5) to a protein
concentration of 1 µg.µL-1. The proteins were digested with
trypsin (Promega, USA) at a 1:100 enzyme:protein ratio at
37°C overnight, and the digestion was stopped by the addition
of 10 µL of 5% trifluoroacetic acid. The samples were then
desalted using C18 tips, vacuum-dried, and stored at −80°C.
Before the analysis, the peptides were suspended at 0.1% formic
acid to a final concentration of 2 µg.µL-1.

2.2.3 Mass Spectrometry Acquisition (LC-MS/MS)
LC-MS/MS analyses were performed in the chromatographic
system nanoAcquity ultra performance liquid chromatography
(UPLC) (Waters) coupled to the Synapt G2 HDMS Mass
Spectrometer (Waters). Samples (10 µg) were loaded into a
trap column (Acquity UPLC M-Class Symmetry C18 Trap
Column,100 Å, 5 mm, 300 mm × 25 mm; Waters) at 8 mL/min
of phase A (deionized water, 0.1% formic acid) for 5 min. Then,
the mixture of trapped peptides was eluted in an analytical
column (Acquity UPLC M-Class HSS T3 Column, 1.8 mm, 300
mm × 150 mm; Waters) with a gradient of 7%–35% of Phase B
(0.1% formic acid in acetonitrile) over 60 min at a flow rate of
3 µL/min. The MS data were acquired on data-independent
mode (DIA) using ion mobility separation UDMSE (21). in the
m/z range of 50–2000 and set up in the resolution mode. Peptide
ions were fragmented by collision-induced dissociation (CID), in
which collision energies were alternated between low (4 eV) and
high (ramped from 17 to 60 eV) for precursor ion and fragment
ions, respectively, using the scan time of 1.0 s. The ESI source was
operated in the positive mode with a capillary voltage of 3.0 kV,
block temperature of 100°C, and cone voltage of 40 V. The
column temperature was set at 55°C, and the samples were
maintained in an autosampler at 10°C. For lock mass correction,
a [Glu1]-Fibrinopeptide B solution (500 fmol/mL in 50%
acetonitrile, 0.1% formic acid; Peptide 2.0) was infused through
the reference sprayer at 2 mL/min and sampled every 60 s for
external calibration (22).

2.2.4 Progenesis QI for Label-Free Quantification
Label-free quantification was performed in Progenesis QI for
proteomics (NonLinear Dynamics, Newcastle, UK) as previously
reported (23, 24). Briefly, the raw files were loaded in the
software, and the samples were aligned based on the precursor
ion retention time of the reference run, which was automatically
selected. The default peak picking parameters were then applied.
Searches for protein identification were run against Homo
sapiens sequences from the UniprotKB/Swissprot (www.
uniprot.org; reviewed; 26,426 sequences; downloaded on
November 30, 2018). The database was combined with a list of
259 most common contaminants as well as examined with all
their reverse sequences.

Search parameters were set as follows: carbamidomethyl
cysteine residues were selected as fixed modification and N-
terminal Acetylation and methionine oxidation as variable
September 2021 | Volume 12 | Article 744799
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modifications. Ion account was selected as the peptide
identification method with the search tolerance parameters set
as automatic for peptide and fragment tolerance. The minimum
ion match requirements for protein identifications were set to at
least one fragment per peptide, five fragments per protein, and
two peptides per protein. Up to two missed cleavage sites were
allowed for trypsin digestion. A maximum peptide false
discovery rate (FDR) of 1% was set at the peptide level.
Proteins were quantified by the average signal intensity of the
three most intense tryptic peptides of each protein (25).

2.2.5 Bioinformatics Analysis
Progenesis output tables were previously filtered by removing
reversed and contaminants hits and keeping only proteins with
≥2 peptides matched (one of which was unique). The resulting
table was then imported and analyzed using the Perseus software
(v. 1.6.15.0) (26). Briefly, data were log2 transformed, biological
replicates were grouped, and then mass spectrometry intensity
values were filtered to have at least 60% quantified values in
either of the group (Sepsis or Healthy). Student’s t-test analyses
were performed, and the Benjamini-Hochberg corrections was
applied for all p-values to calculate the false discovery rates
(FDR). For the selection of differentially expressed proteins
(DEPs), we considered the following criteria: p-value < 0.05
and Log2FC < −0.37 or > 0.37 (27, 28).

2.3 Pathway Enrichment Analysis
We performed the canonical pathway enrichment analysis in the
ingenuity pathway analysis (IPA, Qiagen Bioinformatics,
ThermoFisher) in DEGs and DEPs separately to determine the
most significantly affected pathways and the predicted activation
state. To gain additional insights, we performed the diseases and
functions analyses in IPA that displayed the predicted diseases or
biological functions. The statistical significance p-value was
calculated using Fischer’s exact test and adjusted for multiple
comparisons by BH-adjusted p-values. We used the z-score >2
(pathway increased) or z-score <−2 (pathway decreased) with a
B–H p-value <0.05 as the significance cutoff for our analysis.
Then, we performed the comparative analysis in order to
compare the similarity and difference among the enriched
pathways and diseases or functions resulting from genes/
proteins within each dataset.

2.4 Comparison and Correlations Between
Transcriptome and Proteome Data
We analyzed the list of DEGs and DEPs looking for co-
differentially expressed genes/proteins in the two lists. First, we
converted the gene symbol to Entrez Gene IDs using the DAVID
mapping service (https://david.ncifcrf.gov/conversion.jsp) and
then and secondly, employed the InteractiVenn tool (http://
www.interactivenn.net/) to uncover overlapping genes and
protein products. Throughout this analysis we matched for
directionality of expression patterns. Based in Shapiro–Wilk
test we calculated the Spearman’s rank correlation coefficient
as a measure of the strength of the relationship between
messenger RNAs (mRNAs) and protein expression levels. For
this purpose, we used the R environment (v. 4.0.2) for statistical
Frontiers in Immunology | www.frontiersin.org 4
was done by ggpubr (v. 0.4.0) and visualization by ggplot2
(v. 3.3.3).

2.5 Construction and Visualization of PPIN
The construction of the sepsis PPIN by co-differentially
expressed genes/proteins were generated based on the
interactions derived from the STRING database using the
Cytoscape stringApp (v. 1.5.1) for the H. sapiens with a
confidence cutoff score set to 0.7 and no additional interactors.
The network was visualized in Cytoscape (v. 3.8.2), and the
representation of the log2FC variation was created using the
Omics Visualizer app (v. 1.3.0) (29). To group the proteins in
the network based on their interactions from STRING
(modules), we used the clusterMaker2 to run Markov
clustering (MCL), with the following criteria: value to 4.0, set
array sources to use the STRING confidence score attribute as
weights and left all other settings at their default. We thus
selected the largest cluster (module) in the network and
performed functional enrichment analysis using the STRING
enrichment API (FDR-corrected p-value <0.05) (30).

In order to expand the information from the modules, we
created a global PPIN using all DEGs and DEPs, with the same
interaction criteria as described above. In this case, we performed
a multiscale community analysis to group the proteins. We used
the “CyCommunityDetection” app. with the following criteria:
Algorithm: OSLOM, weight column: STRING score, random
number seed: 1, and all other settings at default. Then, we
performed functional enrichment on the hierarchy network
using g: Profiler as the algorithm (31).

2.6 Gene Expression Analysis by qPCR
Total RNA was isolated from PBMC using the RNEasy Mini-Kit
(Qiagen, Germany), treated with DNAse I (Qiagen), and
quantified in Nanodrop (Thermo Fisher Scientific, USA). Next,
500 ng of total RNA per sample was used for cDNA synthesis
using the High-Capacity cDNA Reverse Transcription Kit with
RNase Inhibitor (Thermo Fisher Scientific, Lithuania). The real-
time polymerase chain reaction was performed in the 7500 Real-
Time PCR System (Applied Biosystems, USA) with the gene-
specific primers listed in Table S2 in Supplementary Material 1.
The relative gene expression was analyzed using the 2-ΔΔCt

method. The syntaxin-5 (STX5) gene was used as endogenous
control (32, 33).

2.7 Immunophenotyping of Low-Density
Neutrophils
PBMC from septic patients and healthy volunteers were thawed.
Then, five hundred thousand cells were transferred to
polystyrene tubes and stained with CD66b FITC clone G10F5
(BD Biosciences), CD45 BV421 clone HI30 (BD Biosciences) and
CD16 PE clone 3G8 (BD Biosciences); 7-Amino-Actinomycin D
(7-AAD; BD Biosciences) was included to assess cell viability.
Samples were incubated for 15 min in the dark at room
temperature. After washing, the cells were suspended in a
buffer solution (PBS, 0.1% BSA, 2 mM EDTA) and analyzed
by flow cytometry using a LSR FORTESSA (BD Biosciences).
Data analysis was performed in the FlowJo software (FlowJo v10,
September 2021 | Volume 12 | Article 744799
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BD Biosciences). A fluorescence minus one (FMO) control was
included to delimit the CD16 populations. Gate-selection
strategy is described in Figure S1 in Supplementary Material 1.

2.8 Statistical Analysis
Statistical analysis was performed with Graph Pad Prism 9
(GraphPad Software, Inc., USA). The normality distribution of
variables was evaluated by the Shapiro–Wilk test. Student’s t-test
was used to compare the normally distributed continuous
variables while Mann–Whitney U-test and Kruskal-wallis
(followed by the post hoc Dunn multiple comparisons test)
were used to compare non-normally distributed variables. P-
values < 0.05 were considered statistically significant.
3 RESULTS

3.1 Identification and Pathway Enrichment
Analysis of Differentially Expressed Genes
In the present study, two publicly available microarray datasets
(GSE65682; Sepsis Dataset 1–SD1 and E‐MTAB‐5273; Sepsis
Dataset 2 - SD2) were analyzed, and a total of 2699 DEGs,
including 1151 up-regulated and 1548 down-regulated, were
selected on the basis of the Venn diagram analysis (Figure S2
in Supplementary Material 1 and Supplementary Material 2).
IPA enrichment analysis for these DEGs identified 18 canonical
pathways (CPs) that were significantly enriched. As shown in
Frontiers in Immunology | www.frontiersin.org 5
Figure 1A and Supplementary Material 3, the application of the
IPA z‐score algorithm predicted the decrease of eight pathways
and increase of 10 pathways. Additionally, IPA analysis
predicted 14 diseases or functional annotations that were
found to be decreased. Most of these were involved in the
proliferation, activation, and homeostasis of lymphocytes
(Figure 1B and Supplementary Material 3).

3.2 Differentially Expressed Proteins and
Pathway Enrichment Analysis
Proteomics analysis were performed in peripheral blood
mononuclear cells (PBMC) samples obtained from 24 septic
patients, and resulted in the identification of 2839 proteins,
which are presented in a volcano plot (Figure S3 in
Supplementary Material 1). This number is in the range of
the number of proteins estimated for human PBMC which range
from 1738 to 4274 (34–36). We identified 703 proteins as DEPs
in the septic patients compared to healthy volunteers, which
included 372 up-regulated and 331 down‐regulated proteins.
Characteristics of these identified proteins and DEPs are
summarized in Supplementary Material 4.

Further, enrichment analysis for these 703 DEPs identified
eight enriched CPs. Among these, three CPs were characterized
by z‐score < −2, while six CPs showed z‐score > 2 (Figure 1A and
Supplementary Material 3). Additional analysis identified
enrichment of nine diseases or functional annotations, most of
which were associated with inflammatory response, bacterial
killing, and cellular movement (Figure 1B and Supplementary
A B

FIGURE 1 | Identification and comparison of pathways enrichment analysis in transcriptome and proteome from septic patients. (A) The canonical pathways
significantly enriched by DEGs and DEPs. (B) Ingenuity biological function activity analysis. * Represents B–H p-value <0.05 and a z-score >2 (pathway increased) or
z-score <−2 (pathway decreased). B–H p-value were determined using Fischer’s exact test and adjusted for multiple comparisons by Benjamini-Hochberg (BH).
September 2021 | Volume 12 | Article 744799
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Material 3). Interestingly, all these nine diseases or functional
annotations were found to be increased.

3.3 Comparison and Correlations Between
Transcriptome and Proteome Data
Next, the evaluation of the intersection of the Venn diagram for
differentially expressed DEGs and DEPs identified a total of 170
genes/proteins that were co‐differentially expressed in the
transcriptome and proteome profiles (Figure 2A and
Supplementary Material 5). These co‐differentially genes/
proteins were further divided into four different groups based
on the pattern of expression (Figure 2B). Two groups were
found to be consistent and showed the same pattern of
expression for the transcriptome and proteome profiles. These
two groups included 69 up/up‐regulated and 53 down/down‐
regulated DEGs–DEPs. In comparison to these, the other two
groups were characterized by an opposite trend of regulation and
included 30 down/up‐regulated and 18 up/down‐regulated
DEGs–DEPs. Further, Spearman correlation analysis revealed a
low positive correlation value (R = 0.39, p‐value = 1.5e-07) for
the expression of these 170 genes/proteins in the transcriptome
and proteome profiles (Figure 2C).

3.4 Co‐Differentially Expressed
Sepsis PPIN
Further, these 170 co-differentially expressed genes/proteins
were employed in the construction of sepsis PPIN using the
STRING database (Figure S4 in Supplementary Material 1).
The generated sepsis PPIN consisted of 100 nodes and 271 edges.
Further, Markov clustering (MCL) analyses identified seven
densely connected regions (modules) that were related to
different biological functions. In particular, one module was
related to neutrophil degranulation and antimicrobial response,
with most genes/proteins up‐regulated. This module included
genes/proteins associated with neutrophil collagenase (MMP8),
neutrophil subset marker (OLFM4), neutrophil elastase
(ELANE), molecules expressed in unstimulated circulating
neutrophils (GCA), azurophilic granule proteins (PRTN3 and
AZU1), and neutrophil granule proteins (LTF, BPI, and CAMP).
Frontiers in Immunology | www.frontiersin.org 6
The present assessment identified three modules that were
related to the transfer of information from DNA to mRNA and
protein synthesis. In particular, Module 2 mainly included genes/
proteins related to mRNA splicing, spliceosome, and
ribonucleoprotein complex assembly, whereas Module 3 was
associated with rRNA modification, ribosome biogenesis, and
RNA metabolic process. These two modules largely included
down‐regulated genes/proteins. Module 6 included genes/
proteins linked to protein targeting to ER, peptide metabolic
processes, and translational initiation. These modules included
genes/proteins that are known to play a pivotal role in pre‐
mRNA 3′‐end formation (CPSF1), splicing (PRPF31, LSM4,
SF3A3, DDX46, and PTBP1), enhancing mRNA stability and
translation (NAT10), and ribosomal subunit biogenesis (NOP58,
NOP56, and EMG1). Additionally, this set also included an RNA
helicase (DDX24) and transcription factor (BTF3). Importantly,
all these genes/proteins followed the same expression pattern in
both transcriptomic and proteomic profiles. In contrast, signal
peptidase complex Subunit 1 (SPCS1), polyadenylate-binding
protein 1 (PABPC1), and ribosomal proteins subunits (RPS21
and RPS2) were found to be down‐regulated at transcriptomics
level, whereas proteomics profile displayed an up‐regulated
expression of these molecules. Additionally, three modules
were also found to be related to metabolism (Figure 3).

3.5 Global Sepsis PPIN and Multiscale
Community Detection
To evaluate the occurrence of any other genes/proteins related to
the processes that were identified for the co‐differentially
expressed modules, a global network was created using all DEGs
and DEPs. The global sepsis PPIN comprised 2556 nodes and
26778 edges. Multiscale community analyses for the resulting
network revealed 115 enriched communities (Supplementary
Material 5). For further analysis, certain pathways and processes
were selected that were associated with the ones identified in co‐
differentially expressed modules (Figure 4).

Further assessment of the components of the community
revealed up‐regulation of genes/proteins associated with the
immune system, antigen processing, and azurophil granule
A B

FIGURE 2 | Comparison and correlational analysis between transcriptome and proteome. (A) The Venn diagram represents unique and shared genes/proteins
between transcriptome and proteome. (B) Scatter plot showing the Spearman’s correlation between the mRNA and protein expression levels.
September 2021 | Volume 12 | Article 744799
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lumen. This set included genes/proteins associated with bacterial
clearance (CLEC4D), granulopoiesis (MPO), and neutrophil
apoptosis (MNDA). Additionally, the set also included
neutrophil‐specific matrix metalloproteinase, namely MMP25
and MMP9 (37). Besides this, the analyses also reported down-
regulation of genes/proteins related to “C–C chemokine receptor
activity”. This group mainly included receptors that regulate
Frontiers in Immunology | www.frontiersin.org 7
neutrophil chemotaxis, namely CCR2, CCR3, CCR4, CCR7,
CX3CR1, CXCR3, and CXCR4.

Interestingly, the present analyses reported down‐regulation of
the components of the community that were annotated for
functions related to transcription and translation, including the
metabolism of RNA, mRNA splicing, rRNA biogenesis, epigenetic
regulation of gene expression, and 55S mitochondrial ribosome.
FIGURE 3 | Co-differentially expressed modules in clinical sepsis. Blue nodes represent the down-regulated nodes, and the red nodes represent the up-regulated
nodes. Inner rings represent transcriptome data, outer rings represent the proteome data. The modules and their top enriched pathways (FDR-corrected p-value
<0.05) generated through the STRING enrichment are shown separately.
FIGURE 4 | Multiscale community of the global sepsis PPIN. Node size represents the number of genes/proteins annotated in the process. Color scale represents
the ratio of overlapping genes in each annotation. Information on these identified communities and annotated members is presented in Supplemental Material 5.
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These communities included 15 eukaryotic initiation factors
(eIFs). Among these, 13 eIFs were found to be down‐regulated.
These communities also included 25 components of ribosomal
subunits (22 down‐regulated) and 24 mitochondrial ribosomal
proteins (19 down‐regulated). As well as include exosome
complex components proteins, WD-repeat proteins, nucleolar
proteins, small nuclear ribonucleoproteins, serine/arginine‐rich
splicing factors, pre‐mRNA processing factors, and RNA
polymerase subunits. Additionally, the study revealed alteration
of carbon metabolism.

3.6 Validation of Gene Expression Levels
To confirm and validate the aforementioned changes in gene
expression, we performed quantitative real-time PCR (qPCR) for
PBMCs frompatientswith sepsis. Thirteen geneswere selected based
on the results obtained from MCL analyses and/or multiscale
community detection and their roles in transcription (mRNA
metabolism), translation (mitochondrial translation), and immune
response. As illustrated in Figure 5, the transcription levels ofRPL11
(ribosomal protein L11), RPS21 (ribosomal protein S21), NCBP2
(nuclear cap binding protein subunit 2), andMRRF (mitochondrial
ribosome recycling factor) were found to be significantly reduced in
the sepsis groupas compared to the control group (p‐value < 0.05). In
contrast, a significant increase in the transcription of CLEC4D
(C-type lectin domain family 4 member D), GCA (grancalcin), and
ELANE (elastase, neutrophil expressed) was reported in the sepsis
group as compared to the control. These results were consistent with
the findings of the transcriptomic data analysis. Nevertheless, two
genes, EIF2AK2 (eukaryotic translation initiation factor 2 alpha
kinase 2) and ADAM8 (ADAM metallopeptidase domain 8) did
not follow the same expression trend. No significant differences were
recorded for the expression of GTF2F1 (general transcription factor
IIF subunit 1), POLR2H (RNA polymerase II, I and III subunit H),
GFM1 (G elongation factor mitochondrial 1), and MRPS34
(mitochondrial ribosomal protein S34) between patients and
control groups.

3.7 Low-Density Neutrophils
The results for proteomics analysis observed in module 1 (Figure 3)
were obtained from PMBCs isolated from peripheral whole blood.
Generally, neutrophils do not fractionate along with PBMCs owing
to their higher density as compared to mononuclear cells. However,
some low-density neutrophils (LDNs) also known as myeloid‐
derived suppressor cells (MDSCs) have been previously shown to
get fractionated along with PBMC preparations in certain
pathologies, such as coronavirus disease 2019 (COVID‐19) (38,
39), tuberculosis (40) human Ebola virus disease (41), and also
sepsis (42, 43). To further support that the source of these genes/
proteins found in module 1 were derived from LDNs, we performed
flow cytometry with PBMC samples obtained from the same cohort
of septic patients included in the proteomic analysis.

Septic patients presented a higher percentage of neutrophils
in Ficoll-isolated PBMC samples than healthy volunteers
(Figure 6A). On average, a quarter of these neutrophils
(median 24.4, IQR: 5.84 – 64.98) showed an intermediate
expression level of CD16 (CD16int phenotype) (Figure 6B).
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Among the healthy volunteers, only three had more than 1%
of neutrophils in PBMC samples; the percentages of CD16int

neutrophils in CD66b+ cells in these subjects were 6.8, 8.28 and
9.75 (representative result in Figure 6C).
4 DISCUSSION

In general, infections leading to sepsis are caused by various
pathogens including bacteria, fungus, viruses, and others. These
infections often result in alterations in gene expression, protein-
coding, and metabolism (6). In certain cases, these alterations are
not finely regulated, and thus lead to organ dysfunction and even
death. The present study aimed to analyze these disturbances at
the level of gene and protein expression, using pathway
enrichment analyses and PPIN.

IPA analysis for the selected DEGs and DEPs resulted in the
identification of certain enriched canonical pathways in PBMCs
of patients with sepsis that were associated with multiple cellular
processes. In particular, these pathways were related to known
host responses to sepsis. The results for the gene expression
analysis reported in the present study were found to agree with
the findings of previous transcriptomic studies. These studies
reported an immunosuppressive state in septic patients linked
with T lymphocyte-related processes (8, 10, 12). Interestingly,
pathways involved in iNOS signaling were found to be increased
in patients with sepsis. Previous studies have reported alterations
in iNOS expression and activity in response to lipopolysaccharides
(LPS) and infection (44). We also found the Toll‐like receptor
signaling pathway with an IPA increased status. Generally, Toll‐like
receptors are pivotal for host defenses, and tight regulation of these
receptors is particularly crucial to prevent hyper inflammation (3).

The results for proteomics analysis further reinforced the idea of
modulation of host‐defense pathways in response to sepsis.
Signaling pathways involved in the production of nitric oxide
(NO) and reactive oxygen species (ROS) in macrophages and
Natural Killer (NK) cells were found to be increased. These
results are in concordance with previous studies published from
our laboratory, which reported that white blood cells of septic
patients were characterized by increased NO and ROS production
and preserved phagocytic activity (6, 45). In general, NK cells are
large granular lymphocytes that are known to be important for host
immune response (46, 47). This pattern of defense processes that
were predicted to be strongly increased were also observed in the
IPA biological function activity (cell movement of leukocytes,
leukocyte migration, inflammatory response, chemotaxis of
leukocytes, and bacterial killing).

Comparison and correlation of the proteome and transcriptome
profiles were performed to investigate which genes/proteins are co-
differentially expressed in sepsis. The study revealed co‐differential
expression of 170 genes/proteins, with 122 genes/proteins
displaying the same expression trends in both transcriptome and
proteome profiles. The low to moderate correlation could be
attributed to a variety of factors, including translation efficiency,
alternative splicing, mRNA stability, folding, assembly, transport
and localization, secretion, and degradation (48–50). Since the
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present study utilized publicly available transcriptomics databases
and proteomics results from the current assessment, this 122 co-
differentially expressed genes/proteins might be considered as
representative of altered biological processes. In previous studies
using transcriptomics and proteomics data, obtained from the same
sample for both techniques, reported co‐differential expression of
genes/proteins in the range of 31–149 (51–53).
Frontiers in Immunology | www.frontiersin.org 9
The results for MCL analyses emphasized that these co‐
differentially expressed genes/proteins played a central role in
clinical sepsis. Among the seven modules identified using MCL
analyses, Module 1 was found to be associated with neutrophil
degranulation and antimicrobial humoral response. In the
multiscale community analyses we also highlight the up-
regulation of genes/proteins that were related to “Azurophil
A

B

D

C

FIGURE 5 | Expression levels of relevant mRNA from over-represented pathways were analyzed by qPCR comparing septic patients (n = 7) with healthy volunteers
(n = 7). Results are expressed as the relative gene expression (2-ΔΔCt). (A) Genes related with transcriptional processes (POLR2H, NCBP2 and GTF2F1). (B) Genes
related with translational processes (RPL11, RPS21 and EIF2AK2). (C) Genes related with mitochondrial translation (MRRF, GFM1 and MRPS34). (D) Genes related
with extravasation of leukocytes, killing of bacteria and neutrophils (ADAM8, CLEC4D, GCA and ELANE). Data are presented in box plots showing all individual
values. P-values were determined using student’s t test.
September 2021 | Volume 12 | Article 744799

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Leite et al. Transcriptome and Proteome in Sepsis
granule lumen” and “Immune System”. These findings were in
concordance with the results for qPCR analysis, which revealed a
significant increase in the transcription levels of CLEC4D, GCA,
and ELANE in patients with sepsis.

Some of the reported genes/proteins found related to module
1 were previously found in other studies and were described to
come from the LDNs that are fractionated along with PBMC
(41). To further support that the source of these genes/proteins
in our proteomics results comes from LDNs, we performed
flow cytometry with PBMC samples obtained from the same
cohort of septic patients included in the proteomic analysis.
Interestingly, we found a large presence of neutrophils in septic
patients when compared to healthy volunteers. As reported,
these neutrophils are characterized by the presence of CD16Int

to CD16hi expression (42).
Previous studies have suggested that LDNs are associated with

the suppression of T cell function and proliferation, similar to the
findings of the IPA analysis reported in the present study. Thus, the
Frontiers in Immunology | www.frontiersin.org 10
increase in the number of LDNs might be correlated to the severity
of infectious diseases, such as sepsis and COVID‐19 (38, 39, 42, 43).
Additionally, these cells are also known to be endowed with a high
propensity to spontaneously produce neutrophil extracellular traps
(NETs) (41, 54). Particularly, NETs are webs of extracellular DNA
decorated with histones, myeloperoxidase, and elastase, which are
vital for pathogen clearance. However, excess NET production
might induce collateral damage to host tissues during sepsis (55).

Altogether, the results for the present study support the
previously established idea that LDNs‐related genes/proteins
play a pivotal role in clinical sepsis (43, 56). The study also
provided additional evidence for the conservation at the mRNA
and protein levels.

According to the central dogma of molecular biology, genes that
encode proteins are first transcribed into mRNAs, which are further
translated into proteins (57). Several molecular events are involved in
the regulationof this transfer of information (58). In particular, genes/
proteins present inModules 2, 3, and 6 are related to the processes of
A B

C

FIGURE 6 | The identification of low-density neutrophil populations in septic patients. (A) Percentage of CD66b+ neutrophils, gated on viable CD45+ cells, in PBMC
samples from healthy volunteers (n = 9) and septic patients (n = 24). (B) Overall percentage of CD16 populations (negative, intermediate, and high) gated on CD66b+
neutrophils in PBMC from septic patients (n = 24). (C) Representative dot plots of CD16 populations in CD66b+ neutrophils from one healthy volunteer (left) and one
septic patient (right). Data are presented in box plots showing all individual values. P-values were determined using Mann–Whitney test (A) or Kruskal-Wallis test
followed by Dunn’s test (B).
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transcriptionand translation. Interestingly, the results for IPAanalysis
predicted down-regulation of the eukaryotic initiation factor 2 (eIF2)
signaling pathway in both proteomics (z‐score = −1.00 and −log10
FDR= 4.48)andtranscriptomicsanalysis (z‐score = −2.40and−log10
FDR= 2.91). This pathway plays a crucial key role in global and
specific mRNA translation processes. In particular, the
phosphorylation of eIF2 is known to inhibit eIF2B, which is further
related to translational initiation (59, 60).

Assessment using multiscale community analyses further
resulted in the identification of 13 eIFs down‐regulated and 22
components of ribosomal subunits with down‐regulated
expression in the community related to translation. The
present study also revealed that communities related to “rRNA
processing” and “mRNA Splicing” are largely represented by
down‐regulated genes/proteins. The results for qPCR analysis
partially validated the findings of the transcriptomic analysis. In
particular, the qPCR analysis showed significant down-
regulation of RPL11, RPS21, NCBP2, and MRRF during sepsis.
Nonetheless, results for EIF2AK2 expression were found to be
contradictory in these two analyses.

Altogether, these results are suggestive of impairment of the
translation process in peripheral cells of patients with sepsis. These
results are supported by the translatome analysis performed for the
kidney obtained from an animal model of endotoxemia, wherein
the EIF2AK2/eIF2a axis was identified as the key mediator of
translation initiation block in late‐phase sepsis (61). These results
were also found to be in concordance with the findings of Calvano,
Xiao (62). The study showed that the response of human blood
leukocytes to acute systemic inflammation, induced by LPS,
involved concerted dysregulation of functional modules in
mitochondrial bioenergetics, protein synthesis, and protein
Frontiers in Immunology | www.frontiersin.org 11
degradation. Thus, these results reinforced the idea of
reprioritization of the leukocytic transcription regulatory program
in response to endotoxin (62).

In addition to this, multiscale community analyses revealed that
the community related to translation included 19 down‐regulated
mitochondrial ribosomal proteins. This community also involved
genes/proteins related to the 55S mitochondrial ribosome. In
particular, these mitoribosomes are known to be responsible for
the translation of essential components of the complexes involved in
oxidative phosphorylation (63). Therefore, down‐regulation of
mitoribosomes might be directly involved in the remarkable
mitochondrial dysfunction, observed during sepsis (64).

The present study was associated with certain limitations. For
analysis, the transcriptome data were obtained from two publicly
available microarray datasets for septic patients, whereas the
proteome data were obtained from the cohort of patients
assessed in the present study. Thus, the transcriptome and
proteome data used in the present analyses were obtained from
different sets of patients. Although, the number of co‐differentially
expressed genes/proteins identified in the present study were
higher as compared to those reported in previous studies (51–
53). We select the DEPs based on P and Log2FC values (27, 28).
Adjustment for the Benjamini-Hochberg methods would lead to
lower number of DEPs, but without changing the conclusions.
Overall, the pathways related to the ROS, NO and phagocytosis
were consistent with the findings of previous studies conducted by
our group and other researchers, which involved peripheral blood
cells obtained from septic patients.

In summary (Figure 7), the present study utilized a
combination of transcriptomic and proteomic data and
systems biology approaches to provide better insights into the
FIGURE 7 | Summary of the results of transcriptomics and proteomics profiling of septic patients.
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host defense mechanisms against sepsis. In particular, the study
identified 170 co‐differentially expressed genes/proteins. Among
these, a set of 122 genes/proteins displayed similar expression
trends in the transcriptome and proteome profiles. Interestingly,
these genes/proteins were found to be associated with hosts’
responses during the early stages of sepsis. Further, PPIN
analyses revealed the involvement of modules related to the
reprioritization of biological functions in response to sepsis, via a
transcriptional and translational shutdown, except for an up-
regulated set of genes/proteins that were related to low-density
neutrophils and host‐defense system.
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