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Abstract: Self-assembling proteins that form diverse architectures are widely used in material science
and nanobiotechnology. One class belongs to protein nanocages, which are compartments with
nanosized internal spaces. Because of the precise nanoscale structures, proteinaceous compartments
are ideal materials for use as general platforms to create distinct microenvironments within confined
cellular environments. This spatial organization strategy brings several advantages including
the protection of catalyst cargo, faster turnover rates, and avoiding side reactions. Inspired by
diverse molecular machines in nature, bioengineers have developed a variety of self-assembling
supramolecular protein cages for use as biosynthetic nanoreactors that mimic natural systems. In this
mini-review, we summarize current progress and ongoing efforts creating self-assembling protein
based nanoreactors and their use in biocatalysis and synthetic biology. We also highlight the prospects
for future research on these versatile nanomaterials.

Keywords: nanoreactor; virus capsids; encapsulins; artificial protein dodecahedron; self-assembling;
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1. Introduction

Subcellular organization is an essential strategy for cells to orchestrate important cellular processes
and is believed to be a general feature of life [1–4]. While eukaryotes are well known to organize
their cellular interiors with diverse membrane-bound organelles such as chloroplasts, Golgi bodies,
and lysosomes [5–7], current research on microorganisms has drawn an unexpected picture of bacterial
cells where a myriad of subcellular structures were developed by the evolution of self-assembling
proteinaceous microcompartments [8–17]. Organelles and the bacterial microcompartments
create a unique spatial segregation allowing sequestration of specific proteins and metabolic
pathways [10,12,13,17]. This strategy allows for several advantages, e.g., (a) increasing the efficiency of
the sequestered biosynthetic pathways; (b) enrichment of the substrates and products; and (c) unique
microenvironments for unstable catalysts [14–16].

Compared with membrane-bound organelles developed by eukaryotic cells, proteinaceous
microcompartments with predictable architectures are of great interest to bioengineers due to their
robust self-assembly properties, solubility, and biocompatibility [17]. Moreover, their structures are
“programmable” for broad application in nanobiotechnology and chemistry, as well as functional
materials [11]. A variety of naturally occurring proteinaceous microcompartments have been reported,
including viral capsids (Figure 1A) [18–20], ferritin (Figure 1B) [21–24], encapsulins (Figure 1C) [8,25–27],
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carboxysomes [12,28–31], and 1,2-propanediol utilization (Pdu) or ethanolamine utilization (Eut)
microcompartments [32–37]. Apart from the naturally occurring microcompartments, several
artificial proteinaceous microcompartments have been created recently. These include a 60-subunit
protein dodecahedron protein nanocage (Figure 1D) [38], several 120-subunit two-component
icosahedral protein nanocages (Figure 1E), and a self-assembled 600-kDa protein homododecamer cage
(Figure 1F) [39,40]. These highly symmetric self-assembled protein architectures have an empty interior
and can create microcompartments ranging in size from 10 to 500 nm (diameter). Notably, the rationally
designed proteinaceous microcompartments have several superior properties [38–40]. Compared
to naturally occurring ones, the artificial systems are precisely designed to make them accessible.
Therefore, these fascinating scaffolds provide toolboxes for nanoreactor designs where enzymes can be
sequestered in the interior, allowing the microcompartments to provide microenvironments similar to
naturally occurring organelles [11,37].
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In recent years, bioengineers have begun to utilize the advantages of nanocages by manipulating
their structures. Both top-down and bottom-up approaches have been developed to construct
nanoreactors for biocatalysis and synthetic biology [41–43]. Several proteinaceous microcompartments
have been engineered to load exogenous biocatalysts and have been successfully constructed in
well-studied hosts like Escherichia coli [11,44]. These artificial organelles provide a new platform
to design a generation of nanofactories for synthetic biology. Moreover, with the development of
novel discovery strategies such as genome mining and computer-aided design methods, plenty of
novel proteinaceous microcompartments have been discovered and created that offer tremendous
opportunities to design new catalytic nanoreactors [26,38,39]. In this mini-review, we highlight recent
significant achievements in the design and construction of catalytic nanoreactors for biocatalysis
based on self-assembling supramolecular protein complexes. A select number of proteinaceous
microcompartments and the strategies used to construct the nanoreactors will be presented together
with their applications.
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2. Virus Capsids

During natural evolution, viruses have developed a large variety of capsids to package, protect,
and deliver their DNA or RNA genome [18–20]. The well-defined 3D structures make them
perfect building blocks for nanobiotechnology applications [45]. Generally, they are protein-based
microcompartments of about 15–500 nm (diameter) overall with variable interior spaces [46,47].
For example, the bacteriophages P22 forms an icosahedral cage with an outer diameter of about
64 nm that self-assembles from 420 copies of a single capsid protein [48]. The capsid proteins are
easily prepared by heterologous expression and then functionalized [49]. Recent years have realized a
large number of applications for these capsids in nanobiotechnology including hybrid nanostructured
materials [50–52], vaccine development [53–55], medicine delivery platforms, and biomineralization
systems [54,56–58]. In recent reports, nanoreactors based on viral capsid containers have been
developed where enzymes are loaded before assembly [59].

Several viral capsids have been selected as models for reaction vessels including Cowpea Chlorotic
Mottle Virus (CCMV), and bacteriophages P22, Qβ, and MS2 [60–67]. To successfully assemble the
biocatalyst cargo into the nanocontainer, a guide tag is necessary for spatial arrangement. This has
been accomplished by using peptide tags, coiled-coil helical interactions, DNA tags, or RNA tags to
mediate enzymatic cargoes packing into protein cages [60–67].

The first virus-based enzyme nanoreactor was reported in 2007 in which horseradish peroxidase
was successfully loaded into the capsids of CCMV [59]. Later, Cornelissen et al. developed strategies
to position specific enzymes inside a virus capsid and constructed several nanoreactors based on
CCMV [66–69]. By using heterodimeric coiled-coil peptide oligomers, cargo proteins fused with
these oligomers could be spontaneously assembled within capsids modified with a compatible coil
peptide oligomer [67–69]. As proof of concept, an enhanced green fluorescent protein (EGFP) was
encapsulated in a controlled manner [67]. Subsequently, lipase B from Pseudozyma antarctica and EGFP
were precisely loaded into the CCMV capsid by the same strategy, marking successful construction
of a nanoreactor (Figure 2A) [69]. Compared to free enzymes, the nanoreactors with encapsulated
cargoes showed an increased overall reaction rate, which was nearly independent of the number of
enzymes it sequestered [68,69].

Another packing strategy developed by the same group utilized nucleic acid tags with negative
charges [66]. Generally, the cargo proteins were chemically coupled with single-stranded DNA
(ssDNA) or its complementary sequence (csDNA). The resulting protein–DNA hybridized complexes
were readily encapsulated via non-covalent interaction, and several nanoreactors were constructed
this way [66]. For example, glucose oxidase (GOx) and gluconokinase (GCK) were successfully
co-encapsulated and the enzymatic cascade system was used to produce ribulose-5-phosphate from
glucose (Figure 2B) [66]. This work provided a general method for co-encapsulation of enzymes,
which greatly enhances metabolic efficiency. In addition to these successes, van Hest et al. also
developed several nanoreactors based on CCMV using a different method [65,70]. They found that
Sortase A could be used as a ligase to link cargo enzymes to the glycine-tagged N-termini of CCMV
capsids [65,70]. Cargo enzymes with a C-terminal LPETG-motif are easily packed into the capsids in a
way that is minimally disruptive to the cargo. With this strategy, an industrial biocatalyst CalB lipase
was successfully encapsulated and lead to a lipase based nanoreactor (Figure 2C) [65,70].

Bacteriophage P22 is another versatile platform for nanoreactor development [49,62–64,71].
Unlike CCMV, the coat protein (CP) of Bacteriophage P22 can assemble into a T = 7 icosahedral
capsid with the aid of hundreds of copies of scaffolding protein (SP) [72,73]. Past research has
shown that the C terminus of the scaffolding protein (SP tag) is essential and sufficient for the capsid
assembly [64,72,73]. By fusing an SP tag to the cargo enzymes, Douglas et al. developed nanoreactors
for biocatalysis and synthetic biology [49,62–64,71]. These include an alcohol dehydrogenase AdhD
based nanoreactor (Figure 2D) [49], [NiFe]-hydrogenase based self-assembling biomolecular catalysts
for hydrogen production (Figure 2E) [63], and a three-enzyme cascade nanoreactor for lactose
metabolism (Figure 2F) [64,71]. Notably, the capsid provides stability and protection to the cargo
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enzymes in all cases [49,64,71]. Very recently, they expanded the application of Bacteriophage P22
capsid to construct three-dimensional superlattice catalysts [62]. A ketoisovalerate decarboxylase
(KivD) and an alcohol dehydrogenase A (AdhA) were encapsulated within the P22 capsids separately,
and these materials were then spontaneously self-assembled into higher ordered superlattice materials
with the assistance of positively charged PAMAM dendrimers (Figure 2G) [62]. The resulting
superlattice catalysts could be used to perform an enzymatic cascade reaction for synthesis of
isobutanol and showed several superior properties including accelerated catalytic efficiency, and they
were easily recovered and recycled [62].
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RNA viruses have also been selected as reaction vessels. Recently, Bacteriophage Qβ was used to
package functional enzymes using protein–RNA interactions [61]. The RNA genome of Bacteriophage
Qβ forms a hairpin structure, which has a high-affinity interaction with the interior-facing residues
of the CP and can be used to mediate the encapsulation of cargo enzymes [61,74]. To facilitate
RNA-directed nanoreactor construction, an RNA aptamer specifically binding to an arginine-rich
peptide (Rev) derived from HIV-1 was introduced into the CP mRNA [61]. Two cargo enzymes
(Peptidase E and luciferase) fused with Rev Tags were then then successfully packed into Qβ particles
(Figure 2H) [61].

Manipulation of SpyTag/SpyCatcher is another way to mediate cargo encapsulation [60,75].
Recently, Giessen et al. developed a catalytic nanoreactor based on an engineered Bacteriophage
M2 capsid [75]. The phage MS2 capsid protein was engineered to display the SPY tags facing the
interior. By introducing a SPY catcher tag onto the cargo enzymes, catalysts were then spontaneously
cross-linked with the interior surface of the capsid [60,75]. As proof of concept, two active enzymes
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for indigo biosynthesis were successfully targeted to the engineered capsids (Figure 2I) [75]. In vivo
studies showed that the nanoreactor improved indigo production efficiency relative to unencapsulated
enzymes by 60%. Moreover, in vitro studies showed that enzymes packaged in purified nanoreactors
show enhanced long-term stability compared to free enzymes [75].

3. Encapsulins

Encapsulins are a new family of microbial proteinaceous compartments that have been engineered
for nanoreactor construction [76,77]. Typically, encapsulin has an overall size of about 20–40 nm
(diameter), which is very similar to virus [27,78–81]. Structural studies have showed that encapsulins
can be generally classified into types T = 1 (60 subunits, 20–24 nm) and T = 3 (180 subunits, 30–32 nm)
hollow icosahedral capsids [25,82–88]. Interestingly, a very recent genome mining study revealed
that encapsulins are widely distributed in nature [26]. Up to 900 putative encapsulin systems in
diverse bacterial and archaeal genomes have been discovered by in silico analysis, which provides
an array of nanoplates for biomedicine, nanobiotechnology, and materials science [26]. Indeed,
encapsulins have already been engineered as a scaffold for targeted diagnostics and therapeutic
delivery systems, a nanocontainer for metal nanoparticles, and very recently, protein containers for
nanoreactor construction [27,76–79,86]. In fact, encapsulins are naturally occurring nanoreactors
that encapsulate specific cargo proteins and are involved in diverse cell processes including
iron mineralization, oxidative and nitrosative stress resistance, and anaerobic ammonium
oxidation [8,26,76,82,85]. Thus far, more than 10 different types of cargo proteins have been identified.
Most of them have a specific terminal tag that mediates the packaging of the cargo enzymes inside the
protein shells [8,26,76,82,85].

Mimicking the concept of natural functional encapsulins, two artificial nanoreactors were
successfully constructed based on the encapsulin system from Myxococcus xanthus [76,77]. Silver et al.
successfully expressed the prokaryotic encapsulin system in the eukaryotic yeast Saccharomyces
cerevisiae [76]. In the native system, three cargo proteins are simultaneously packed into the capsids
mediated by short targeting peptides (TPs) located at the C termini of the cargo enzymes [25]. By fusing
TP tags to the heterologous proteins, different enzymes were able to be selectively encapsulated [76].
Specifically, a tetrameric pyruvate decarboxylase enzyme (Aro10p) was selected and a nanoreactor
for the biosynthesis of 4-hydroxyphenylacetaldehyde (4-HPAA) was constructed (Figure 3A) [76].
This example demonstrates that encapsulin compartments could be selected as a general platform for
organelle construction in eukaryotes and has potential for wide application in synthetic biology.
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Independently, Westmeyer et al. showed that engineered encapsulin from M. xanthus could
be produced in mammalian cells [77]. Moreover, various non-natural cargo could be self-targeted
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and encapsulated inside the shell proteins using the target peptides [77]. This demonstrates that the
encapsulin system could also be developed as a nanoreactor chamber within mammalian cells [77].
For example, the split luciferase parts LgBit and SmBit were separately fused to the native C
and B proteins and functional luciferase activity was observed upon packaging [77]. Moreover,
an active tyrosinase from Bacillus megaterium was fused to the native cargo D protein and an
artificial melanosome was successfully constructed that was readily detected by robust multispectral
optoacoustic tomography (MSOT) based on the production of toxic melanin in the nanoshells
(Figure 3B) [77]. Apart from these applications, the iron-loading encapsulins are also outstanding
reporters for electron microscopy (EM) [77]. These studies prove that encapsulins might have a wide
application for eukaryotic cell engineering, optical imaging, and emerging cell therapies.

4. Artificial Protein Dodecahedron

The rapid development of supercomputing and bioinformatics technology has lead us to a
new age of de novo protein design [89–94]. Following the basic physicochemical principles that
direct protein folding, computational biochemists are now able to design a wide range of intriguing
structures with atomic-level accuracy [89–93]. One of the more interesting de novo protein designs
was the creation of self-assembling protein nanocages [38–40]. For example, Baker et al. have designed
one- and two-component protein nanocages with dodecahedral or icosahedral symmetry using 60
or 120 subunits by modifying the interfaces between proteins [38,39]. These high-symmetry artificial
protein nanomaterials have large interior volumes and are widely applicable in vaccine development
and synthetic biology. We have recently demonstrated that the artificial hypersTable 60-subunit protein
dodecahedron could be functionalized as a scaffold for nanoreactor construction [95]. The engineered
trimeric aldolase from Thermotoga maritima with a modified interface was fused with an industrial
biocatalyst (+)-γ-lactamase from Microbacterium hydrocarbonoxydans and the hybridized protein could
be self-assembled into an organelle-like nanodevice (Figure 4) [95]. The constructed nanoreactor is
readily used for enzymatic resolution of Vince lactam, an important intermediate for synthesis of
carbocyclic nucleoside medicines [95–97]. Notably, the designed nanoreactors could confer a significant
benefit to the biocatalyst cargo. The encapsulated (+)-γ-lactamase exhibits significantly improved
stabilities with respect to heat, organic solvent, and protease degradation. Moreover, it shows better
substrate tolerance than the free enzyme [95]. This research demonstrates that bio-designed artificial
protein nanocages are an effective way to improve the stability and strength of biocatalysts and might
have broader applications in sustainable catalysis and synthetic biology.
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5. Conclusions and Outlook

Biological systems have evolved various proteinaceous nanocompartments to sustain important
life processes [8,14,15,17,26,27]. These robust molecular constructs are generally formed by
self-assembly and have inspired the creation of diverse artificial protein nanocages [11–13,16,24].
Recent advances in understanding these nanomaterials have led to the construction of synthetic
nano-biological devices [64,65,70,72,75]. Generally, the main benefit in coupling nanomaterials with
catalytic reactions is to bring them to an appropriate nanoscale (20–50 nm diameter). They are highly
homogeneous, easily prepared, and chemically or genetically functionalized [66,67,71,72,95]. Moreover,
the transition of the assembly–depolymerization state of these nanocages can be precisely controlled,
which makes them an important class of biological nano-elements that can be used to construct
multi-functional nano-structures and devices [49,61,63,64].

In this review, we have summarized recent achievements in nanoreactor design based on
self-assembling protein nanocages for biocatalysis and synthetic biology. Theoretically, by loading
the cargo enzymes into the protein nanocages, a limited reaction space can be provided to control
the entry and exit of substrate and product, thereby facilitating the regulation of the catalytic
reaction [49,61,63,64,75]. Viral capsids are by far the most commonly used material for nanoreactor
construction [49,61,63,64,67,68]. Recent progress on encapsulin and artificial protein nanocages provide
more options and are ripe for expansion in the near future [8,38,39,89]. It has been proven that these
self-assembled nanomaterials could confer benefits by serving as catalytic reaction vessels to the
biocatalyst cargo [49,64,71,75,95]. Despite these achievements, there are still several directions that
warrant continued research. First, most of the current research only provides proof of concept.
These newer nanomaterials have not been widely applied in industrial biocatalysis or synthetic biology.
This issue needs to be addressed with more industrial biocatalyst systems. With scaled applications,
nanoreactor construction could become an invaluable device for all biocatalysis processes in the future.

Another interesting area for future study is the development of more complex metabolic pathways
in nanoreactors. Thus far, only up to three different kinds of cargo enzymes have been sequestered
into a single nanoreactor [71]. Developing more complex nanoreactors could significantly expand the
application of proteinaceous microcompartments in synthetic biology. This direction is very promising
since more complex encapsulin systems have been discovered and more complicated artificial protein
nanocages have been designed [26,39]. For example, Giessen et al. proposed that encapsulins might
be proper candidates for construction of an artificial carboxysome [98]. These areas still need to
be investigated.

In summary, we expect that nanoreactors based on proteinaceous microcompartments will find
widespread applications in biocatalysis and synthetic biology. We envision that with the accumulation
of understanding on newly discovered and created self-assembling protein nanocage systems as well
as the development of new toolboxes for protein engineering, diverse unprecedented nanoreactors
will be created for industrial biocatalysis. Ideally, these artificial molecular machines will be widely
applicable in novel nano-factory construction and will promote the development of green biochemical
processes in the industry.
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