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AbsTrACT
The present spread of severe acute respiratory syndrome 
coronavirus 2, provoking COVID–19 disease, progresses 
rapidly worldwide. In current absence of a curative 
treatment and an effective, safe vaccine, there is a 
pressing need to focus on identifying and correcting 
deficits in immune function in order to reduce risk of 
severe progress of the disease and to lower the number 
of infections and fatalities. This paper evaluates the most 
recent literature on zinc status related to antiviral immunity 
and its possible role in COVID–19. It is concluded that zinc 
is a critical factor for antiviral immunity. There is ample 
evidence suggesting that zinc depletion, also prevalent in 
high–income nations, compromises immune functions. 
Notably, major risk groups for COVID–19, the elderly, men 
more than women, obese individuals and patients with 
diabetes are all at risk of zinc deficiency. Moreover, various 
widely used antihypertensive drugs and statin therapy 
have been reported to negatively influence zinc status. As 
zinc depletion impairs antiviral immunity, it is hypothesised 
to increase susceptibility for COVID–19. Therefore, dietary 
preventive measures and prompt implementation of zinc 
supplementation for risk groups should be considered. 
Large–scale studies are urgently needed to investigate the 
role of micronutrients and antiviral immunity, in particular 
drug–micronutrient immunity interaction.

InTroduCTIon
The current spread of severe acute respira-
tory syndrome coronavirus 2 (SARS–CoV2), 
provoking COVID–19 disease, progresses 
rapidly thereby urgently challenging the 
healthcare system worldwide. In the absence 
of curative treatment as well as an effective 
and safe vaccine at the moment, there is a 
pressing need to focus on identifying and 
correcting deficits in immune function, espe-
cially for those at risk for COVID–19. The 
elderly and people with comorbid conditions 
show increased risk of severe progression.1 
Zinc status, known to be a critical factor for 
antiviral immune response,2–4 may have the 
potential to influence the course of the viral 
infection in individuals. Here, it is argued 
that particularly adult populations at risk of 
disturbed zinc homeostasis have increased 
risk of severe progression of COVID–19. 

Moreover, nutritional, immunological and 
clinical data suggest that zinc status may play 
a pivotal role in preventing and controlling 
COVID–19 disease. This opens up possi-
bilities for targeted dietary preventive and 
nutritional intervention measures to improve 
antiviral immune response.

Zinc in antiviral immunity
Zinc is involved in generating innate as well 
as acquired antiviral immune response.2–6 
First of all, zinc is essential for the barrier 
function of mucosal epithelium due to its 
antioxidant and anti–inflammatory activity. It 
also regulates tight junction proteins that are 
important for the maintenance of mucosal 
membrane integrity.5 7 Reduction of mucosal 
integrity and loss of tight junction cohe-
sion aggravates viral inflammation. These 
deteriorations result in alveolar oedema, 
due to leakage of high weight proteins and 
water, resulting in acute respiratory distress 
syndrome.7

Proliferation, differentiation, maturation 
and functioning of leucocytes including 
lymphocytes are all regulated by zinc.7 Zinc 
ions regulate intracellular signalling pathways 
in both innate and adaptive immune cells. 
Hereby zinc acts directly by binding reversibly 
to regulating proteins or indirectly by modu-
lating enzymes, such as phosphates, involved 
in signalling pathways. Production of reactive 
oxygen species (ROS) and cytokines depend 
on zinc availability.3 6 ROS production is 
required for intracellular killing of pathogens 
as well as for the formation of neutrophil 
extracellular traps, released by granulocytes 
to neutralise pathogens.3 6 Zinc treatment 
in vitro has demonstrated to increase inter-
feron α (IFNα) production by leukocytes, 
enhancing its antiviral activity.7

Due to involvement of zinc in various 
immune functions, zinc deficiency results in:

 ► Reduced activity of immune cells like 
impaired phagocytosis.3 8 9

 ► Decreased critical neutrophil functions.3 8 9
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 ► Weakened natural killer cell function.3 8 9

 ► Reduced lymphocyte number and activation.3 5

 ► Diminished antibody production.6

 ► Imbalanced T helper cells cytokine secretion with 
decreased IFNγ production.6 10 IFNs are immunostim-
ulatory cytokines with antiviral activity.2

 ► Increased thymic atrophy and consequent risk of 
infection.5

On the other hand, excess of zinc can also impair 
immune response by inhibiting T–lymphocyte and B–
lymphocyte function, reducing intracellular pathogen 
destruction in macrophages or inducing an overload of 
regulatory T–cells.3 6 11 This demonstrates that a balanced 
zinc homeostasis is critical for adequate immune 
functions.

Furthermore, accurate modulation of the inflammatory 
response is required for achieving an adequate antiviral 
immune response.6 Hereby, zinc is crucial to counteract 
excessive inflammatory reactions by improving control 
of regulatory transcriptional factor, nuclear factor–
κB (NF–κB), resulting in a reduced production of  
pro–inflammatory cytokines.3 4 7 8 Zinc signals can 
increase intracellular levels of zinc finger protein A20, 
which inhibits activation of NF–κB through a negative 
feedback loop, downregulating proinflammatory factors 
as well.3 6 10 Zinc may also limit excessive inflammatory 
response by modulating regulatory T–cell functions.7

Moreover, zinc has proven direct antiviral activity 
towards a wide variety of viruses2 3; enhancing antiviral 
immunity. Zinc deficiency results in a compromised 
immune system along with reduced zinc availability for 
direct antiviral action, increasing susceptibility for viral 
infections.2 5 8 9 12 Hence, zinc–deficient populations are 
more likely to acquire pneumonia5 7 13 and viral infections 
as documented for hepatitis C and HIV.2 Some studies 
suggest that zinc may also improve antibacterial immune 
response to Streptococcus Pneumoniae, which can provoke 
coinfection in viral pneumonia.2 7 In addition, the anti–
inflammatory effects of zinc also aid to limit tissue damage 
in case of pneumonia and decrease the risk of sepsis.3 7

The increased knowledge about the role of zinc in viral 
immunity has resulted in clinical studies, showing evident 
therapeutic effect of zinc supplementation in viral infec-
tions like common cold7 and herpes simplex.2 3 Presently, 
zinc is recommended by WHO as first–line treatment, 
with oral rehydration solution, for acute gastroenteritis in 
children because of its clinically proven efficacy to reduce 
diarrhoea.14 The question is to what extent zinc is also 
involved in antiviral immunity in case of COVID–19.

Who are at risk of zinc deficiency?
Emerging characteristics regarding COVID–19 show that 
patients most at risk of fatal outcome of COVID–19 are 
the elderly, those with cardiovascular disease, diabetes, 
chronic respiratory disease, hypertension, overweight 
and cancer. Male show increased risk compared with 
female.1 15 16 Comparing these outcomes to the risk 
groups for low zinc status then the following can be 

noticed: the elderly population, more at risk of severe 
COVID–19 disease,1 15 is also more at risk of zinc defi-
ciency.2 3 11 12 A cross–sectional population survey among 
a random sample of elder participants, aged 67–87 years, 
found 10.1% zinc deficient, in line with previous studies. 
The prevalence was significantly higher as age increased 
and notably more men (13.1%) than women (7.3%) were 
zinc depleted.17 A zinc–poor diet, increased alcohol–
intake and disease–state can all contribute to zinc deple-
tion.2 17

Concerning diabetes, a meta–analysis including 52 
studies on micronutrients in diabetes demonstrated 
significantly lower zinc status for patients with diabetes 
(n=20 183) compared with controls.18 The results of this 
study are consistent with other studies that observed zinc 
depletion in up to 77% of patients with type 2 diabetes19–21 
or found an inverse correlation between blood glucose 
and zinc levels.22 Furthermore, research demonstrates 
that obesity predisposes for zinc deficiency. Studies have 
revealed reduced serum zinc levels in up to 28% of obese 
individuals prior to bariatric surgery and in 36%–51% of 
patients afterwards. Another study in Spain among 115 
morbid obese women found 74% of them zinc deficient.23 
In conclusion, these studies suggest a strong correlation 
between age, diabetes, overweight and zinc status.

drug use and zinc balance
For most of the comorbid groups affected by COVID–19, 
we may assume that they include a relative high percentage 
of vulnerable patients with serious cardiovascular or 
respiratory dysfunction. Therefore, these patients clearly 
are at risk of severe COVID–19 disease. However, the rela-
tive high percentage of patients with hypertension struck 
by fatal outcome is striking: the in China reported case 
fatality rate for the hypertension group (6.0%) is nearly as 
high as for the chronic lung disease group (6.3%).1 The 
high risk for hypertensive patients is difficult to explain 
solely by their pathological condition, considering hyper-
tension in itself appears not directly associated with 
compromised immune functions, unless it is accompa-
nied by organ damage, like kidney failure. Thus, it seems 
likely that other factors are involved. Unfortunately, data 
on the clinical characteristics of the risk groups as well as 
their prognostic factors are limited as the pandemic is still 
in progress.

An important issue is the use of antihypertensive phar-
maceuticals and their possible effect on immune func-
tions. With regard to zinc, various antihypertensive drugs 
have been reported to negatively influence zinc balance, 
resulting in a potentially reduced antiviral immune 
response.

First, thiazide diuretics, widely used in hypertensive 
therapy, can result in significantly increased urinary 
zinc excretion24–26 and consequently reduce tissue zinc 
concentrations.26 A study on the long–term use of hydro-
chlorothiazide (≥6 months) resulted in significant lower 
serum zinc levels in 20 out of 39 subjects when compared 
with controls.24 Patients with hypertension (n=36) on 
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monotherapy with diuretics, most of them using thiazide–
like diuretics, were found to have significant lower zinc 
concentration in serum and erythrocytes after 3 months 
of therapy when compared with baseline levels in a 
randomised trial.25

Furthermore, long–term use of some ACE–inhibitors 
like captopril (50–150 mg/day), verapamil (240 mg/
day) and ramipril (5 mg/day) can significantly lower 
serum zinc levels.24 Serum zinc concentrations were also 
decreased in subjects (n=14) after using ACE–inhib-
itors for 3 months. In this study, dietary zinc intake was 
controlled during the test period. In the same study, a 
significant decrease of erythrocyte zinc concentration 
was also observed in patients with hypertension (n=18) 
on calcium antagonists (Ca–antagonists)25 in contrast to 
a previous study (n=20) in which no such changes were 
found. However, dietary zinc intake monitoring was not 
reported.24

In addition, some angiotensin 2 receptor blockers 
(ARBs) proved to have a potential to lower zinc levels as 
well. A 3–month treatment with valsartan (80 mg/day) 
has revealed to reduce serum zinc and erythrocyte zinc 
levels significantly in hypertensive patients. Stand–alone 
therapy with losartan (50.0 mg/day) in 17 hypertensive 
patients for 4 weeks resulted in significantly increased 
urinary zinc excretion and zinc depletion.24 However, 
no alterations in serum and erythrocyte zinc level were 
found in 12 patients with hypertension after 3 months 
of treatment with ARBs, although drug dosages were not 
reported.24 Meanwhile, studies done on beta–blockers 
remain inconclusive about their effect on zinc metabo-
lism.24 25 27 28

It should be noted that most of the studies on antihyper-
tensive drugs and zinc status lasted between 4 weeks and 
6 months. That is considerably shorter than the actual 
situation in which hypertensive patients usually take these 
drugs for years. Moreover, mainly monotherapy was inves-
tigated, while in medical practice the use of two or more 
antihypertensive drugs is often applied. One drug could 
have an additive effect on the other drug in lowering 
zinc levels as was shown for the combination losartan 
(50.0 mg/day)/hydrochlorothiazide (12.5 mg/day).24

Moreover diuretics, ACE inhibitors, ARBs and Ca–
antagonists are also extensively used for other cardio-
vascular disorders, either separate or combined with 
additional drugs. For instance, statins are widely used for 
treating dyslipidaemia in cardiovascular disease. Long–
term statin therapy is associated with 10%–45% higher 
risk for new–onset type 2 diabetes,29 which can induce 
zinc depletion. Hence, many cardiovascular patients 
using antihypertensives or statins, which can affect zinc 
balance,30 31 may be at increased risk of zinc deficiency 
(table 1). For numerous other cardiovascular drugs, 
sufficient data on zinc metabolism are lacking.

Zinc and susceptibility for CoVId–19
The decline of immune functions with ageing, which is 
often referred to as ‘immunosenescence’, appears to be 

related to lower zinc availability.6 8 9 11 12 Mild zinc defi-
ciency, commonly seen with ageing, leads to dysregu-
lation of the adaptive immune system decreasing the 
specific immune response (B–cell function, produc-
tion of immunoglobulins) along with the tendency of 
enhanced production of proinflammatory cytokines, 
called ‘inflammaging’. In chronic inflammation, there is 
a continuous sequestration of intracellular zinc and the 
release of zinc bound to intracellular proteins (metallo-
thioneins) is impeded. As a consequence, intracellular 
zinc ion bioavailability, indispensable for proper immune 
function, is reduced.6 10 Zinc supplementation partially 
restores these alterations.5 6 8 10 12 Moreover, inflammaging 
often seen with ageing can affect innate immunity as well. 
Especially in the early stage of newly acquired viral infec-
tions an adequate immune response depends largely 
on the innate immune system. In particular zinc is crit-
ical for its efficient functioning.5 6 8 In COVID–19, there 
are strong indications for downregulation of the innate 
immune response along with a high inflammatory condi-
tion, features similar to those found in SARS and Middle 
East respiratory syndrome. This may explain why elderly 
are more at risk of COVID–19 in contrast to young chil-
dren who benefit from a highly effective innate immune 
response.32

Apart from its role in immune functions, zinc has 
also shown direct antiviral activity for a number of RNA 
viruses. It was demonstrated that zinc efficiently inhibits 
the replication of SARS–CoV in cell culture, showing the 
crucial role of intracellular zinc in inhibiting replication 
of the virus.33 This study by te Velthuis et al used the zinc 
ionophore pyrithione, which transports zinc ions in large 
amounts from the extracellular matrix into the cell, in 
order to increase intracellular zinc levels. Without zinc, 
the ionophore was unable to effectively inhibit viral repli-
cation. The pharmaceuticals chloroquine and hydroxy-
chloroquine, also known to function as zinc ionophores, 
are now being tested in several clinical studies for the 
treatment of COVID–19, although without simultaneous 
supplementation of zinc. The antiviral properties of these 
drugs or other zinc ionophores could depend on the 
availability of zinc, which illustrates that the combination 
with zinc supplementation could be useful to improve 
their therapeutic effect in patients with COVID–19.34

In addition papain–like protein 2, a viral protease of 
SARS–CoV that is fundamental for its virulence, was 
potently inhibited by zinc.35 The same viral inhibiting 
actions of zinc found for SARS–CoV may also apply to 
SARS–CoV2, since their genome is similar. In case zinc 
might have direct antiviral activity towards SARS–CoV2, 
then zinc status will be of an even greater importance to 
reduce the viral load in COVID–19.

Only a small functional zinc reserve, located in the liver 
and other tissues, is available to the human body for rapid 
exchange with the plasma, enough for just a few days. 
Hence, a systemic increased demand of zinc, increased 
excretion, low intake or impaired absorption due to 
disease inevitably results into zinc deficiency.6 8 11 12 24 
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Table 1 The table describes the findings, reported in studies, regarding serum zinc concentration and intracellular zinc 
concentration related to the risk factors for COVID–19 (including age, type 2 diabetes and obesity), antihypertensive agents as 
well as statin therapy

Type of study
n=no of subjects
N=no of studies Serum zinc concentration

Intracellular zinc 
concentration

Increasing age

  Observational45 n=853 ↓ in 31% of subjects –

  Review8 N=20 ↓ significant with increasing age ↓ significant in 1 study

  Observational17 n=1521 ↓ significant with increasing age –

Type 2 diabetes**

  Observational22 n=82 ↓ related to higher glycated 
hemoglobin

↓ related to higher glycated 
haemoglobin

  Meta–analysis18 n=20183 ↓ significant versus control groups –

  Cross–sectional21 n=33 ↓ in 77 % of the subjects –

  Observational19 n=31 ↓ in 27% versus control group (n=31) –

  Cross–sectional20 n=252 ↓ in 68% versus control group 6.4% 
(n=188)

–

Obesity

  Observational23

  
n=115 ↓ in 74% of subjects seeking bariatric 

surgery
–

  Review23 N=3 ↓ in 28% before bariatric surgery –

↓ in 36–51% postbariatric surgery

Diuretics

  Clinical Trial46 Clopamide 5 mg/day, 16 weeks (n=8) ↓ significant versus baseline ↑ in WBC, ↓ in RBC

  Clinical Trial47 Hydrochlorothiazide 25–50 mg /day,
6 months (n=39)

↓ significant in 51% of treatment 
group

–

  Clinical Trial48 Hydrochlorothiazide, 25 mg, ≥3 months 
(n=9)

↔ versus controls –

  Clinical Trial*25 Indapamide (n=29), Torasemide (n=5), 
Spironolacton (n=2), 3 months

↓ significant compared with baseline 
zinc level

↓ significant compared with 
baseline

ACE–inhibitors

  Clinical Trial49 Captopril, 266±34 mg/day,
>6 months (n=11)

↓ significant versus baseline –

  Clinical Trial50 Captopril, 75 mg/day, >3 months (n=6) ↔ versus other groups ↓ significant versus baseline

  Clinical Trial†28 Captopril, 50–150 mg/day, 6 months, 
(n=10)

↓ significant versus baseline ↔ versus baseline

  Clinical Trial51 Captopril, 6 months (n=16)‡ ↔ versus baseline ↓ significant versus baseline

  Clinical Trial51 Enalapril, 6 months (n=18)‡ ↔ versus baseline ↓ significant versus baseline

  Clinical Trial50 Enalapril, 20 mg/day, >3 months (n=7) ↔ versus controls ↔ versus controls

  Clinical Trial†28 Verapamil, 240 mg⁄day, 6 months (n=10) ↓ significant versus baseline ↔ versus baseline

  Clinical Trial27 Ramipril, 5 mg/day, 3 months (n=20) – ↓ significant versus baseline

  Clinical Trial*25 Perindopril (n=9), Captopril (n=3), 
Ramipril (n=2), 3 months

↓ versus baseline ↔ versus baseline

Calcium–antagonists

  Clinical Trial*25 Amlodipine (n=13), Nifedipine (n=5),
3 months

↔ versus baseline ↓ significant versus baseline

  Clinical Trial27 Amlodipine, 10 mg/day, 3 months (n=20) – ↔ versus baseline

Angiotensin 2 receptor blockers

  Clinical Trial27 Valsartan, 80 mg/day, 3 months (n=20) ↓ significant versus baseline ↓ significant versus baseline

  Clinical Trial‡52 Losartan, 50 mg/day, 4 weeks (n=17) ↓ non–significant versus baseline ↔ versus baseline

  Clinical Trial*25 Losartan (n=8), Valsartan (n=2), 
Telmisartan (n=2), 3 months

↔ versus baseline ↔ versus baseline

Continued



115Mossink JP. bmjnph 2020;3:e000095. doi:10.1136/bmjnph-2020-000095

BMJ Nutrition, Prevention & Health 

Type of study
n=no of subjects
N=no of studies Serum zinc concentration

Intracellular zinc 
concentration

Beta blockers

  Clinical Trial27 Metoprolol, 100 mg/day, 3 months (n=22) ↔ versus baseline ↔ versus baseline

  Clinical Trial†28 Atenolol, 50–150 mg/day,
6 months (n=10)

↓ significant versus baseline ↔ versus baseline

  Clinical Trial*25 Bisoprolol (n=7), Metoprolol (n=7), 
Nebivolol (n=4)

↔ versus baseline ↔ versus baseline

Statin therapy

  Review29 Statin therapy, various large scale studies 
N = 29

10–45% increased relative risk for 
type II diabetes (see above:**)

–

  Clinical Trial31 Simvastatin (n=11), Atorvastatin (n=9),
10 mg/day, 4 months

↓ significant versus baseline –

  Clinical Trial30 Fluvastatin (n=20), 80 mg/day,
8 weeks

↓ significant versus baseline –

↓ decreased, ↑ increased, ↔ no change, – unreported data.
*Randomised clinical trial, dietary zinc intake controlled,
†Modified diet to improve lipid profile during test–period.
‡Dietary zinc intake monitored during test–period.
RBC, red blood cells; WBC, white blood cells.

Table 1 Continued

Consequently, antiviral immune response diminishes. The 
frequently reported, yet unpublished, sudden worsening 
in COVID–19 disease could result from an abruptly 
depleted zinc–pool in already mild zinc deficient patients. 
In this respect, the loss of taste and smell, often reported 
by patients with COVID–19,36 37 may be due to increased 
viral load. Yet, these are also known early symptoms of 
zinc deficiency.9 17 19 24 38 39

nutritional and clinical aspects
Foods abundant in zinc are fish, seafood, egg, meat, seeds, 
nuts, whole cereals and legumes.40 41 In contrast, refined 
cereal products lack zinc. The bioavailability of zinc is 
higher when obtained from animal sources compared 
with vegetable sources and further depends on diet 
composition. A high dietary intake of phytates, certain 
fibres and lignin can bind zinc and therefore reduce zinc 
absorption. Phytates are more present in plant foods like 
unrefined cereal products and legumes.3 6 9 Besides, high 
calcium or iron intake may interfere with zinc absorp-
tion.6 9 40 In addition, people with malabsorption as a 
result of gastrointestinal surgery,23 digestive disorders 
(like chronic diarrhoea, ulcerative colitis or Crohn’s 
disease) or various other chronic illnesses are at risk of 
getting insufficient zinc.41

The recommended dietary allowance (RDA) of zinc 
for adults in Europe is 11 mg/day for men and 8 mg/day 
for women with a tolerable upper intake level (UL) of 
40 mg/day for both males and females. Different recom-
mendations instead apply for children depending on 
their age: for ages 4–8 years the RDA is 5 mg/day (UL 
is 12 mg/day), for ages 9–13 years the RDA is 8 mg/day 
(UL=23 mg/day) and for ages 14–18 years the RDA is 
11 mg/day for males and 9 mg/day for females (UL is 
34 mg/day for both sexes).5 Dosages considered as safe 

for oral supplementation in adults are between 10 and 
12 mg/day. Excessive dosages resulting in total daily 
dietary intakes reaching above the ULs, especially for 
prolonged periods of time, should be avoided. An over-
dose of zinc can induce copper deficiency and zinc accu-
mulation has toxic effects.2 6 10 Bioavailability of oral zinc 
supplements differs depending on their chemical compo-
sition. Zinc gluconate, citrate and picolinate are better 
absorbed compared with zinc oxide.40 Forms of zinc 
bound to amino acid compounds like aspartate, histidine 
and cysteine show higher bioavailability in comparison to 
zinc sulphate, chloride or acetate, with zinc oxide having 
the lowest uptake.6

Regarding interactions with medications, zinc supple-
ments can interfere with the gastrointestinal absorption 
of tetracycline and quinolone antibiotics, inhibiting the 
absorption of both zinc and the antibiotic. Separating 
the moment of ingestion by taking the antibiotic at least 
2 hours before or 4–6 hours after taking the zinc supple-
ment minimises this interaction. Zinc supplements can 
also reduce the absorption of penicillamine, an antirheu-
matic drug. Individuals can minimise this interaction by 
taking penicillamine at least 2 hours before or after inges-
tion of the zinc supplement.41 As far as can reasonably be 
ascertained, there are no other relevant effects of zinc on 
drugs.

Since zinc might decrease blood sugar in people with 
type 2 diabetes, it is important to monitor their blood sugar 
levels closely when starting zinc supplementation. The 
dose of diabetes medication might need adjustments.42

summary and conclusion
Epidemiological research and observational studies 
provide indications for zinc depletion in high–risk 
groups for COVID–19. Various widely used hypotensive 
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drugs and statins can affect zinc balance, worsening zinc 
homeostasis in already mild zinc–deficient individuals. 
As disturbed zinc homeostasis results in compromised 
immune functions, it is hypothesised to increase suscepti-
bility for COVID–19. Therefore, correcting low zinc status 
in risk groups could play a pivotal role in preventing 
and controlling COVID–19 disease. Studies have shown 
that zinc depletion in hypertension can be corrected by 
dietary adjustments or zinc supplementation,43 44 with 
the added benefit of improving glycaemic regulation and 
reducing inflammation.6 43 44

In conclusion, there is an urgent need to implement 
dietary recommendations for all populations at risk of 
zinc depletion. In addition, prompt implementation of 
zinc supplementation should be considered in high–
risk groups for zinc deficiency. These preventive and 
nutritional intervention measures have the potential to 
improve antiviral immune response for COVID–19 as well 
as for any future viral outbreaks. Large–scale studies are 
urgently needed to investigate the role of micronutrients 
in antiviral immunity, particularly drug–micronutrient 
immunity interaction.
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