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ABSTRACT

Rapid development of next generation sequencing
technology has enabled the identification of genomic
alterations from short sequencing reads. There are
a number of software pipelines available for call-
ing single nucleotide variants from genomic DNA
but, no comprehensive pipelines to identify, anno-
tate and prioritize expressed SNVs (eSNVs) from
non-directional paired-end RNA-Seq data. We have
developed the eSNV-Detect, a novel computational
system, which utilizes data from multiple aligners
to call, even at low read depths, and rank vari-
ants from RNA-Seq. Multi-platform comparisons with
the eSNV-Detect variant candidates were performed.
The method was first applied to RNA-Seq from
a lymphoblastoid cell-line, achieving 99.7% preci-
sion and 91.0% sensitivity in the expressed SNPs
for the matching HumanOmni2.5 BeadChip data.
Comparison of RNA-Seq eSNV candidates from 25
ER+ breast tumors from The Cancer Genome At-
las (TCGA) project with whole exome coding data
showed 90.6–96.8% precision and 91.6–95.7% sen-
sitivity. Contrasting single-cell mRNA-Seq variants
with matching traditional multicellular RNA-Seq data
for the MD-MB231 breast cancer cell-line delineated
variant heterogeneity among the single-cells. Fur-
ther, Sanger sequencing validation was performed
for an ER+ breast tumor with paired normal adjacent

tissue validating 29 out of 31 candidate eSNVs. The
source code and user manuals of the eSNV-Detect
pipeline for Sun Grid Engine and virtual machine
are available at http://bioinformaticstools.mayo.edu/
research/esnv-detect/.

INTRODUCTION

The advent of next generation sequencing technologies has
revolutionized both basic science and medicine; compre-
hensive understanding of genomic and transcriptomic vari-
ants provides clues to novel biological mechanisms and
molecular basis of complex diseases (1,2). In particular, dis-
covery of single nucleotide variants (SNVs) from genomics
and transcriptomics plays a significant role for treatment
of disease (3). Germline and somatic SNVs from genomics
and transcriptomics sequencing studies in cancers have al-
lowed us to define mutational landscape of tumors (4–7).
Most of the studies derive SNVs from targeted approaches,
but transcriptomics allows us to obtain SNVs in an unbi-
ased manner. As a valuable and cost-effective alternative,
transcriptome sequencing or RNA-Sequencing (RNA-Seq)
has attracted much attention, because it helps obtain a va-
riety of genomic features from a single high throughput ex-
periment. For example, genomic features such as gene ex-
pression, transcript expression, novel isoforms, fusion tran-
scripts, expressed single nucleotide variants (eSNVs), cir-
cular RNAs, non-coding RNAs (long non-coding RNAs
and small RNAs) can be obtained from RNA-Seq data (8).
Well-developed analytical methods are available for obtain-
ing gene expression counts, transcript counts and fusion
transcripts from RNA-Seq data (9–11). However, no robust
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bioinformatics pipelines exist for identification of eSNVs in
the transcriptome data.

Several cancer studies have shown that novel and somatic
SNVs can be obtained by sequencing normal and tumor tis-
sue from the same individual (12,13). Specifically, the so-
matic point mutations identified could be essential driver
mutations for tumorigenesis (14,15). To date, large-scale
studies have used exome sequencing to call germline and
somatic SNVs from cancer (4–7). However recent studies
revealed that only 20% of the SNVs overlap from multiple
variant-calling pipelines indicating the challenges of calling
variants from exome sequencing (16). As another indepen-
dent source of information, calling SNVs from RNA-Seq
can be beneficial, because it allows us to investigate the mu-
tations from a different sequencing based approach. Con-
sidering the low tumor purity in cancer DNA, RNA-Seq
may be used to detect even low-frequency mutations that
are expressed, and which may be difficult to detect using
exome sequencing.

Computational methods to discover SNVs from RNA se-
quencing compared to exome sequencing are underrepre-
sented in bioinformatics. Only two groups developed meth-
ods and have made their tools publically available to call
eSNVs from RNA-Seq (17,18). These methods either lack
potent filtering steps to remove false positives or require
merging of multiple samples to obtain extreme high cover-
age for accurate variant calling. Further, both methods re-
quire a single aligner, which inevitably introduces systematic
bias. Although these methods successfully brought RNA-
Seq into the practical application of genomic variant calling
they have had specific applications to certain diseases (19).

A critical step for variant calling from RNA-Seq data
is the read alignment to the whole genome/transcriptome.
There are several aligners that are currently available for
RNA-Seq alignment (20–24). Each aligner has its own
strengths and weaknesses and it is difficult to choose a sin-
gle aligner that is both efficient and proficient for RNA-Seq
data. The choice becomes trivial when examining regions
with high read depth and/or low genomic complexity, as
most variant callers will agree in the calling results. How-
ever, Engstrom and their group recently compared and sum-
marized 26 RNA-Seq alignment protocols and have shown
that the disagreements of aligners are often due to a frac-
tion of reads that are highly mutated or due to reads that
map to splice junctions (25). It is the challenges of the low
coverage and/or region of high genomic complexity that
motivate each aligner to devise different alignment strate-
gies: mismatch and gap placement, dealing with transcript
reconstruction, genomic repeats and pseudogenes, etc. The
eSNV-Detect system was designed to leverage the different
evidence from multiple aligners to increase the confidence
level of variant calls.

In addition, published bioinformatics eSNV algorithms
have focused only on variant identification, while the follow-
up analyses including determination of variants effects at a
protein domain still require a substantial amount of effort.
In this context, we have developed an eSNV calling method
that can be used to call variants confidently in a clinical set-
ting, with complete annotation and easy prioritization of
variants for functional follow-up analysis. At Mayo Clinic,
we have applied our variant calling method for a variety of

cancer and other disease related datasets (26,27). However
the method can be applied to other species by providing
the pipeline with the appropriate reference genome of in-
terest. The pipeline can now be executed on a stand-alone
UNIX machine or a parallel computing environment with
sun grid engine (Oracle Corporation, Redwood City, CA).
A virtual machine version of the eSNV-Detect pipeline is
also provided for users without access to a UNIX work-
station. The pipeline is publicly available for download at
http://bioinformaticstools.mayo.edu/research/esnv-detect/.

In this manuscript, we have provided details of parame-
ters used for developing the eSNV-Detect method and have
presented a variety of analyses to show the accuracy of vari-
ant calling from non-directional paired-end RNA-Seq data.
To determine sensitivity and specificity of the eSNV-Detect
method, we have investigated the variants from a set of 25
The Cancer Genome Atlas (TCGA) ER+ breast tumors for
which we have RNA and exome sequencing datasets along
with a 1000 genome individual for whom we have RNA-Seq
and single-nucleotide polymorphisms (SNP) chip dataset.
We have also obtained eSNVs for an MD-MB231 cell line
sample from the COSMIC (28) database and examined
those variants from single-cell RNA-Seq data and whole
transcriptomic RNA-Seq dataset. The robust accuracy met-
rics obtained in calling eSNVs will allow us to perform fu-
ture functional validation of the variants or perform allelic
specific expression or quantitative trait loci studies precisely.
Most of the published methods stop at in-silico nomination
of the variants and do not perform any extensive validation
of the variants using Sanger sequencing or other functional
experiments. In our case, we have shown proof of principle
of the eSNV-Detect method by identifying the list of novel
eSNVs called with RNA-Seq data and validated them us-
ing Sanger sequencing with high accuracy (79/83 variants)
from a tumor and adjacent normal breast sample (27). We
have also provided here Sanger sequencing validation re-
sults for an estrogen receptor positive (ER+) breast tumor
and adjacent normal tissue from the same individual.

MATERIALS AND METHODS

The eSNV-detect pipeline

Variant calling and filtering. Figure 1 shows the flowchart
of the eSNV-Detect workflow, which will work with non-
directional paired-end RNA-Seq data. Bam files generated
by two aligners are refined through a pre-processing step
to remove reads that are polymerase chain reaction (PCR)
duplicates and those mapped to multiple regions of the
genome. Remaining unique mapped reads from the pipeline
are realigned and recalibrated using Genome Analysis Tool
Kit (GATK) as shown in Figure 1. Samtools mpileup and
bcftools with filtering criteria of base quality >13 and map-
ping quality >20 are used to call variants from the realigned
and recalibrated bam files. To obtain sensitive variant call-
ing, other parameters of samtools mpileup and bcftools are
turned off. To minimize false negative and false positive
variant calls, we apply a set of thresholds as described in
the following section. Nucleotide positions with <4X cov-
erage or four alternative allele supporting reads are elimi-
nated from variant analysis. Ratio of reads at a nucleotide
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Figure 1. Flow chart of the eSNV-Detect pipeline. (a) Bam files are pre-processed by Picard and GATK to remove reads that are duplicated or have multiple
hits. (b) SNVs called from two aligners are merged, annotated and filtered by genetic features like total read depth, alternative allele depth and frequency,
as well as annotations.

position is calculated by Ratioi = aai/ti (where i is the nu-
cleotide base pair, aa is the alternate read depth at the loca-
tion i and t is the total number of reads at location i). For
variants with total coverage <100, we require the Ratioi to
be >0.1; while for variants with higher coverage (≥100), the
Ratioi threshold should be 0.05. We reduce the threshold for
high coverage positions to enhance the sensitivity to detect
lower-frequency mutation events, keeping the tumor clonal-
ity issue in mind. In addition to frequency filters, we also ap-
ply strand bias filter, which is defined as the ratio of forward
strand alternative allele counts (aai+) and the reverse strand
alternative allele (aai−) counts, whichever greater will be the
denominator. For variants with total coverage (ti) <100, the

strand bias ratio (SBSi) of >0.1 is required and for variants
with >100X coverage a SBSi of >0.05 is preferable. In or-
der to exclude false positives with most of the aai support-
ing reads located at the 5′ or 3′ end of the reads, we ob-
tain the ReadRankPosSum (RRPS) score using the GATK.
A recommended RRPS score threshold of (−8.0, 8.0) from
GATK is used in our method. The set of read characteristics
used as filters are summarized in Table 1. After filtering, the
variant calling files from two aligners are merged and anno-
tated. Priority is assigned to each variant according to the
two-aligner strategy as discussed below.

Two-aligner strategy. In the eSNV-Detect, we have chosen
the multi-aligner concept to call the variant confidently. Our
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Table 1. The eSNV criteria used in the eSNV-Detect pipeline

Criteria Threshold

Alternative allele supporting read depth d alt>3
Alternative allele frequency if (total read depth >100) alt/ref >0.05 else alt/ref>0.1
Strand bias ratio if (total read depth >100) alt/ref >0.05 else alt/ref>0.1
ReadRankPosSum -8<RPKS<8

previous work has shown that using multiple aligners to call
variants brings complementary strengths and reduces false
discovery rates significantly (27). We define the confidence
and assign priority (high, medium and low) to a candidate
eSNV call based on the concordance and the alignment
source of the variant. High confident variants (labeled as
CONF = 2 in the output) are those identified by two align-
ers and retained even after filtering steps, which indicated
less genomic ambiguity for such variants between different
aligners. Lower confident variants (labeled as CONF = 1
or 0) are defined as those variants with evidence from only
one aligner, reflecting the disagreement between different
aligners and thus more likely to be a false positive caused
by mapping error. The user is allowed to assign a preferred
aligner, and the variants with evidence only from the pre-
ferred aligner are assigned with medium confidence (CONF
= 1). Those from the less preferred aligner are assigned with
low confidence (CONF = 0).

Annotation. The ANNOVAR software is used to annotate
the variants using dbSNP, 1000 genome, 5400 exome, ref-
Gene, avsift and ljb phylop from UCSC databases (29,30).
Further downstream annotations of non-synonymous vari-
ants were obtained by mapping the Refseq identifiers of the
amino acid alterations to their corresponding UniProt (31)
identifiers and annotating them with the human proteome
(59052 human proteins) using HMMER (32) and Pfam 26.0
(November 2011, 13 672 families) (33). The in-depth anno-
tations of variants enable ease and convenience to explore
the expressed SNVs that may structurally or functionally
impact protein domains. This further enables prioritization
of eSNVs for downstream functional and clinical investiga-
tions.

1000 genome sample

We obtained transcriptomic sequencing and SNP chip data
for a lymphoblastoid cell line (NA07347) from the 1000
genome project (34,35). The RNA-Seq data was generated
by Genome Analyzer II (Illumina, San Diego, CA) with
a total read depth of 67 M paired-end reads (75 bp). The
SNP-chip data was generated by HumanOmni2.5 Bead-
Chip (Illumina).

Sanger sequencing validation of variants

For Sanger sequence validation, we obtained one ER+
breast tumor and matched normal tissues for which we have
variant calls from RNA-Sequencing of the tumor. Variants
predicted by the eSNV-Detect in the ER+ tumors were val-
idated by Sanger sequencing at the Mayo Clinic. Primer3
version 4.0 software was used to deign primers for the vari-
ants. The extracted DNA was amplified by PCR and puri-
fied, 1.6 pM of one of the primers (forward or reverse) and

80 ng of the purified PCR product was used for sequencing.
Electropherograms obtained were analyzed using SeqScape
v2.5 (ABI, Applied Biosystems, Foster City, CA, USA).

In-silico validation of TCGA exome and RNA-Seq data

To validate the eSNV-Detect method, we randomly se-
lected 25 TCGA ER+ breast tumors and downloaded the
sequencing bam files via the CGHub data portal (https:
//cghub.ucsc.edu/). The list of 25 TCGA samples includ-
ing their exome and RNA sequencing depth and mapped
reads are listed in Supplementary Table S1. The original
TCGA RNA-Seq data was aligned using MapSplice (23)
and TopHat (version 1.3), using fastq files converted from
the MapSplice bam files using in-house scripts. The two
bam files were then reprocessed and recalibrated by the
eSNV-Detect workflow to call variants. The variants from
25 RNA-Seq ER+ tumors were further annotated and com-
pared with the corresponding 25 TCGA ER+ breast tu-
mor exome sequencing data to validate the eSNVs called
for each sample.

Single cell sequencing of a breast cancer cell line

MDA-MB-231 breast cancer cell line (ATCC HTB-26) was
cultured in Leibovitz’s L-15 medium with 10% fetal bovine
serum for 5 days. Duplicate cultures were processed for
single-cell analysis. Single-cell were captured on a large-
sized (17–25 um cell diameter) microfluidic mRNA-seq chip
known as the C1TM Single-Cell Auto Prep IFC, using the
C1TM Single-Cell Auto Prep System (Fluidigm Corpora-
tion, South San Francisco, CA). Cells were loaded onto the
chips at a concentration of 300 cells/�l, stained for viability
with LIVE/DEAD cell viability assay kit (Life Technolo-
gies, Carlsbad, CA) and imaged by phase contrast and fluo-
rescence microscopy to assess the number and the viability
of cells per capture site. Only 16 single, live cells were in-
cluded in the analysis. cDNAs were prepared on chip using
the SMARTer Ultra Low RNA kit for Illumina (Clontech
Laboratories, Mountain View, CA). Single-cell cDNA size
distribution and concentration was measured with Quant-
iT Pico green dsDNA assay kit (Life Technologies). Illu-
mina libraries were constructed in 96-well plates using the
Illumina Nextera XT DNA Sample Preparation kit using
the protocol supplied by Fluidigm. Libraries were quanti-
fied by Agilent BioAnalyzer, using high Sensitivity DNA
analysis kit. Single-cell Nextera XT (Illumina) libraries
of one experiment were pooled and sequenced at 100 bp
paired-end on Illumina Miseq to a depth of about 150 000
reads. For validation of the variants called from MiSeq data
we have processed the RNA-Seq data that is publically avail-
able, from Gene Expression Omnibus (GSE27003), from
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whole transcriptome sequencing of the same MDA-MB-
231 cell line (36). The traditional transcriptomic data of
MDA-MB-231 was sequenced by Illumina GA-II platform
with more than 59 million reads. Both single-cell mRNA-
Seq data and traditional GA-II mRNA-Seq data were pro-
cessed through the eSNV-Detect pipeline using TopHat2
and Burrows-Wheeler Aligner (BWA) aligners. To account
for the low sequencing depth of MiSeq platform, the al-
ternative allele read depths threshold for the single-cell se-
quencing data was reduced to two sequence reads in the
eSNV-Detect pipeline.

Performance evaluation

The performance of the eSNV-Detect was assessed in terms
of variant precision and recall. We used whole genome SNP
chip data (HumanOmni2.5 BeadChip) from 1000 genome
project and whole exome sequencing (WES) data from
TCGA ER+ breast tumors to validate eSNVs. True posi-
tive (TP) was defined as those identified by the eSNV-Detect
and validated by the Omni 2.5 genotyping or WES data.
False positive (FP) was defined as variants that were identi-
fied by our method, but not confirmed by the Omni/WES
data. False negative (FN) was defined as the variants found
in Omni/WES data, but not identified by the eSNV-Detect
method. In the case of the 1000 genome sample, since Omni
chip covers only a portion of the whole genome, we vali-
dated eSNVs based on the 2.4 million locations. Since all
reference bases were the true negatives (TN), instead of
specificity, we chose to calculate precision to evaluate the
performance of our method by using the below formula:
precision = TP/(TP + FP). Recall, or sensitivity, was cal-
culated as: recall = TP/(TP + FN).

RESULTS

A novel computational pipeline (the eSNV-Detect) was de-
veloped to identify known and novel expressed SNVs from
RNA-Seq experiment. To call variants the software requires
post alignment files from any two aligners. The two aligner
concept has been shown to be effective in reducing the
false positives (27). Below are few examples of how we
have shown the utility of the software in a lymphoblastoid
cell line, Sanger validation of an ER+ tumor sequenced at
Mayo, TCGA ER+ breast tumors and single-cell RNA-Seq
data from a breast cancer cell line (Supplementary Meth-
ods). The mapping strategies used in the below examples
are BWA + TopHat2 for most of the analyses (lymphoblas-
toid cell line, Mayo ER+ tumor samples and single-cell data
from breast cancer cell line). We applied TopHat + Map-
Splice combination only for 25 TCGA ER+ breast tumors.
We chose this combination, because all the TCGA RNA-
Seq data from TCGA data repository has MapSplice align-
ments readily available.

High precision of the eSNV-detect method when applied to a
lymphoblastoid cell line

We applied the eSNV-Detect method for the RNA-Seq data
of a lymphoblastoid cell line (NA07347) from the 1000
genome project. Alignment of the RNA-Seq data was per-
formed by TopHat2 and BWA against the human genome

Figure 2. Validation of the eSNVs in NA07347 mRNA-Seq data against
the Omni 2.5 Chip data. (a) 15 753 out of 15 796 eSNVs were validated by
the Omni data. There were 1554 Omni SNPs that were expressed but not
called by the eSNV-Detect; (b) The validated 16 441 validated eSNVs dis-
tributed across the whole genome, mainly in exonic (36.9%), UTR (38.4%),
intronic region (14.3%).

(release NCBI GRCh37.1b) respectively and the bam files
were processed through the eSNV-Detect pipeline. In this
analysis, we chose the splice aligner TopHat2 as the pre-
ferred aligner. The variant calls from the workflow were val-
idated with the HumanOmni2.5 SNP chip that consisted
of genotyping information for 2 448 222 genomic locations
over the whole genome.

Our method identified 39 255 high confident (validated
by both aligners, CONF = 2) eSNVs in the NA07347 RNA-
Seq data, of which genotyping data was available for 15 796
nucleotide positions on the HumanOmni2.5 chip. The re-
maining eSNVs could not be validated due to absence of
genotype information. Hence, our validation was based on
these 15 796 loci. The HumanOmni2.5 chip data confirmed
15 753 out of the 15 796 RNA-Seq eSNV candidates to be
true positives and the eSNV-Detect achieved a high preci-
sion rate of 99.7% (Figure 2a). The genomic composition
of the 15 753 validated eSNVs is shown in Figure 2b. The
variant calls were mainly present in exonic and untranslated
region (UTR) regions, but part of the high precision calls
were also distributed in intronic and intergenic regions.

Of the 2 448 222 SNP loci on the Omni chip of NA07347,
only 17 307 SNPs were expressed in the transcriptome
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(i.e. >3 alternative allele supporting reads in the RNA-Seq
data. A detailed transcriptomic expression distribution of
all SNPs on the Omni chip can be found in Supplementary
Table S2). Among the expressed variants, the eSNV-Detect
called 15 753 out of 17 307 as high confident eSNVs and
achieved a high sensitivity/recall rate of 91.0%. The 1553
variants not found in the high confident eSNV list were ei-
ther called by only one aligner (683 found with TopHat ev-
idence only and 19 found in BWA evidence only), or elimi-
nated by the stringent filter criteria (i.e. 851 by low alterna-
tive allele frequency or extreme ReadPosRankSum score or
strand bias ratio).

We thus also investigated the medium/low confident vari-
ants called by single aligner. In the NA07347 RNA-Seq
data, there were 4363 medium confidence variants (CONF
= 1) with evidence from TopHat2 alone. Among them 706
have genotype information on the Omni and 683 of 703
(97.1%) were verified to be true positive. There were 5106
low confidence variants (CONF = 0) with evidence from
BWA only. Among them 358 had genotype information on
the Omni Chip and 343 of 358 (95.8%) were validated. As
the preferred aligner, eSNVs with only TopHat2 evidence
showed a slightly higher precision than those with BWA
evidence, while variants set with support from both align-
ers had the highest precision. Our analysis concludes that
the two-aligner strategy improved the precision of the eSNV
calling.

The impact of the selected mapping strategies

Using the same set of data for the lymphoblastoid cell
line (NA07347) that consists of both RNA-Sequencing and
SNP chip data, we investigated the impact of different
mapping strategies. Engstrom and his colleagues (25) have
shown that MapSplice, STAR-2pass and TopHat2 are top
performance aligners for RNA-Seq. Hence we have chosen
these three aligners along with BWA for the following anal-
ysis. After alignment with the four aligners, the bam files
were processed through the eSNV-detect pre-processing and
variant calling steps, respectively. We compared all pair-wise
combinations of two-aligners with the Omni SNP chip data.
Since the read-depth at a nucleotide position may differ dur-
ing alignment process, we have chosen SNVs for compari-
son that have read depth ≥4 in at least two aligners and have
Omni-SNP chip data (17389 SNVs).

Among the pair-wise comparisons (Supplementary Ta-
ble S3), the combination of MapSplice + TopHat2 detected
the truest positive variants, thus have the highest recall rate.
It should be noted that MapSplice and TopHat2 both use
Bowtie (both used bowtie 1 in the comparison) for segment
mapping, which could be part of the reason of the high re-
call rate. It is noted that different combinations of aligners
affect the precision very little. We have also tried combina-
tions of three and four aligners to call variants using the
eSNV-Detect. Intuitively, the evidence from more aligners
may improve the performance precision. However, it turned
out that the improvement of precision was only marginal
with the price of a substantial loss in recall rate (Supplemen-
tary Table S4). Moreover, increasing the number of align-
ers will require extra computational resources. Hence, we

recommend using two-aligner mapping strategy with the
eSNV-Detect.

Sanger sequencing validation of variants identified by the
eSNV-Detect in breast tumor and adjacent normal

We have used an earlier version of the eSNV-Detect method
to call variants from RNA-Seq data in lung adenocarci-
nomas (26) and breast cancer samples (27). In a recent
study, we have validated the variants predicted by the eSNV-
Detect method with high accuracy in ERBB2 overexpressed
(HER2+) breast tumors and adjacent normal tissues using
Sanger sequencing. In a survey of 32 breast tumors from
RNA-Seq data, a HER2+ breast tumor with the highest
number of novel eSNVs (83 candidate variants) predicted
by the eSNV-Detect was selected for Sanger sequencing val-
idation. Tumor and tumor-adjacent normal tissues were se-
quenced along with a control sample for validation. We have
confirmed 79/83 eSNVs in the HER2+ study using Sanger
sequencing (27).

Similarly, in the present study, we also selected an ER+
breast tumor sample that was processed through the eSNV-
Detect method for validation, and 29 out of 31 eSNVs were
validated. An example of Sanger sequence chromatogram
plots of eSNVs from ER+ tumor is shown in Figure 3. As
indicated in Figure 3A the variant in PDCL3 gene called
with low minor allele frequency and read depth was also
validated by Sanger sequencing.

Validation of eSNVs using TCGA breast cancer exome and
RNA-Seq data

MapSplice and TopHat aligned BAM files were obtained to
call variants for 25 TCGA ER+ breast tumors. The BAM
files from TCGA ER+ tumors were processed through the
eSNV-Detect workflow, as described above, to obtain high
confident eSNVs (CONF = 2). The number of high confi-
dent eSNVs detected ranged from 33 304 to 96 152 in the
25 ER+ tumors. More than 75% of the eSNVs annotated
were located in exons, 3′ UTR and 5′ UTR regions and in-
tronic regions, ∼10% of variants were present in non-coding
RNAs, and the remaining variants were observed in other
regions for the 25 TCGA ER+ breast tumors. High confi-
dent eSNVs observed in exonic regions from RNA-Seq data
ranged from 7261 to 12 528 as shown in Table 2. It should be
noted that the variants were called only from tumors. Thus,
these eSNVs consist of both germline and somatic variants.
About 40% of the variants were non-synonymous (eSNVs
that would result in amino acid changes) and range from
3028 to 6002. Of the non-synonymous eSNVs called, about
one-third of them affected protein domains. In total we
identified 23 726 unique high-confidence non-synonymous
eSNVs that were expressed in the 25 TCGA ER+ tumors
investigated. The total read depth of variants called in the
25 ER+ samples had a large dynamic range from 4 to 8009
reads. More than 97% of the 23 736 eSNVs were known
single nucleotide polymorphisms that can be found in ei-
ther 1000 Genomes project or dbSNP databases. High con-
fident non-synonymous eSNVs affecting a domain for these
25 TCGA ER+ tumors are listed in Supplementary Table
S5.
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Figure 3. Sanger sequencing validated the eSNVs called. Not only eSNVs with higher allele frequency were validated, an eSNV in PDCL3 gene called with
low minor allele frequency was also validated by Sanger sequencing.

Table 2. The precision and recall in the 25 TCGA ER+ samples when validated with the protected mutation list from WES data

TCGA sample ID
Validated
eSNVs Total eSNVs

WES No
Coverage

Expressed
WES SNV Precision Recall F

TCGA-A2-A04Y 9464 10 183 231 10 292 0.951 0.920 0.935
TCGA-A2-A0CT 8353 9436 534 8838 0.938 0.945 0.942
TCGA-A2-A0EM 9608 10 319 251 10 405 0.954 0.923 0.939
TCGA-A2-A0ER 9871 10 650 181 10 817 0.943 0.913 0.928
TCGA-A7-A0CG 9316 10 733 1058 9868 0.963 0.944 0.953
TCGA-A8-A06O 9288 11 418 1161 9808 0.906 0.947 0.926
TCGA-A8-A06P 10 315 11 711 934 10 894 0.957 0.947 0.952
TCGA-A8-A06Q 9628 10 556 272 10 365 0.936 0.929 0.933
TCGA-A8-A06Y 8169 9339 891 8706 0.967 0.938 0.953
TCGA-A8-A07G 10 177 10 770 188 11 029 0.962 0.923 0.942
TCGA-A8-A07L 9265 10 525 776 9840 0.950 0.942 0.946
TCGA-A8-A082 9271 10 496 763 10 064 0.953 0.921 0.937
TCGA-A8-A08F 8613 10 141 848 9318 0.927 0.924 0.926
TCGA-A8-A091 10 606 12 528 1246 11 116 0.940 0.954 0.947
TCGA-A8-A09R 10 432 12 113 1135 11 008 0.950 0.948 0.949
TCGA-A8-A0A4 9284 10 664 974 9824 0.958 0.945 0.952
TCGA-A8-A0A6 8751 9729 692 9215 0.968 0.950 0.959
TCGA-A8-A0A9 9532 11 604 1573 9959 0.950 0.957 0.954
TCGA-A8-A0AD 9286 10 333 685 9790 0.962 0.949 0.955
TCGA-AN-A049 9157 10 394 815 9680 0.956 0.946 0.951
TCGA-AN-A0FW 9786 10 559 208 10 510 0.945 0.931 0.938
TCGA-AO-A03R 6720 7261 287 7300 0.964 0.921 0.942
TCGA-AO-A0JC 9119 10 465 691 9719 0.933 0.938 0.936
TCGA-BH-A0E2 11 042 12 351 842 11 639 0.959 0.949 0.954
TCGA-BH-A0E7 9927 10 599 200 10 834 0.955 0.916 0.935

Precision in coding region. I n-silico validation of the vari-
ants identified for 25 TCGA RNA-Seq breast tumors was
performed using the TCGA whole exome sequencing data
obtained from the same breast tumors. Since whole ex-
ome sequencing primarily targets the coding region, we fo-
cused on exonic regions to compare the variants between
the RNA-Seq and the whole exome-Seq from the same sam-
ple. We obtained the TCGA protected exome sequencing
mutation list, which contains both germline and somatic
mutations for the 25 ER+ tumor samples from the TCGA
data portal (https://tcga-data.nci.nih.gov/tcga/) and com-
pared the WES exonic variants to exonic eSNVs obtained
from RNA-Seq. The number of variants detected by the
eSNV-Detect using RNA-Seq data ranged from 7261 to 12
528 in the 25 ER+ samples. Of the eSNVs identified, we
were able to validate 6720 to 11 042 of the variants by com-
paring them to the exome sequencing protected mutation

list. Some of the variants that could not be validated by ex-
ome sequencing data were due to low WES coverage (≤3 to-
tal reads) and the percentage of such variants ranged from
23 to 76%. When the comparison was limited to genomic
positions where WES had 4X coverage, the precision rate
of eSNVs from RNA-Seq ranged from 90.6 to 96.8% (Ta-
ble 2). Even though the targeted capture for WES does not
work perfectly due to repetitive or complex regions, given
the accuracy of the eSNV-Detect to detect variants from
RNA-Seq, we believe the variants identified by RNA-Seq
in the 25 ER+ tumors could also be true. However, such
variants that are confidently called by RNA-Seq and do not
have at least 4X coverage on exome sequencing would re-
quire further validation. Some of the not validated eSNVs
from RNA-Seq could also be due to a DNA–RNA discrep-
ancy. We compared our list of SNV discrepancies across 25
TCGA ER+ samples with two databases of known RNA-

https://tcga-data.nci.nih.gov/tcga/
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editing sites (RADAR (37) and DARNED (38)). We found
60 out of 7831 in the known RNA-editing databases. Al-
though most of the novel variants were not identified in the
database, but as indicated in Figure 2 we did see A→G and
T→C enriched as the top 2 groups (Supplementary Figure
S2) among all which indicated that A→I RNA-editing may
potentially be responsible for part of the source of discrep-
ancy.

Sensitivity in coding region. To evaluate the
sensitivity/recall performance of the eSNV-Detect, we
validated variants in the WES protected mutation list
with RNA-Seq eSNV calls from the same sample. We
investigated the coding variants that were present in TCGA
exome protected mutation lists at which the nucleotide base
pairs are expressed in RNA-Seq for 25 ER+ tumors (range
of 7300–11 639 single nucleotide variants). Among those
tumors, 6720–11 042 eSNVs were detected by eSNV-Detect
and resulted in a recall rate/sensitivity ranged from 91.6–
95.7% (Table 2). The majority of the false negative eSNVs
were called, but were assigned a lower confidence by the
eSNV-Detect method (detected by one aligner) and thus
were not included in the comparison.

We investigated the frequency across the false negative
eSNVs across all 25 samples (Supplementary Figure S3).
It is noted that only a very small fraction of them (1.9%,
166 SNVs) were repeatedly missed as false negatives in more
than 10 samples. Only 18 (0.2%) of them were repeatedly
missed in more than 20 samples. It is reasonable to state
that the false negatives were random instead of being caused
by potential aligner bias. We further investigated the list of
131 genes associated with 166 false negative eSNVs that
are observed in more than 10 samples. A functional clus-
ter analysis of 131 genes by DAVID functional annotation
tool (39) revealed the functional cluster in mitochondrion,
immune response and ribosomal protein. We further inves-
tigated the overlap of 131 genes with imprinted genes or epi-
genes. We didn’t find huge overlap between the list of genes
with known imprinted genes (http://www.geneimprint.com/
site/genes-by-species) (3 out of 131) and the list of known
human epigenes (5 out of 131) obtained by Huether et al.
(40). Based on our analysis, we estimate that only a small
portion (1–3%) of the loss of sensitivity could be due to
allele-specific expression caused by imprinted or epigenetic
genes.

Two-aligner comparison. To check out the benefit of the
two-aligner strategy, we investigated variants of different
confidence levels in 25 TCGA ER+ breast tumor sam-
ples. High confident variants (validated by both aligners)
achieved a precision range from 96 to 98% in the 25 ER+
tumors. Low confident variants called by MapSplice or
TopHat alone had a precision of 14.6–34.0% and 12.0–
22.3% respectively (Supplementary Table S6). We achieved
high precision and sensitivity by obtaining eSNVs identified
by multi-aligners from the eSNV-Detect workflow.

ts/tv ratio. Of those eSNVs validated in 25 TCGA ER+
tumor samples, the transition-to-transversion ratio (ts/tv)
was ∼3.0. Over the whole genome, the ts/tv ratio is around
2.6, which is consistent with the reported expected value in

the exome and the whole genome (41), suggesting a reason-
able overall quality of our eSNV calling set.

UTR precision. Given the high coverage of UTRs from
TruSeq TCGA RNA-Seq data, we also computed the pre-
cision in UTR regions. For those variants with >4X WES
coverage, we were able to validate on average 93.4% of UTR
variants in 25 ER+ tumors. The methods for UTR precision
calculations are similar to the above precision results section
for coding regions.

Comparisons of mutations with TCGA. In the 25 TCGA
ER+ tumors we investigated, we confirmed a high mutation
rate of non-synonymous variants (including both germline
and somatic ones) for genes which were reported to be sig-
nificantly mutated with somatic or germline variants in the
TCGA paper (7), such as PIK3CA (9 out of 25), MAP3K1
(25 out of 25), TP53 (23 out of 25), CDH1 (25 out of 25),
ATM (25 out of 25), BRCA1 (11 out of 25), BRIP1 (16 out
25) and others (See Table 3). Our eSNV protein domain an-
notations indicated that all 11 samples with BRCA1 muta-
tions and all nine samples with FOXA1 mutations had at
least one affected protein domain per gene. Although de-
tected in only in one sample, MAP2K4, PTEN, CHEK2,
RB1 and RAD51C were found to have a deleterious eSNV
affected protein domain, as shown in Table 3.

Significant mutated gene network and pathway analysis.
We selected 2599 genes with deleterious (AVSIFT < 0.05)
eSNVs that are located in a protein domain from the 25
ER+ tumors. IPA pathway analysis (www.ingenuity.com,
QIAGEN, Redwood City,CA) of the 2599 genes showed an
altered estrogen receptor network (Supplementary Figure
S1). The genes corresponding to variants altered canonical
pathways such as antigen presentation pathway and OX40
signaling pathway, indicating immune and inflammation re-
sponse, as well as the tRNA charging pathway which was
previously reported to be associated with breast cancer (42).

Single-cell RNA-Seq data

Single-cell transcriptomes show great transcriptional fluc-
tuations and heterogeneity because of dynamic changes
during the cell cycle, which can be characterized by single-
cell mRNA-Sequencing (43). The single-cell mRNA-Seq
and the traditional GA-II mRNA-Seq data from MDA-
MB-231 cancer cell line were obtained and the eSNVs were
called using the eSNV-Detect pipeline as described in ‘Ma-
terials and Methods’ section (Supplementary Table S7).

To show the ability of the eSNV-Detect pipeline to cap-
ture the diversity of variant calls among single-cells, we ob-
tained a list of 102 unique mutations that had been reported
in the COSMIC database for MDA-MB-231 cell lines (28).
Of the 102 mutations, only 29 mutations were observed in
at least one of the single-cell samples and called confidently
in the Illumina GAII traditional transcriptomic data. The
zygosities of the eSNVs calls were investigated by the eSNV-
Detect pipeline and the findings are shown in Figure 4. It
can be seen that variants with homozygous alternative al-
leles in traditional GA-II sequencing data were found also

http://www.geneimprint.com/site/genes-by-species
http://www.ingenuity.com
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Table 3. Gene level eSNVs summary for most frequently mutated genes listed in the TCGA paper (7)

Gene
# of samples with
mutations

# of samples with
mutations in protein
domain

# of samples with
deleterious mutations
(AVSIFT)

# of samples with deleterious
mutations in domain

PIK3CA 10 3 2 1
MAP3K1 25 1 3 1
GATA3 1 1 1 1
TP53 21 4 3 3
CDH1 4 4 4 4
MAP2K4 1 1 1 1
MLL3 5 2 2 0
PIK3R1 3 3 1 1
AKT1 1 1 1 1
PUNX1 1 1 1 1
CBFB 1 1 1 1
TBX3 1 0 1 1
NCOR1 4 0 3 0
CTCF 1 1 1 1
FOXA1 9 9 8 8
SF3B1 1 1 1 1
CDKN1B 9 0 0 0
RB1 1 1 1 1
AFF2 1 1 1 1
NF1 1 0 0 0
PTPN22 19 0 0 0
PTPRD 1 1 0 0
ATM 23 1 5 1
BRCA1 11 11 10 4
BRCA2 15 0 2 0
BRIP1 16 0 16 0
CHEK2 1 1 1 1
NBN 13 0 0 0
PTEN 1 1 1 1
RAD51C 1 1 1 1

chrX_135308130_G_A
chr20_61488922_C_T
chr19_5699098_C_T
chr17_7577099_C_T
chr16_2814371_C_T

chr16_27473769_C_T
chr16_89972658_C_G
chr15_29997732_C_A
chr14_64989274_A_T
chr14_24658841_C_T

chr12_970240_G_T
chr11_47446725_C_G

chr11_134086883_C_A
chr11_47444153_C_A

chr10_124692048_C_A
chr10_129902653_A_G
chr8_121458742_G_A

chr6_10702647_G_T
chr6_34730386_G_C
chr5_54640988_A_T
chr5_80109433_G_A
chr5_14330953_C_G
chr5_14502720_A_G
chr4_2238074_C_G

chr3_172365720_C_T
chr2_27587647_C_G

chr1_197074117_A_G
chr1_224553630_T_C
chr1_197611911_T_C
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Figure 4. Apply eSNV-Detect to Single Cell Sequencing and the match-
ing multicellular GA-II RNA-seq. The comparison between the single-cell
data and the multicellular data shows the celluar heterogeneity of the single
cells in variant calling.

to be homozygous, when coverage was sufficient. In con-
trast variants with heterozygous alleles in traditional GA-
II sequencing data could be found to be homozygous refer-
ence, heterozygous variants or homozygous variants in sin-
gle cell preparations. Even with the low sequencing depth of
MiSeq, the eSNVs from single-cell mRNA-Seq data showed
the heterogeneity of eSNV calls successfully in the single-
cells. The same heterogeneity pattern was also observed in a
Hi-Seq data set of 89 MDA-MB-231 single cells (the anal-
ysis of that data is currently ongoing for gene expression,
fusion transcripts, eSNVs and hence not included as part of
this manuscript).

DISCUSSION

At present, there are software analysis methods such as
GATK (44), VARSCAN (45) samtools mpileup (46) that
are publically available for DNA variant analysis from
whole genome or whole exome sequencing datasets. Most
genotype calling algorithms are designed for calling muta-
tions from DNA data rather than mRNA data. Current se-
quencing workflow such as GATK best practices (44) also
focus on DNA variant calling and do not have a direct ap-
proach for extracting expressed variants from RNA-Seq.
Identification of SNVs from RNA-Seq is still challenging
because of the dynamic range of gene expression, splicing
and translocations. To our knowledge, there are only few
methods (SNVMix (17), SNPiR (18)) to call variants from
RNA-Seq data. Even these methods that currently exist for
calling eSNVs are either specific for calling variants from
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cancer (17) or calling variants without annotation or prior-
itization.

We have developed the eSNV-Detect, a comprehensive
bioinformatics pipeline to call variants with high preci-
sion and recall rates, which annotates and prioritizes based
on genomic and proteomic domains. The eSNV-Detect
pipeline uses a combination of open access bioinformatics
tools, with several customizations and in-house developed
methods, to identify eSNVs from RNA-Seq data. Sequence
characteristics such as number of reads at a nucleotide po-
sition, reference supporting reads, alternate allele reads, lo-
cation of variant in the reads, forward strand supporting
reads, reverse strand supporting reads, base qualities, map-
ping qualities etc. are used to call eSNVs. Systemic map-
ping errors such as strand bias in sequencing, PCR dupli-
cates and/or multi-mapping errors do exist in RNA-Seq
technologies. Efforts to account for these minimize the false
discovery rate of variants thereby controlling the Type I er-
ror rate of eSNV calls. In addition to sequence characteris-
tics individual aligners have their own strengths and weak-
nesses in terms of aligning junction reads from RNA-Seq
data. Hence, our strategy to use at least two complemen-
tary aligners to assign confidence score facilitates priori-
tization of candidate eSNVs for further clinical interroga-
tion. The eSNV calls with evidence found in both aligners
and callers increases confidence. Further, when sensitivity
is more of a concern, taking the union of the variants iden-
tified from both aligners would ultimately help the selec-
tion of the eSNVs missed because of aligner bias. However,
the two-aligner concept does require additional resources
to call eSNVs but it is predicated due to the stringent crite-
ria required for clinical settings. The eSNV-Detect pipeline
is freely available and can be downloaded on a windows
machine with virtual machine concept or as a stand-alone
UNIX machine or a parallel sun grid machine.

The calls from the eSNV-Detect method were validated
using three independent RNA-Seq datasets with three dif-
ferent analysis using SNP chip data, exome sequencing data
and Sanger sequencing. The method was first tested us-
ing a lymphoblastoid sample for which we have RNA-Seq
and Human Omni2.5 SNP chip data. We have then applied
our method to 25 ER+ breast cancer samples from TCGA
project for which we have both RNA-Seq and exome se-
quencing data. As described in the ‘Results’ section, preci-
sion and recall rates >90% were achieved for both analyses.
Furthermore, we have validated 29/31 eSNV candidates for
an ER+ breast tumor for which we have tumor and adjacent
normal tissue using the Sanger sequencing. In addition, the
eSNV-Detect pipeline was applied to 16 single-cell breast
cancer cell line RNA-Seq data (MiSeq) and observed het-
erogeneous genotype calls, even at low read depths, for a
set of somatic mutations obtained from COSMIC database
(28).

Calling of variants from RNA-Seq has a number of appli-
cations, such as it allows for the validation of germline or so-
matic variants called by whole exome or whole genome se-
quencing. Further, RNA-Seq enables the detection of previ-
ously unidentified variants that are functionally important
such as UTRs and non-coding RNAs, which are difficult
to capture using targeted exome sequencing. For example,
our study of 25 TCGA ER+ tumor eSNV calls from RNA-

Seq data demonstrate an increase in the number of variants
called by an average of 6% in contrast to exome sequencing
data. This confirms that there are additional variants ob-
tained from RNA-Seq data, compared to exome sequencing
data.

At present, large-scale projects like TCGA consist of
both exome and RNA-Seq data available for same individ-
uals. Thus far, the genotyping in the TCGA datasets were
performed using exome sequencing and SNP arrays and
hence do not take complete benefit of existing RNA-Seq
data. Our ability to understand the complexity of genotype-
phenotype relationship in these tumors relies on the effec-
tive identification of genomic variants in tumor samples.
Hence, we are currently processing TCGA RNA-Seq data
using the eSNV-Detect pipeline, and this effort is currently
ongoing.

The eSNV-Detect has a high precision rate and we have
thus far applied our method to large scale tumor RNA-Seq
samples, time series datasets and individualized medicine
projects at the Mayo Clinic. For individualized medicine
projects, where we have both RNA-Seq and Exome-Seq
data, we successfully validated candidate eSNVs with a high
accuracy rate. In the genomic medicine setting where the
clinical treatment decisions are crucial eSNV-Detect has
been successful in identifying variants confidently.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGMENT

We thank Matt Bockol and Asha Nair for their support.

FUNDING

This work is supported by the Mayo Clinic Center for
Individualized Medicine (CIM). K.R.K. is supported by
Eveleigh family career Development award, and Mayo
Clinic Breast Specialized Program of Research Excellence
(SPORE). Additional support was also obtained from 26.2
with Donna Foundation, the NIH Pharmacogenomics Re-
search Network (U19 GM61388) and Mayo Foundation.
The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript.
Conflict of interest statement. None declared.

REFERENCES
1. Feero,W.G., Guttmacher,A.E. and Collins,F.S. (2010) Genomic

medicine–an updated primer. N. Engl. J. Med., 362, 2001–2011.
2. Guttmacher,A.E. and Collins,F.S. (2002) Genomic medicine–a

primer. N. Engl. J. Med., 347, 1512–1520.
3. Chan,I.S. and Ginsburg,G.S. (2011) Personalized medicine: progress

and promise. Annu. Rev. Genomics Hum. Genet., 12, 217–244.
4. The Cancer Genome Atlas Research Network. (2008) Comprehensive

genomic characterization defines human glioblastoma genes and core
pathways. Nature, 455, 1061–1068.

5. The Cancer Genome Atlas Research Network. (2012) Comprehensive
genomic characterization of squamous cell lung cancers. Nature, 489,
519–525.

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gku1005/-/DC1


PAGE 11 OF 11 Nucleic Acids Research, 2014, Vol. 42, No. 22 e172

6. The Cancer Genome Atlas Research Network. (2012) Comprehensive
molecular characterization of human colon and rectal cancer. Nature,
487, 330–337.

7. The Cancer Genome Atlas Research Network. (2012) Comprehensive
molecular portraits of human breast tumours. Nature, 490, 61–70.

8. Wang,Z., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a
revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63.

9. Trapnell,C., Roberts,A., Goff,L., Pertea,G., Kim,D., Kelley,D.R.,
Pimentel,H., Salzberg,S.L., Rinn,J.L. and Pachter,L. (2012)
Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578.

10. Anders,S., Pyl,P.T. and Huber,W. (2014) HTSeq –– A Python
framework to work with high-throughput sequencing data.
Bioinformatics, 2014, btu638.

11. Kim,D. and Salzberg,S.L. (2011) TopHat-Fusion: an algorithm for
discovery of novel fusion transcripts. Genome Biol., 12, R72.

12. Varela,I., Tarpey,P., Raine,K., Huang,D., Ong,C.K., Stephens,P.,
Davies,H., Jones,D., Lin,M.L., Teague,J. et al. (2011) Exome
sequencing identifies frequent mutation of the SWI/SNF complex
gene PBRM1 in renal carcinoma. Nature, 469, 539–542.

13. Banerji,S., Cibulskis,K., Rangel-Escareno,C., Brown,K.K.,
Carter,S.L., Frederick,A.M., Lawrence,M.S., Sivachenko,A.Y.,
Sougnez,C., Zou,L. et al. (2012) Sequence analysis of mutations and
translocations across breast cancer subtypes. Nature, 486, 405–409.

14. Stephens,P.J., Tarpey,P.S., Davies,H., Van Loo,P., Greenman,C.,
Wedge,D.C., Nik-Zainal,S., Martin,S., Varela,I., Bignell,G.R. et al.
(2012) The landscape of cancer genes and mutational processes in
breast cancer. Nature, 486, 400–404.

15. Pao,W. and Girard,N. (2011) New driver mutations in non-small-cell
lung cancer. Lancet Oncol., 12, 175–180.

16. Kim,S.Y. and Speed,T.P. (2013) Comparing somatic mutation-callers:
beyond Venn diagrams. BMC Bioinformatics, 14, 189.

17. Goya,R., Sun,M.G., Morin,R.D., Leung,G., Ha,G., Wiegand,K.C.,
Senz,J., Crisan,A., Marra,M.A., Hirst,M. et al. (2010) SNVMix:
predicting single nucleotide variants from next-generation sequencing
of tumors. Bioinformatics, 26, 730–736.

18. Piskol,R., Ramaswami,G. and Li,J.B. (2013) Reliable identification of
genomic variants from RNA-seq data. Am. J. Hum. Genet., 93,
641–651.

19. Shah,S.P., Morin,R.D., Khattra,J., Prentice,L., Pugh,T., Burleigh,A.,
Delaney,A., Gelmon,K., Guliany,R., Senz,J. et al. (2009) Mutational
evolution in a lobular breast tumour profiled at single nucleotide
resolution. Nature, 461, 809–813.

20. Li,H. and Durbin,R. (2009) Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

21. Trapnell,C., Pachter,L. and Salzberg,S.L. (2009) TopHat: discovering
splice junctions with RNA-Seq. Bioinformatics, 25, 1105–1111.

22. Kim,D., Pertea,G., Trapnell,C., Pimentel,H., Kelley,R. and
Salzberg,S.L. (2013) TopHat2: accurate alignment of transcriptomes
in the presence of insertions, deletions and gene fusions. Genome
Biol., 14, R36.

23. Wang,K., Singh,D., Zeng,Z., Coleman,S.J., Huang,Y., Savich,G.L.,
He,X., Mieczkowski,P., Grimm,S.A., Perou,C.M. et al. (2010)
MapSplice: accurate mapping of RNA-seq reads for splice junction
discovery. Nucleic Acids Res., 38, e178.

24. Wu,T.D. and Nacu,S. (2010) Fast and SNP-tolerant detection of
complex variants and splicing in short reads. Bioinformatics, 26,
873–881.

25. Engstrom,P.G., Steijger,T., Sipos,B., Grant,G.R., Kahles,A.,
Alioto,T., Behr,J., Bertone,P., Bohnert,R., Campagna,D. et al. (2013)
Systematic evaluation of spliced alignment programs for RNA-seq
data. Nat. Methods, 10, 1185–1191.

26. Kalari,K.R., Rossell,D., Necela,B.M., Asmann,Y.W., Nair,A.,
Baheti,S., Kachergus,J.M., Younkin,C.S., Baker,T., Carr,J.M. et al.
(2012) Deep sequence analysis of non-small cell lung cancer:
integrated analysis of gene expression, alternative splicing, and single
nucleotide variations in lung adenocarcinomas with and without
oncogenic KRAS mutations. Front. Oncol., 2, 12.

27. Kalari,K.R., Necela,B.M., Tang,X., Thompson,K.J., Lau,M.,
Eckel-Passow,J.E., Kachergus,J.M., Anderson,S.K., Sun,Z., Baheti,S.
et al. (2013) An integrated model of the transcriptome of
HER2-positive breast cancer. PLoS One, 8, e79298.

28. Forbes,S.A., Bindal,N., Bamford,S., Cole,C., Kok,C.Y., Beare,D.,
Jia,M., Shepherd,R., Leung,K., Menzies,A. et al. (2011) COSMIC:
mining complete cancer genomes in the Catalogue of Somatic
Mutations in Cancer. Nucleic Acids Res., 39, D945–D950.

29. Wang,K., Li,M. and Hakonarson,H. (2010) ANNOVAR: functional
annotation of genetic variants from high-throughput sequencing
data. Nucleic Acids Res., 38, e164.

30. Karolchik,D., Barber,G.P., Casper,J., Clawson,H., Cline,M.S.,
Diekhans,M., Dreszer,T.R., Fujita,P.A., Guruvadoo,L.,
Haeussler,M. et al. (2014) The UCSC Genome Browser database:
2014 update. Nucleic Acids Res., 42, D764–D770.

31. The UniProt Consortium. (2014) Activities at the Universal Protein
Resource (UniProt). Nucleic Acids Res., 42, D191–D198.

32. Finn,R.D., Clements,J. and Eddy,S.R. (2011) HMMER web server:
interactive sequence similarity searching. Nucleic Acids Res., 39,
W29–W37.

33. Punta,M., Coggill,P.C., Eberhardt,R.Y., Mistry,J., Tate,J.,
Boursnell,C., Pang,N., Forslund,K., Ceric,G., Clements,J. et al.
(2012) The Pfam protein families database. Nucleic Acids Res., 40,
D290–D301.

34. Lappalainen,T., Sammeth,M., Friedlander,M.R., Hoen,P.A.,
Monlong,J., Rivas,M.A., Gonzalez-Porta,M., Kurbatova,N.,
Griebel,T., Ferreira,P.G. et al. (2013) Transcriptome and genome
sequencing uncovers functional variation in humans. Nature, 501,
506–511.

35. Abecasis,G.R., Altshuler,D., Auton,A., Brooks,L.D., Durbin,R.M.,
Gibbs,R.A., Hurles,M.E. and McVean,G.A. (2010) A map of human
genome variation from population-scale sequencing. Nature, 467,
1061–1073.

36. Sun,Z., Asmann,Y.W., Kalari,K.R., Bot,B., Eckel-Passow,J.E.,
Baker,T.R., Carr,J.M., Khrebtukova,I., Luo,S., Zhang,L. et al. (2011)
Integrated analysis of gene expression, CpG island methylation, and
gene copy number in breast cancer cells by deep sequencing. PLoS
One, 6, e17490.

37. Ramaswami,G. and Li,J.B. (2014) RADAR: a rigorously annotated
database of A-to-I RNA editing. Nucleic Acids Res., 42, D109–D113.

38. Kiran,A.M., O’Mahony,J.J., Sanjeev,K. and Baranov,P.V. (2013)
Darned in 2013: inclusion of model organisms and linking with
Wikipedia. Nucleic Acids Res., 41, D258–D261.

39. Huang da,W., Sherman,B.T. and Lempicki,R.A. (2009) Systematic
and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat. Protoc., 4, 44–57.

40. Huether,R., Dong,L., Chen,X., Wu,G., Parker,M., Wei,L., Ma,J.,
Edmonson,M.N., Hedlund,E.K., Rusch,M.C. et al. (2014) The
landscape of somatic mutations in epigenetic regulators across 1,000
paediatric cancer genomes. Nat. Commun., 5, 4630.

41. Bainbridge,M.N., Wang,M., Wu,Y., Newsham,I., Muzny,D.M.,
Jefferies,J.L., Albert,T.J., Burgess,D.L. and Gibbs,R.A. (2011)
Targeted enrichment beyond the consensus coding DNA sequence
exome reveals exons with higher variant densities. Genome Biol., 12,
R68.

42. Pavon-Eternod,M., Gomes,S., Geslain,R., Dai,Q., Rosner,M.R. and
Pan,T. (2009) tRNA over-expression in breast cancer and functional
consequences. Nucleic Acids Res., 37, 7268–7280.

43. Shapiro,E., Biezuner,T. and Linnarsson,S. (2013) Single-cell
sequencing-based technologies will revolutionize whole-organism
science. Nat. Rev. Genet., 14, 618–630.

44. McKenna,A., Hanna,M., Banks,E., Sivachenko,A., Cibulskis,K.,
Kernytsky,A., Garimella,K., Altshuler,D., Gabriel,S., Daly,M. et al.
(2010) The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res., 20,
1297–1303.

45. Koboldt,D.C., Zhang,Q., Larson,D.E., Shen,D., McLellan,M.D.,
Lin,L., Miller,C.A., Mardis,E.R., Ding,L. and Wilson,R.K. (2012)
VarScan 2: somatic mutation and copy number alteration discovery in
cancer by exome sequencing. Genome Res., 22, 568–576.

46. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N.,
Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence
Alignment/Map format and SAMtools. Bioinformatics, 25,
2078–2079.


