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Abstract

Fitness landscapes determine the course of adaptation by constraining and shaping evolutionary trajectories. Knowledge
of the structure of a fitness landscape can thus predict evolutionary outcomes. Empirical fitness landscapes, however,
have so far only offered limited insight into real-world questions, as the high dimensionality of sequence spaces makes it
impossible to exhaustively measure the fitness of all variants of biologically meaningful sequences. We must therefore
revert to statistical descriptions of fitness landscapes that are based on a sparse sample of fitness measurements. It
remains unclear, however, how much data are required for such statistical descriptions to be useful. Here, we assess the
ability of regression models accounting for single and pairwise mutations to correctly approximate a complex quasi-
empirical fitness landscape. We compare approximations based on various sampling regimes of an RNA landscape and
find that the sampling regime strongly influences the quality of the regression. On the one hand it is generally impossible
to generate sufficient samples to achieve a good approximation of the complete fitness landscape, and on the other hand
systematic sampling schemes can only provide a good description of the immediate neighborhood of a sequence of
interest. Nevertheless, we obtain a remarkably good and unbiased fit to the local landscape when using sequences from a
population that has evolved under strong selection. Thus, current statistical methods can provide a good approximation
to the landscape of naturally evolving populations.
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Introduction
In essence, a fitness landscape is a mapping from genotypes to
fitness values, which are usually linked to the reproductive
success of a genotype. The landscape formed by the fitness
values of all possible genotypes provides information on
which mutations are beneficial to an individual in a popula-
tion. This knowledge can then in theory be used to predict
how a population may evolve and adapt to its environment.

In reality, measuring real biological fitness landscapes is
difficult. Due to the high dimensionality of genotype space
it is only possible to exhaustively measure the fitness values
of all variants when the sequence length of the genotypes is
extremely short (Warren et al. 2006; Badis et al. 2009; Rowe
et al. 2010; and Jiménez et al. 2013). Thus, for biologically
relevant sequences we are restricted to either a very sparse
sampling of the sequence space (Sanju�an et al. 2004b;
Rokyta et al. 2005, 2008; Kassen and Bataillon 2006;
Domingo-Calap et al. 2009; Melamed et al. 2013; Acevedo
et al. 2014; Bank et al. 2015; Payen C, et al. unpublished data)
or to concentrating on only a few important loci and sam-
pling all possible combinations of mutations at these loci
(Weinreich et al. 2006; Lozovsky et al. 2009; Chou et al. 2011;
Khan et al. 2011; Tan et al. 2011; Schenk et al. 2013;

Podgornaia and Laub 2015). In addition to the difficulties
associated with sampling a sufficient number of biologically
relevant sequences to cover a significant proportion of the
sequence space, quantifying the fitness of a genotype is also
problematic and difficult to measure accurately (Elena and
Lenski 2003; Sanju�an et al. 2004b; Betancourt and Bollback
2006; Bull et al. 2011).

The consequence is that although the fitness landscape
metaphor has been used to describe the evolution of popu-
lations for a long time (see Wright [1932]), we still know very
little about what real biological fitness landscapes look like.
Since we can only explore a tiny fraction of the complete
sequence space, our knowledge of real fitness landscapes is
necessarily restricted to the subspace spanned by those se-
quences that we have sampled. One strategy to overcome
this problem is to obtain a coarse sampling of the sequence
space and then fit a statistical model to the sampled data
(Hinkley et al. 2011; Ferguson et al. 2013; Otwinowski and
Nemenman 2013; Romero et al. 2013; Bank et al. 2015; Hart
and Ferguson 2015; Seifert et al. 2015). By using the model to
predict fitness values of unsampled sequences, we can gain
insight into the structure of the fitness landscape and predict
the evolutionary dynamics of the system. It is unclear, how-
ever, to what degree such statistical models can accurately
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predict the fitness values of unobserved biologically relevant
sequences and whether or not such a model can be used to
inform us about how sequences will evolve. It has also been
suggested that the biases introduced by such models may
influence conclusions (Otwinowski and Plotkin 2014).

The accuracy of a statistical description of a fitness land-
scape depends not only on the correctness of the model used,
but crucially also on the completeness of the data used to
train the model. When faced with a small landscape it is
possible to sample densely within that landscape, such that
a random sample of sequences will contain enough informa-
tion to describe all of the interactions present within the
landscape. Such small landscapes, however, are only of limited
biological relevance. For landscapes spanned by longer se-
quence lengths a random sampling will never be dense
enough to gain a complete description of the fitness land-
scape. As such, the choice of which sequences to sample is
unclear. However, in most instances we are not interested in
the fitness landscape spanned by the complete sequence
space, but only in particular types of sequences or in the
neighborhood around a sequence of interest. Furthermore,
most of the theoretically possible sequences will be lethal or
have a very low fitness in the fitness landscape, making it
improbable that they will ever be observed. Our aim is to
explore the degree to which we can rely on the approxima-
tions made by statistical models within a realistic setting and
to quantify the effect of different sampling strategies on the
quality of the prediction and the types of inferences that can
be made.

Since we lack a complete real fitness landscape, we must
resort to simulated fitness landscapes to test the validity of
such a statistical approach. One possibility is to use mathe-
matical abstractions of fitness landscapes, such as random
field models or tuneably rugged models such as the NK model
(Kauffman and Weinberger 1989). In these models the fitness
is a deterministic function of the genotype. This makes it
possible to easily compute the fitness of any genotype and
thus compare the statistical prediction to the “true” fitness
value (Otwinowski and Plotkin 2014). These landscapes, how-
ever, are purely theoretical constructs, and finding a biologi-
cally meaningful interpretation of the fitness function of the
genotype is challenging.

Quasi-empirical RNA fitness landscapes (Schuster et al.
1994; Fontana and Schuster 1998), offer a convenient
middle-ground between empirical and theoretical fitness
landscapes that has been used to reveal interesting clues
about the properties of real fitness landscapes (Schuster
et al. 1994; Huynen et al. 1996; Fontana and Schuster 1998;
Ancel and Fontana 2000; van Nimwegen et al. 1999;
Cowperthwaite et al. 2005, 2006; Sanju�an et al. 2006). RNA
secondary structure is currently the only known system
where it is possible to compute a genotype to phenotype
map, as it is straightforward to computationally determine
the secondary structure of an RNA molecule (Doudna 2000).

Although it is clear that the fitness of an RNA molecule
does not depend solely on its secondary structure, using a
biologically inspired fitness function arguably results in a more
realistic fitness landscape. Since the size and strength of

mutations depend on the RNA folding model, there is also
no need to define them a priori. Similarly, the extent and form
of epistatic effects depend on the RNA sequences and do not
need to be explicitly defined. Moreover, these landscapes are
correlated (the fitness of a sequence provides some informa-
tion on the fitness of its neighbors) (Kryazhimskiy et al. 2009),
while maintaining a certain level of inherent ruggedness,
which is more similar to real fitness landscapes than random
field models.

We use quasi-empirical RNA fitness landscapes to evaluate
the ability of a simple regression model to accurately repre-
sent a complex fitness landscape and to assess how the sam-
pling regime affects the quality of the approximation. We use
a linear model accounting for the effects of independent
single mutations (main effects), as well as a quadratic model
that additionally includes the combined effects of pairs of
mutations (epistatic interactions). The model implementa-
tion we use is a generalized kernel ridge regression (GKRR)
originally developed to predict the in vitro replicative fitness
of HIV-1 (Hinkley et al. 2011).

Results

Quasi-Empirical RNA Fitness Landscape
Noncoding RNAs perform essential functions within cells,
primarily mediated by the three-dimensional conformation
of the molecule (Doudna 2000). While the tertiary struc-
tures of RNA sequences are difficult to determine, secondary
structures can be easily and relatively accurately computed
through energy minimization (Zuker and Stiegler 1981;
Zuker 1989). Although secondary structure is not directly
linked to the function of a molecule, it can be used to ap-
proximate parts of the tertiary structure (Doudna 2000).
Furthermore, whereas the sequence space of noncoding
RNAs is highly neutral (as many sequences result in the
same structure [Doudna 2000]) secondary structures are
often highly conserved within sequence families (Doudna
2000). Hence, sequences with conserved secondary struc-
tures are likely to also have a conserved function, regardless
of their sequence similarity. We use this idea to compute
quasi-empirical RNA fitness landscapes, where the fitness of
a sequence is based on the similarity of its secondary struc-
ture to an ideal target structure, which is assumed to fulfill a
hypothetical function that is highly dependent on its struc-
tural conformation.

We use the minimum free energy (MFE) structure of a real,
functional RNA sequence as the target structure. The human
U3 snoRNA (Marz and Stadler 2009; Marz et al. 2011), down-
loaded from Rfam (Griffiths-Jones et al. 2005), is used as a
focal genotype to generate the fitness landscape used in the
following sections. This is a noncoding box C/D RNA of 217
nt, making it long enough to form nontrivial structures and
for its fitness landscape to be both complex and biologically
relevant. We use a real sequence to ensure that the fitness
landscape is generated around a sequence with a biological
function. The fitness of a candidate sequence is the average
selective value of all the structures in the suboptimal ensem-
ble of a sequence (containing all structures with free energies
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within a bounded distance from the minimal free energy
structure). The fitness function is detailed in the Materials
and Methods section and is similar to that used in
Cowperthwaite and Meyers (2007) and Cowperthwaite
et al. (2005, 2006). The resulting fitness landscape is continu-
ous, exhibits a high degree of semineutrality, and places se-
quences under a strong selective pressure to have similar
structures as the target structure while maintaining high
stabilities.

Finally, we note that the sequence used to generate the
target structure is not necessarily the fittest sequence in the
landscape. This is because fitness is calculated on the subop-
timal ensemble of a sequence and it is often the case that
other sequences in its neighborhood have more stable
ensembles.

Statistical Model
We make the assumption that the fitness of a sequence can
be written as the product of independent contributions
(multiplicative fitness), where each contribution is either
due to the presence of a specific allele at a given locus
(main effects) or interactions between loci (pairwise or
higher-order effects). This is a reasonable assumption for
the quasi-empirical RNA fitness landscape we use, where
fitness depends on which bases are paired or unpaired
and every additional mismatch affects the fitness in a mul-
tiplicative way (see Materials and Methods). To perfectly
reproduce the fitness landscape, a regression model will
need to contain terms for all independent contributions
and each of the contributions will need to appear at least
once within the training set. While this may be feasible for
simple additive landscapes and even for landscapes contain-
ing only pairwise or ternary interactions between loci, the
number of sequences required to fulfill this condition for
landscapes with higher-order interactions makes it imprac-
tical for even moderate sequence lengths (unless interac-
tions are restricted to only a few loci and we have a priori
information about where these loci are).

The quasi-empirical RNA fitness landscape described
above is composed of sequences containing 217 nt each.
Even if the landscape contains only main effects and pair-
wise interactions, it is unlikely that a random sampling will
contain enough information to reconstruct the entire land-
scape. Nevertheless, we expect epistatic effects to be impor-
tant in RNA secondary structures and we anticipate the
presence of higher-order interactions. In particular, a qua-
dratic model trained on the independent fitness effects of all
single and pairwise mutations will most likely fail to predict
the fitness of sequences with higher numbers of mutations if
higher-order interactions contribute to sequence fitness. We
tested this prediction and found that a quadratic model
trained on the two-mutational neighborhood of a sequence
loses most of its predictive power when introducing more
than two additional mutations (see supplementary notes
and fig. S1, Supplementary Material online). It is therefore
apparent that higher-order interactions are present within
the landscape and do play an important role in determining
sequence fitness.

We expect such a loss of the predictive power to occur for
any model that has a lower order than the actual landscape.
As in the case here, when dealing with real fitness landscapes,
we generally do not know the highest-order of interactions
present in the landscape and it is usually impossible to derive
a model that definitely has a higher order than the fitness
landscape. However, it is possible to train a simple model
containing only lower-order interactions on sequences con-
taining higher numbers of mutations and rely on the statis-
tical model to infer the best way of representing complex
higher-order interactions as combinations of lower-order ef-
fects. In some cases, it is even possible for a simple model to
explain all or nearly all of the variance in a complex landscape
(Poelwijk FJ, Krishna V, Ranganathan R, unpublished data).
Here, we restrict ourselves to linear (first order) and quadratic
(second order) models. Even so, we cannot easily sample
enough sequences to result in a well-specified problem for
the quadratic model (377,147 parameters), and therefore re-
sort to a GKRR scheme to guard against overfitting (see
Materials and Methods for model specifics).

Sampling Regimes
As explained above we can neither rely on a random sampling
of the landscape nor on sampling only the independent con-
tributions represented in the regression model. We therefore
investigate nonrandom sampling regimes that restrict the
sequence space to increase the information content within
the training sets. We use three different sampling regimes and
also compare them to an unbiased random sampling of the
complete fitness landscape (hereafter Random).

Two types of sampling regimes were used to explore the
local neighborhood around a sequence of interest (here
the focal genotype of the fitness landscape). Random
Neighborhood is a uniform random sampling within eight
or less mutations from the focal genotype, while Complete
Subset is an exhaustive sampling of all sequence variants,
provided that all mutations occur on eight a priori selected
loci. Finally, the Evolved sampling regime represents a set of
highly adapted sequences drawn from a population evolving
under selective pressures. This is not unlike sequences one
might sample from a real population evolving under strong
evolutionary constraints. In such data sets most sequences
have a high fitness and similar phenotypes, even if the se-
quences themselves are distant from each other. Since most
of the possible sequence variants have a very low fitness,
allowing only high-fitness genotypes also has the effect of
restricting the sequence space. The sampling regimes are de-
tailed in the Materials and Methods section.

From each sampling regime we draw 65,000 sequences,
except for Complete Subset, which is composed of all
65,536 possible sequences in this sampling regime. Data set
sizes were chosen to be similar to those used in Hinkley et al.
(2011). For Complete Subset we chose the number of muta-
ble loci to result in a similarly sized data set. We characterize
the distribution of fitness effects (DFEs) and the amount and
type of epistasis present within each of the data sets by draw-
ing 100 random sequences from each data set and sampling
all single and double mutants of each sequence. We further
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characterize the ruggedness of the different subsets of the
fitness landscape spanned by the data sets by looking at
the number of unique local fitness peaks reached by a simple
hill-climbing algorithm starting from 5,000 randomly drawn
sequences within each data set. The data sets are summarized
in figures 1 and 2 and supplementary table S1, Supplementary
Material online.

It is clear that the different sampling regimes result in
different mutational neighborhoods. Both randomly sampled
data sets (Random and Random Neighborhood) appear to
have nearly symmetric distributions of beneficial and delete-
rious mutations, albeit with a substantial amount of highly
beneficial mutations (fig. 1B). The second mutation shifts the
distribution to the left (more deleterious), considerably de-
creases the amount of neutral and nearly neutral mutations,
but actually increases the amount of strongly beneficial mu-
tations. The presence of plenty of accessible high-effect ben-
eficial mutations indicates that the majority of sequences in
these data sets are not very well adapted. In contrast,
Complete Subset and Evolved have far more deleterious

mutations in their two-mutational neighborhoods, indicating
that the sequences in these data sets generally have higher
fitness than in the randomly sampled data sets (fig. 1B). Once
again, the second mutation shifts the distributions to the left
and decreases the amount of nearly neutral mutations more
than any other type of mutation. However, there are still
some beneficial mutations available in both data sets, with
Complete Subset showing more room for adaptation than
Evolved.

Regarding the role of epistasis in determining the fitness of
double mutants, we note that the majority of double muta-
tions are not additive and that reciprocal sign epistasis (two
deleterious mutations resulting in a beneficial mutation or
vice versa) is very rare (fig. 1C). Fitness reversals brought on by
sign epistasis are responsible for most of the beneficial mu-
tants observed (a beneficial and a deleterious mutation re-
sulting in a beneficial mutation). This effect is especially
pronounced for Evolved, because the chance of any two ran-
domly selected single mutations both being beneficial is very
low in this regime. Among deleterious double mutants

EvolvedEvolvedComplete
subset

Complete
subset

Random
neighbourhood

Random
neighbourhood

RandomRandom

None

Antag
Sign

Rec sign

Syn

C

Relative fitness
0 1 >2

2−step 1−step

Relative fitness
0 1 >2

2−step 1−step

Relative fitness
0 1 >2

2−step 1−step

Relative fitness
0 1 >2

2−step 1−step

A

B

Beneficial Deleterious

0 0.18 0 0.72

Beneficial Deleterious

0 0.03 0 1

Beneficial Deleterious

0 0.21 0 0.68

Beneficial Deleterious

0 0.15 0 0.84

FIG. 1. The four sampling regimes that were used to explore the quasi-empirical RNA fitness landscape. (A) Illustration of how the populations
were sampled relative to an imaginary fitness landscape. (B) The DFEs for all single and double mutants of 100 sequences sampled at random from
the four sampling regimes. Each bar represents the mean value for the respective bin in the histograms of fitness effects across the 100 sequences.
Error bars represent the 95% confidence intervals of the means estimated from 1,000 bootstrap replicates. (C) The prevalence of different types of
epistasis among all beneficial and deleterious mutants of 100 sequences sampled at random from the four sampling regimes. Interactions were
considered to be nonepistatic (None) if the combined relative fitness effect of two mutations was within 0.0001 of the expected fitness under
independence. For beneficial (deleterious) mutations synergistic magnitude epistasis, Syn, is defined as the double mutant being more (less) fit
than expected under independence. Similarly, antagonistic magnitude epistasis, Antag, is defined as the double mutant being less (more) fit than
expected. Thus, synergistic (antagonistic) magnitude epistasis occurs when the combined effect is bigger (smaller) than expected under no
epistasis. Sign epistasis, Sign, occurs when a beneficial and a deleterious single mutant results in a beneficial or deleterious double mutant.
Reciprocal sign epistasis, Rec sign, is defined as two beneficial (deleterious) single mutants resulting in a deleterious (beneficial) double mutant.
Each bar represents the mean value for the respective bin in the histograms of pairwise epistatic effects across the 100 sequences. Error bars
represent the 95% confidence intervals of the means estimated from 1,000 bootstrap replicates.
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antagonistic epistasis is responsible for the observed fitness in
most cases, which in the case of deleterious mutations means
that the double mutant is fitter than expected from the
fitnesses of both single mutants. Finally, we note that the
breakdowns of the different types of epistatic effects present
are qualitatively similar in all data sets except for Evolved.

Sequences in Random and Complete Subset are on aver-
age as far away from each other as from the focal genotype
(fig. 2A). Sequences in Random Neighborhood are on average
further away from each other than from the focal genotype,
as the focal genotype is in the middle of the set of viable
sequences and nearly all sequences in this data set lie on the
edge of the neighborhood (at a Hamming distance of 8 bp
from the focal genotype). This is due to the exponential in-
crease in the number of viable sequences with every added
mutation. In Evolved, neutral drift resulted in sequences being
far away from the focal genotype. While selection maintains a

population that is on average closer to each other than to the
focal genotype, this data set still shows the highest degree of
sequence variation. Nonetheless, sequences in Evolved are in
general much fitter than sequences in the other data sets.
This indicates a high degree of neutrality within the RNA
folding landscape, making it possible for very different geno-
types to attain a high fitness. We note that nearly all randomly
sampled sequences, and the majority of sequences in
Complete Subset have a low fitness, showing that while the
landscape is highly neutral, only a few mutations are sufficient
to significantly decrease the fitness of a sequence.

With the exception of Random, the majority of sequences
in the other data sets are within the basin of attraction of very
high-fitness peaks (fig. 2B). Nevertheless, sequences in Evolved
generally find higher fitness peaks in a smaller number of
steps. While both randomly sampled data sets are almost
maximally rugged, Evolved shows substantially less rugged-
ness and Complete Subset is in a much smoother part of the
landscape. Because sequences in Complete Subset differ from
each other on only eight loci, this has the effect of significantly
decreasing the number of peaks that can be reached from
these sequences.

Effect of Different Sampling Regimes on Predictive
Power
We assessed the predictive power (measured as fraction of
deviance explained) for both the linear and quadratic models
based on 6-fold cross-validation by randomly dividing data sets
into training sets of 60,000 sequences and test sets of 5,000
sequences (5,536 sequences for Complete Subset). The results
are summarized in figure 3A. We further verified that the train-
ing sets contain enough sequences, such that increasing the
training set size does not improve the predictive power (sup
plementary figs. S3 and S4, Supplementary Material online).

We first verified our prediction that it is generally impos-
sible for either model to explain any of the variation when
trained on randomly sampled sequences (fig. 3A, Random).
Next, we investigated the local neighborhood around a se-
quence of interest and found that within the restricted se-
quence space it is possible to sample densely enough to allow
a quadratic model (and even a linear model) to reconstruct a
fairly good approximation of the local landscape. The fit is
much better for Complete Subset than for Random
Neighborhood, although no sequence in either data set is
more than eight mutations from the focal genotype. Only
allowing mutations on eight preselected loci dramatically
reduces the dimensionality and results in a much more
restricted sequence landscape that encapsulates most of
the possible variation within the training set (60,000 of
65,536 possible sequences). Furthermore, although the train-
ing sets for Complete Subset contain only a fraction of all
possible pairs of epistatic interactions, all of the pairs in the
training set appear in more than 10% of sequences (fig. 3B). By
contrast, sequences in Random Neighborhood may have mu-
tations at any locus, resulting in a much bigger landscape.
Training sets for Random Neighborhood may contain every
possible pair of interactions, but the only pairs present in
more than 10% of sequences are exactly those pairs trivially
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FIG. 2. (A) Statistics of the data sets drawn under different sampling
regimes. Each data set contains 65,000 sequences, except for
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pairwise Hamming distance between sequences and sequence fitness
are shown. Red lines indicate medians and interquartile ranges. (B)
Statistics of local fitness peaks reached by a hill-climbing algorithm
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sets. Distribution of path length to local fitness peaks, number of
unique peaks reached, and distribution of peak fitness are shown.
Red lines indicate medians and interquartile ranges. At each step
the hill-climbing algorithm moves to the fittest neighbor of a se-
quence until no fitness increase is possible (i.e., a local fitness peak
has been reached).
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present in the focal genotype. Thus, no pair of mutations
co-occurs frequently enough in Random Neighborhood to
accurately assess the interactions between pairs of loci inde-
pendent of the genetic background. This explains why a qua-
dratic model shows little improvement over a linear model
for Random Neighborhood, and underlines the importance of
seeing mutations (and combinations of mutations) within
different contexts.

In order to investigate whether or not the predictive power
on Complete Subset is strongly dependent on which loci are
chosen to be mutable, we trained linear and quadratic models
on ten replicate data sets, each of which have eight randomly
selected mutable loci. While the predictive power does vary
between replicates (supplementary fig. S5, Supplementary
Material online), in almost all cases the models achieve a

very good predictive power that is comparable to those re-
ported in figure 3A.

On Evolved, both models achieve a surprisingly high pre-
dictive power, especially when considering that the variation
in sequence space is much larger and that sequences are in
general further away from the focal genotype (and each
other) than in Random Neighborhood and Complete
Subset (fig. 2A). Furthermore, adding pairwise epistatic effects
to the model substantially improved the fit (fig. 3A). Selection
acts to conserve loci important to fitness, and both the im-
portant loci and the favored alleles can easily be read off from
the sequence logo of the data set (fig. 3C). In contrast, the
sequence logos for Random and Random Neighborhood con-
tain no information on loci important to the sequence fitness,
since mutations are randomly distributed throughout the
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ŷ
y)

Random Random
neighbourhood

Complete
subset

Evolved

Quadratic Linear
D

0

20

40

60

80

100

Quadratic Linear

Random Random
neighbourhood

Complete
subset

Evolved

%
 d

ev
ia

nc
e 

ex
pl

ai
ne

d
A

0

20

40

60

80

100

0
±

0

23
43

6
±

0

28
42

4
±

0

44
20

3.
17

±
4.

69

Pairwise interactions present in training set

at least once > 10% of sequences

Random Random
neighbourhood

Complete
subset

Evolved%
 o

f a
ll 

po
ss

ib
le

 p
ai

rw
is

e
in

te
ra

ct
io

ns

B

FIG. 3. The effect of the sampling regime on the ability to approximate subsets of the fitness landscape. Four data sets were sampled from the same
quasi-empirical RNA fitness landscape using different sampling regimes. Each data set contains 65,000 sequences (65,536 for Complete Subset) and
was randomly split into training and test sets of 60,000 and 5,000 sequences (5,536 for Complete Subset), respectively. Six-fold cross-validation was
used to assess the predictive power and biases of linear and quadratic models on the simulated data sets. (A) The percentage of deviance explained
by the linear and quadratic models. Error bars indicate the standard error of the mean across the cross-validated replicates. (B) The percentage of
all possible pairwise interactions represented at least once (blue) and in more than 10% of sequences (orange) in the training sets of the different
data sets. Error bars indicate the standard error of the mean across the cross-validated replicates. Pairs below the dotted red line are exactly those
pairs of mutations occurring in the focal genotype (orange bars only). Note that these are the only pairs of mutations present in more than 10% of
the sequences in the Random Neighborhood training sets. (C) Illustration of the sequence diversity in the different data sets using sequence logos
(extending over a fraction of the genome). The heights of nucleotides are proportional to the probability of alleles at each locus in the data set. The
sequence logo for Random contains no information, whereas the sequence logo for Random Neighborhood simply reflects the focal genotype. For
Complete Subset and Evolved, mutable loci are easily distinguishable and indicated by red arrows in the figure. Sequence logos were created using
the RWebLogo wrapper for WebLogo 3 (Crooks et al. 2004; Wagih, 2014). (D) The distributions of the 95% confidence intervals of the logarithm
of the ratio between the predicted and true fitnesses for models fit on different data sets with the linear and quadratic models. The figure shows
only the distributions of one of the cross-validated replicates. The red lines indicate the median and the interquartile range.
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sequences. In Random Neighborhood the sequence logo only
contains information on the consensus sequence, which is
equal to the focal genotype. This is because each sequence
can contain a maximum of only eight mutations, randomly
distributed among all loci. Hence, no single mutation is rep-
resented frequently enough across the data set to be visible in
the logo. The sequence logo for Complete Subset clearly
identifies the variable loci, but does not contain any informa-
tion on which alleles are important at these loci, since all
alleles appear equally frequently within the data set. Since
selection conserves exactly those loci important to the se-
quence fitness the same pairs of mutations regularly appear
within the training set in different genetic backgrounds. The
result is that not only do the training sets for Evolved contain
a far higher proportion of all possible pairs of mutations than
Complete Subset, but also contain more pairs that are pre-
sent in more than 10% of all sequences (fig. 3B). Thus, it is
possible for the quadratic model to infer which pairs of mu-
tations are important to sequence fitness regardless of the
context the mutations appear in.

In order to illuminate the effect of neutral drift on the
quality of the prediction, we evolved the population from
which Evolved was sampled past the last sample in the data
set. Since the population had already reached a quasi-steady
state prior to sampling Evolved (see Materials and Methods
and supplementary fig. S2, Supplementary Material online),
neutral drift plays the dominant role in further evolution.
We used the model trained on Evolved to predict the fitness
of sequences in subsequent generations (supplementary fig.
S10, Supplementary Material online). It can be seen that
while the prediction is initially still very good, after 600 gen-
erations the quadratic model loses most of its predictive
power (supplementary fig. S10B, Supplementary Material
online). This is due to the population accumulating muta-
tions and drifitng away from the sequences in the training
set (supplementary fig. S10A, Supplementary Material on-
line). The linear model appears to be more robust to neutral
drift (supplementary fig. S10C, Supplementary Material on-
line). This is due to the prediction from the linear model
only relying on main effects (single mutations) and not on
epistatic effects between loci (pairwise mutations). Thus, the
linkage between loci used by the quadratic model to predict
fitness is destroyed faster by neutral drift. Interestingly, the
decline in predictive power is not monotonic, as neutral
drift sometimes moves the population back to a part of
the landscape that the model approximates well. (This
only happened within the first 1,000 generations, after
that the population had accumulated too many mutations
to return to the same area of the sequence landscape that
the model was trained on).

Effect of Different Sampling Regimes on Prediction
Bias
The quality of the prediction depends not only on the
amount of variance explained, but also on the biases in-
troduced. We use the distribution of the logarithm of the
ratio between the predicted and true fitnesses to assess
the bias of the prediction (fig. 3D). We further considered

the distributions of the relative and mean scaled residuals,
which both show qualitatively similar results (supplementary
figs. S6 and S7, Supplementary Material online).

Although Random Neighborhood has a far higher predic-
tive power than Random, the size of the residuals of both
randomly sampled data sets have similarly wide distributions
for the linear and quadratic models (fig. 3D). Furthermore, in
both data sets the medians of the distributions are above 0,
indicating a propensity for overestimating the fitness. Since
most sequences in these data sets have low fitness, a system-
atic bias to overestimate low-fitnesses would result in the
observed bias in the distributions. This is backed up by a
strong correlation between the true fitness and the residual
size, which further predicts a tendency to underestimate high
fitnesses (supplementary fig. S8, Supplementary Material on-
line). Finally, although Random Neighborhood clearly does a
better job at predicting sequence fitness on average, the scat-
terplots of predicted against true fitnesses reveal that it fares
less well for high-fitness sequences, with a bias toward under-
estimating their fitnesses (fig. 4A and B, supplementary S9A
and B, Supplementary Material online).

Complete Subset and Evolved both have smaller relative
residual sizes and show more centered and peaked distribu-
tions, accompanied with a decrease in correlation between
the true fitness and residual size when adding epistatic ef-
fects (fig. 3D and supplementary fig. S8, Supplementary
Material online). Evolved has a slightly wider distribution
of residuals than Complete Subset and appears to show a
slight bias for overestimating the fitness (fig. 4C and D),
however the overall distribution of its residuals is more
peaked, especially for a quadratic model (fig. 3D). The slight
bias observed in the median of the distribution for the linear
model on Evolved is due to this model overestimating the
fitness of extremely high-fitness sequences (supplementary
fig. S9D, Supplementary Material online). This bias is much
smaller when using a quadratic model (figs. 3D and 4D).

Effect of Different Sampling Regimes on Predicting the
Local Structure of the Fitness Landscape
The DFE of all neighbors of a sequence influences its evolv-
ability and plays an important role in determining the trajec-
tories that evolution will follow. Even if a statistical model
cannot predict the fitness of individual unseen sequences it
may still be informative on the DFE around unseen se-
quences. Conversely, a model that accurately predicts the
fitness of unseen sequences is of limited use if it cannot be
used to gain knowledge about the DFE around sequences.

Both the quadratic and linear models are able to recon-
struct qualitatively similar DFEs on Random Neighborhood
and Evolved for both single and double mutants (supplemen
tary figs. S11–S14, Supplementary Material online). However,
there are discrepancies, with both models underestimating
the amount of highly deleterious mutations and overestimat-
ing the amount of beneficial mutations. On Random
Neighborhood there is also a tendency to overestimate the
amount of mildly deleterious mutations. We also note that
neither model manages to capture the highly beneficial mu-
tations in Random Neighborhood.
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The complete failure of both models to reconstruct DFEs
for Random and Complete Subset is to be expected. In the
case of Random, the sequences are too far apart to be infor-
mative and thus there is no information to train the model
on. While both models do a good job at predicting the fitness
of unseen sequences sampled from Complete Subset they
cannot be used to extrapolate to sequence neighborhoods.
A model trained on Complete Subset implicitly assumes that
all mutations at the 209 invariable loci are neutral, because
such mutations are never seen within the training set. This
has the result that the DFE is predicted to consist almost
entirely of neutral mutations (supplementary figs. S11–S14,
Supplementary Material online). Thus, the model is uninfor-
mative about the relative fitness of most of a sequence’s
neighbors and cannot be used to examine the DFE of a se-
quence or its evolvability.

Regarding the amount and type of pairwise epistatic ef-
fects present in the different sampling regimes the quadratic
model is somewhat informative on Random Neighborhood
and Evolved, however the results are mixed and the model
clearly does not recover the correct distributions (supplemen
tary figs. S15 and S16, Supplementary Material online). On
Random the quadratic model essentially reduces to an addi-
tive linear model. This is due to no pairs of mutations ap-
pearing with any frequency in the training set, making it
impossible for the model to accurately describe the pairwise

effects of mutations. Similarly, the model highly underesti-
mates the amount of epistasis on Complete Subset. Once
again, this is due to using a model trained on a data set
with variation on only eight-loci to infer epistatic effects on
all 217 loci.

Effect of Sampling Density on Predictive Power
The previous section shows that it is possible to infer the
local structure of a fitness landscape. In this section, we in-
vestigate how much we can increase the size of the local
landscape before the prediction from a simple model breaks
down. This is achieved by training and testing quadratic and
linear models on data sets consisting of sequences uniformly
sampled within increasing Hamming distances of the focal
genotype. Each data set contains 65,000 sequences and eight
data sets sampled from 2 to 100 mutations of the focal ge-
notype were used (supplementary table S2, Supplementary
Material online). As before, we assess the predictive power by
6-fold cross-validation on random divisions of data sets into
60,000 training sequences and 5,000 test sequences. For both
linear and quadratic models the results are similar and shown
in figure 5 and supplementary figure S17, Supplementary
Material online, respectively. The results for Complete
Subset and Evolved from the previous section are also plot-
ted for comparison.

FIG. 4. Scatterplots of predicted against true fitness for the different data sets using a quadratic model. The distributions at the top
and right of plots indicate, respectively, the distributions of true and predicted fitnesses. The solid green line indicates a perfect
prediction. The shaded red area contains 95% of the points. The solid red line indicates the median bias in the residuals.
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The predictive power is strongly correlated to the land-
scape size and decreases rapidly as the number of allowed
mutations are increased. Similarly, we see that as the predic-
tive power decreases the correlation between the true fitness
and residual size increases. For randomly sampled sequences
it is only possible to attain a high predictive power if the
median Hamming distance between sequences in the train-
ing set is less than 20 mutations, equal to roughly 90% se-
quence conservation in the data set. Note that the median
Hamming distance between sequences is only slightly smaller
than the maximum Hamming distance between sequences.
This is because most of the randomly sampled sequences
contain the maximum number of allowed mutations, since
landscape size grows exponentially with the number of al-
lowed mutations. We further see that at median Hamming
distances greater than 80 no prediction is possible. Thus, only
on the smallest landscapes used here is it possible for a ran-
dom sampling of 60,000 sequences to attain a dense enough
sampling to produce a good fit.

In the smallest landscape examined here all sequences are
within 1 or 2 mutations from the focal genotype. The predic-
tion on this landscape is still worse than on Complete Subset,
even though sequences in Complete Subset are more diverse
and can have up to eight mutations. This is because the se-
quence landscape is more restricted in Complete Subset, since
mutations are not randomly scattered throughout the ge-
nome. Furthermore, Evolved has a much higher predictive
power than randomly sampled data sets of the same sequence
diversity. This is most likely due to restricting the sequence
landscape to high-fitness sequences in Evolved, and because it
is not possible to infer which loci or alleles are important for
sequence fitness from randomly sampled sequences.

Discussion
We assess the usefulness of regression models accounting for
main effects and pairwise interactions between loci to ap-
proximate complex fitness landscapes, here represented by
quasi-empirical RNA fitness landscapes. Our results show that
achieving a high enough sampling density is crucial in order to
obtain a good description of a fitness landscape. The curse of
dimensionality ensures that it is not possible to sample
densely enough to allow a simple model to accurately predict
the fitness of any sequence in realistic fitness landscapes.
However, while it is impossible to provide a good approxima-
tion of a complete fitness landscape in all but the simplest
cases it is still possible to obtain an accurate representation of
local regions of the fitness landscape by restricting the space
sampled for the training set. But, since no model can predict
the fitness of sequences that fall too far outside of the vari-
ation in its training set, the composition of the training set is
extremely important. Care should be taken to select se-
quences that restrict the sequence space to those sequences,
we are interested in and also to select sequences that eluci-
date epistatic interactions between loci.

We investigated three different sampling regimes restrict-
ing the fitness landscape to the local mutational neighbor-
hood of a sequence (Random Neighborhood), the local
mutational neighborhood of a sequence with the added re-
striction of mutations only occurring on a subset of prede-
fined loci (Complete Subset), and the subspace of highly fit
sequences (Evolved). Although the best overall prediction is
achieved on Complete Subset, such a model only accounts
for mutations on predefined loci and has no power to ex-
trapolate to sequences with mutations on other loci. A model
trained on a random sampling of the local neighborhood of a
sequence results in a fairly good predictive capacity, along
with providing some information about the structure of
the fitness landscape. However, such a model also suffers
from systematic biases in predicting the fitness as well as
the DFE. Moreover, it cannot take advantage of epistatic
terms in the model due to the low sampling density.
Finally, a model trained on Evolved, which contains a highly
divergent set of high-fitness sequences evolving under strong
selective pressures, has a very high predictive capacity while
maintaining a mostly unbiased prediction and providing
some insight into the adaptability of sequences.

The sequence length we used was chosen to produce a
fitness landscape of comparable size and complexity to real
landscapes. Although a shorter sequence length would have
allowed us to explore a greater fraction of the landscape, this
would not serve our purpose, as we are specifically interested
in landscapes where a dense sampling of the sequence space
is impossible. For instance, Otwinowski and Plotkin (2014)
employed a landscape composed of sequences of length 20,
with two alleles per locus, resulting in a quadratic model
with 211 parameters. In contrast, the quadratic model for
the landscape, we use here contains 377,147 parameters
(sequences of length 217, with four alleles per locus, see
supplementary notes, Supplementary Material online, for
more details). However, this is still much smaller than the
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FIG. 5. Effect of the sampling density on the ability of a quadratic
model to approximate a fitness landscape from randomly sampled
sequences. Data sets are composed of 65,000 sequences randomly
sampled within successively higher Hamming distances from the
focal genotype. Data sets were randomly split into training and test
sets of 60,000 and 5,000 sequences, respectively, and 6-fold cross-
validation was used to assess the predictive power and biases of a
quadratic model on the simulated data sets. Data points are the mean
predictive power (blue) and correlation between true fitnesses and
residuals (orange) among replicates. Error bars indicate the standard
error of the mean. For comparison Complete Subset and Evolved
(shown in figs. 3 and 4) are also shown.
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landscapes we observe in practice. The fitness landscape of
the HIV-1 protease and reverse-transcriptase genes, investi-
gated by Hinkley et al. (2011), contains mutations at more
than twice as many loci, which yields a quadratic model with
more than a million parameters. But even this landscape still
reflects only some 10% of the HIV-1 genome, which is many
orders of magnitude smaller than eukaryotic genomes.
Although our quasi-empirical landscape is still far smaller
than many real fitness landscapes, we expect that it provides
a much more realistic setting for testing statistical models and
sampling strategies than have previously been explored. In
particular, it allows us to explore a landscape with complex
higher-order interactions that is too big to sample densely.

We chose a fitness function to be consistent with previous
investigations into the properties of correlated fitness land-
scapes (Cowperthwaite et al. 2005, 2006; Cowperthwaite and
Meyers 2007). We also performed additional experiments us-
ing different formulations of the selective value of a structure
and also using a simplified fitness function which quantifies
fitness based only on the selective value of the MFE structure
(defined in Cowperthwaite and Meyers [2007] and also used
in Otwinowski and Plotkin [2014]). However, this fitness func-
tion is undesirable because it is not continuous and has a very
high degree of neutrality. Nonetheless, we observed similar
results for different formulations of the selective value and for
the simplified fitness function (not shown), showing that our
results are robust to the particular fitness function used.
Alternative model systems are also available, such as the
protein-folding landscapes used by Lobkovsky et al. (2011).
These models use similar ideas to quantify sequence fitness,
which suggests that results would also be qualitatively similar.

In reality, many real fitness landscapes are highly restricted,
since the vast majority of genotypes in real systems are non-
functional or have a very low fitness (Sanju�an et al. 2004b;
Poelwijk et al. 2007; Lobkovsky et al. 2011; Romero et al. 2013).
Although our fitness landscape does not define any inacces-
sible sequences, we found that even when the sequence space
is highly restricted the majority of all randomly sampled se-
quences are of a very low fitness. Within our quasi-empirical
RNA fitness landscape these low-fitness sequences are effec-
tively equivalent to nonfunctional sequences and would
never be observed in practice. Hence, it may be tempting
to train a model on only high-fitness sequences, such as the
models we trained on our evolved data sets.

The dynamics observed in our evolved data sets are similar
to those observed in real populations evolving under strong
selective pressure and show similar DFEs (Sanju�an et al. 2004a;
Barrick et al. 2009; Acevedo et al. 2014; Bank et al. 2015).
Furthermore, as in real populations there is a preponderance
of antagonistic epistasis and compensatory mutations
among, respectively, deleterious and beneficial double mu-
tants. Low-fitness sequences are not represented in the
evolved data sets, which restricts the landscape and leads
to a smoother landscape that is more readily approximated
by smooth regression models. This has also been shown for
data sets sampled from natural populations, especially if most
of the mutations represented within the data set are benefi-
cial (Kouyos et al. 2012; Szendro, Schenk, et al. 2013). Such a

sampling regime leads to a biased view of the fitness land-
scape (which is almost certainly more rugged), and a dearth of
information about low-fitness sequences.

Since we generally do not have a priori information on
which sequences are nonfunctional and which are not, it
becomes impossible to extrapolate to sequences which have
never been observed in a real population using a model that
was only trained on high-fitness sequences. The model will
most probably predict a high-fitness for such sequences,
although a sequence that has never been observed in prac-
tice has an overwhelming probability of being nonfunc-
tional. However, if we are only interested in predicting the
fitness of sequence variants sampled from naturally evolving
populations, we are unlikely to sample any low-fitness or
lethal sequences and we do not necessarily need to include
any low-fitness sequences in the training set. Similarly, if
neutral drift plays a dominant role unseen sequences may
be very different from the sequences used to train the model
and make accurate predictions impossible. Such a data set
also provides information on the loci important for se-
quence fitness and on which of them are epistatically linked,
making it possible for a quadratic model to obtain a much
better predictive capacity than a linear model. Lastly, al-
though we do not recommend using such a model to in-
vestigate the trajectories followed by populations evolving
on a fitness landscape, it is surprising that a model trained
only on high-fitness sequences appears at least qualitatively
as good as a model trained on Random Neighborhood at
approximating the DFE around a sequence.

If our purpose is to predict evolutionary outcomes or to
describe the local structure of a fitness landscape, it is es-
sential to also include low-fitness sequences in the training
set. Excluding such sequences will lead to the model pre-
dicting evolutionary trajectories that stray into forbidden
territory. Current efforts in this direction have focused on
exhaustive sampling of a few loci (Weinreich et al. 2006;
Lozovsky et al. 2009; Chou et al. 2011; Khan et al. 2011;
Tan et al. 2011; Schenk et al. 2013; Szendro, Schenk, et al.
2013), such as in our Complete Subset data set, or in esti-
mating the independent fitness contributions of all single or
pairwise mutations of a model sequence (or the fitness ef-
fects of genes and pairs of genes) (Tong et al. 2004; Costanzo
et al. 2010; Melamed et al. 2013; Acevedo et al. 2014; Al-
Mawsawi et al. 2014; Bank et al. 2015; Payen C, et al. unpub-
lished data). For realistic sequence lengths, this either re-
stricts the degrees of freedom or limits us to the
immediate sequence neighborhood around a sequence.

We have shown that extrapolating more than a few mu-
tations from independent contributions is bound to fail in
landscapes with higher-order interactions. In agreement with
our simulated fitness landscape, the importance of higher-
order interactions have also been observed on empirical fit-
ness landscapes (Szendro, Schenk, et al. 2013). Similarly, a
model that is locally combinatorially complete on a few loci
(such as Complete Subset) has no power to extrapolate to
variation in other loci. In many cases mutations at certain loci
are known to confer large fitness advantages and mutations
are rarely observed at other loci. In these cases a
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combinatorially complete subset offers an advantage over
other sampling regimes, provided that mutations occur on
few enough loci to make sampling such a data set tractable.
However, care should be taken not to use such a model to
extrapolate to sequences with mutations on loci that were
assumed to be invariable. It should be remembered that se-
lection and mutation acts on the whole sequence and not
only on certain loci (Franke et al. 2011). Therefore, in the
general case, where there is no knowledge about the loci
where mutations can and cannot occur, such a model will
not be useful to predict evolutionary outcomes. Thus, while
models trained on these data sets provide a good description
of the structure in the immediate neighborhood of a se-
quence and are useful in cases where we have prior informa-
tion, they have limited power in predicting evolutionary
trajectories in the absence of additional information.

Based on the above caveats, in the absence of a priori
information, a dense random sampling around the sequence
of interest (as in our Random Neighborhood data set) ap-
pears to be the only reliable option for obtaining an overview
of the landscape structure in a larger neighborhood around a
sequence and predicting evolutionary outcomes. However,
the size of the sampled subset of the landscape increases
exponentially with every added mutation and the model
quickly loses predictive power. We found that in order for
such a model to have a reasonable predictive power any two
sequences in the data set should not differ in more than 10%
of their loci. More worryingly, such a model is not able to take
advantage of epistatic terms at even very low sequence di-
vergences. In fact, because the size of the sequence neighbor-
hood grows exponentially with each added mutation, it
becomes unlikely to observe the same pairwise interactions
multiple times in randomly sampled sequences. For higher-
order interactions this probability decreases even more, mak-
ing the use of more complicated models futile. Thus, if we are
interested in obtaining a good description of the local struc-
ture of the fitness landscape around a sequence of interest
within a large and complex landscape, increasing the model
complexity leads to only modest gains in the predictive power
of the model. This stems mostly from the inability of the
model to extract sufficient information from a randomly sam-
pled data set for even comparatively small local neighbor-
hoods around a sequence of interest.

Care should be taken when interpreting the coefficients
of the fitted regression model. The landscape contains
higher-order interactions between loci, and the model ap-
proximates these interactions using combinations of lower-
order interactions. Besides obscuring the physical interpre-
tation of coefficients, this also makes it difficult to predict
the absence of higher order interactions in a fitness land-
scape, as the amount of variance explained by the regression
model saturates with increasing regression order before the
maximum order of the landscape is reached (Poelwijk FJ,
Krishna V, Ranganathan R, unpublished data). Furthermore,
the quadratic model gives equal weights to both main ef-
fects and epistatic interactions, but epistatic interactions
greatly outnumber the main effects, thus it is expected
that the model overestimates the role of epistasis (Kouyos

et al. 2012). Therefore, while the coefficients of the fitted
model provide clues on which loci are epistatically linked,
we should remain careful of further interpretations. Thus,
the usefulness of the models we investigated is largely re-
stricted to predicting the fitness of unseen sequences.

The regression model we use suffers from three sets of
biases. We have already described the bias introduced by
our inability to sample a data set that contains enough infor-
mation to infer all interactions between loci. We have also
shown the presence of higher-order interactions within the
landscape, resulting in a model misspecification. Finally, we use
a penalized regression scheme that increases the predictive
power at the expense of bias. Although we could have used
a more complicated statistical model in order to reduce the
degree of misspecification, it is clear that we will never be able
to define a perfectly specified model for any real fitness land-
scape, and even if we could we would still be unable to sample
enough sequences to uniquely specify each independent pa-
rameter. Thus, while a more complex model would in theory
be able to produce a better fit, in practice the sampling bias
makes it unlikely that we will be able to sample densely
enough to take advantage of the added model complexity.
Moreover, deliberately introducing bias to increase the predic-
tive power is standard practice for situations where the num-
ber of parameters greatly exceeds the number of datapoints
and is necessary to prevent overfitting. This is the case for even
the quadratic model and increasing the model complexity
would only necessitate an even larger bias-variance trade-off.

The biases above have been investigated by Otwinowski
and Plotkin (2014), although they did not investigate sam-
pling bias in detail and only investigated smaller, more trac-
table landscapes. These biases are all important and should
not be ignored. However, we argue that in a realistic setting
they are unavoidable. Thus, if we wish to apply a statistical
approach to describe real fitness landscapes, sparse sampling,
and model misspecification are realities we have to deal with.

Our results are admittedly difficult to generalize. The space
of all possible fitness landscapes is vast and it is impossible to
cover this space sufficiently, either through simulated models
or through sampling empirical data. The landscape we use
serves only as an example of a fitness landscape, with se-
quences of biologically relevant lengths and complex higher-
order interactions between loci. Nonetheless, we have shown
that on restricted subsets of complex landscapes of a realistic
size, with realistic sequence lengths, a simple regression model
can still be informative. This is even more remarkable when
considering the simplicity of the models we used in compar-
ison to the complexity of the problem. Thus, we are of the
opinion that statistical models, such as the penalized regres-
sion model investigated here, are a useful tool for exploring
complex fitness landscapes and should not be dismissed as
hopelessly underpowered and biased.

Materials and Methods

Fitness of RNA Sequences
The fitness of a sequence is defined as a weighted average of
the similarity of the secondary structures in its suboptimal
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ensemble to an ideal target structure. The suboptimal ensem-
ble of a sequence is composed of the lowest free energy
structures within a bounded distance from the MFE structure.
Thus, fitness is dependent on both the thermodynamic sta-
bility and the shapes of the most likely secondary structures
of a sequence. This fitness function is similar function we
use is similar to the plastic fitness function defined in
Cowperthwaite and Meyers (2007) and Cowperthwaite
et al. (2005, 2006).

ViennaRNA 1.8.5 (Hofacker et al. 1994; Hofacker 2009) is
used to compute the secondary structures in the suboptimal
ensemble of sequences through energy minimization (Zuker
and Stiegler 1981; Zuker 1989; McCaskill 1990; Wuchty et al.
1999). The algorithm is relatively accurate for determining the
structures of short sequences, but it does not incorporate
pseudoknots and other noncanonical structures. We ignore
energy barriers between structures and assume that a mole-
cule equilibrates between all structures in the suboptimal
ensemble with the amount of time spent in a particular con-
formation. The Boltzmann probabilities of structures are used
as weights, which corresponds to the probability of observing
a structure within the suboptimal ensemble.

The selective value of a secondary structure, r, is given by,

fðrÞ ¼ 1

aþ ðdðr; sÞ=LÞb
; (1)

where dðr; sÞ measures the structural distance between r
and the target structure, s, calculated as the number of base-
pairs that need to be opened or closed in order to convert r
into s. L is set equal to the sequence length. The fitness of a
sequence, s, is then given by,

yðsÞ ¼
X

r2G�ðsÞ
fðrÞpr; (2)

where G�ðsÞ is the ensemble of all structures within �kT from
the MFE structure of s, where k is the Boltzmann constant
and T is the temperature. The Boltzmann probability of ob-
serving structure r within G�ðsÞ is represented by pr. We set
�¼ 5 which corresponds to roughly 3 kcal/mol at 37�C. For
the selective value of a structure we use a ¼ 0:01 and b¼ 1
in all calculations, which results in fitness values between�0
and 100.

Realistically, no sequence will achieve a fitness of 100, since
that would require its suboptimal ensemble consisting of only
the target structure. Furthermore, the fitness function is con-
tinuous, since no two sequences have the same suboptimal
ensembles. However, the fitness landscape still exhibits a large
degree of semineutrality. This is because there are far fewer
secondary structures (phenotypes) than sequences (geno-
types) and thus multiple sequences can have suboptimal
ensembles dominated by the same structures (Doudna
2000), resulting in two completely different sequences having
very similar fitnesses.

The hyperbolic decaying function we used to calculate the
selective values of secondary structures models a regime of
strong selection, where the deleterious effect of mutations is
multiplicative, resulting in a superlinear decrease in fitness

with added mutations. The particular decaying function
used does not quantitatively change the results (own obser-
vations and [Fontana and Schuster 1998]), hence we chose a
hyperbolic function with the same coefficients used in
Fontana and Schuster (1998), Ancel and Fontana (2000),
and Cowperthwaite et al. (2005, 2006). We used the basepair
distance between structures, instead of the Hamming dis-
tance between the parenthetical representations of second-
ary structures (used in Cowperthwaite and Meyers [2007],
Cowperthwaite et al. [2005, 2006]) as it is a more realistic
measure at practically no extra cost.

Generalized Kernel Ridge Regression
The model described here was previously developed for pre-
dicting the fitness of HIV-1 strains from their amino acid
sequences (Hinkley et al. 2011). However, it is readily adapt-
able to any type of genetic data, the only requirements being
knowledge of the loci where mutations occur and all possible
alleles at each locus. Sequence data are encoded as a binary
string, s, which is fit to its corresponding fitness, y(s), accord-
ing to the following model,

logðyðsÞÞ ¼ Iþ
X

ij

mijsij þ
X

ijkl

�ij;klsijskl; (3)

where sij¼ 1 denotes the presence of allele j at position i and
sij¼ 0 its absence. In the model, I is the intercept, mij are the
main effects and �ij;kl the pairwise epistatic effects. Main ef-
fects represent the individual contributions of each allele to
the fitness of a sequence, whereas epistatic effects represent
the effect of an allele at one locus in combination with an
allele at another locus. We distinguish between two models:
the full quadratic model above, and the linear model. All �ij;kl

terms are set to 0 in the linear model, thus this model only fits
main effects and ignores all epistatic interactions. Although
higher order terms such as three-way interactions can easily
be included in the model, Hinkley et al. (2011) found that
doing so did not significantly improve the predictive power
for HIV.

The number of estimated parameters will generally greatly
exceed the number of data points, such that standard
approaches to fit the model cannot be used. Here, we use a
kernelized ridge regression to overcome the problem of reli-
able parameter estimation without overfitting. Ridge regres-
sion adds a regularization parameter, k, to penalize large
coefficients, unless they contribute substantially to the fit.
Kernelizing ridge regression makes the computation more
efficient when there are more parameters than data points.
Finally, the method is generalized into a weighted kernel ridge
regression with iterative reweighting to account for nonnor-
mal error structures (Nelder and Wedderburn 1972). The
resulting GKRR method is described in detail in Hinkley
et al. (2011).

Model Fitting
The ability of GKRR to accurately predict the fitness of se-
quences is measured as the fraction of the deviance explained
by the model. The deviance measures the deviation from a
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perfect model and is a standard measure for generalized
models with nonnormal error structures (Nelder and
Wedderburn 1972). In the case of normal error structures,
the deviance of a standard linear regression is equal to the
coefficient of determination, R2. The formula for calculating
the deviance is given in the supplementary notes,
Supplementary Material online and in Hinkley et al. (2011).

In order to fit the model we first find the optimal regular-
ization parameter, k, by fitting the model to subsets of the
training set, before training the model using the optimal k on
the complete training set. This is done by randomly drawing
six sets of 20,000 sequences from the training set. The model
is then trained on 15,000 of the sequences in each subset and
evaluated on the remaining 5,000 sequences. This is done for
57 candidate regularization parameters, spanning the space of
likely values in a nonuniform manner. We select the largest k
such that the fraction of deviance explained is within one
standard error of the mean from the best prediction. This k is
then used to train the model on the full training data.

Uniformly Sampled Data Sets
The dense data set Dk contains every possible sequence of
length n that can be reached within k or less mutations from
a sequence of interest (the focal genotype). It follows thatD0

contains only the focal genotype, D1 contains 3nþ 1 se-

quences and in generalDk contains
Xk

i¼0

n

i

 !
3i sequences.

Finally, for k¼ n, Dn is the complete sequence space and
therefore contains all sequence variants of length n (4n se-
quences). Dense data sets with k> 2 are only of a manageable
size for very short sequences. To produce data sets with more
mutations at biologically meaningful sequence lengths we
employ two types of sparse samplings of the local landscape.

Random neighborhood data sets represent a uniform sam-
pling of all sequences around the focal genotype. Formally,
the random neighborhood data set Rk is formed by uni-
formly sampling sequences from Dk. As k is increased, Rk

becomes an exponentially sparser sampling if the number of
sequences sampled is kept constant.

Complete subsets are formed by sparsely sampling from
the complete sequence space in a systematic fashion. This is
achieved by limiting the degrees of freedom.

The complete subset Ck is constructed by selecting k loci
randomly and then adding all the sequences with every pos-
sible combination of mutations in those k loci, while keeping
the other n – k loci fixed. Hence, Ck contains 4k sequences.
Effectively, this results in a low-dimensional embedding of the
high-dimensional sequence space.

Evolved Data Sets
Evolved data sets represent a sample of sequences from a
population evolving under strong selective pressures. These
data sets are similar to the ones used in Huynen et al. (1996),
Fontana and Schuster (1998), van Nimwegen et al. (1999),
Ancel and Fontana (2000), Wilke and Christoph (2001), and
Cowperthwaite et al. (2005, 2006). We use a modified version
of the RNAvolver program (Cowperthwaite et al. 2006) to

obtain evolved data sets. The program evolves a stochastic
asexually reproducing haploid population of a fixed size for a
specified number of discrete generations. At every generation
sequences from the previous generation are chosen to repli-
cate at a rate proportional to their fitness and then subjected
to a round of mutation. The number of sequences in the
population is kept constant and the same sequence can
have multiple copies within the population.

The dynamics of an evolving population is governed by
the mutation rate, l, the population size, N, and genetic
constraints imposed by the fitness landscape (Szendro,
Franke, et al. 2013). In particular, if Nl� 1, the mutation
supply rate is too small to allow for more than one mutant
to arise at a time. In this scenario, populations are restricted
to evolving on uphill trajectories and cannot cross fitness
valleys (Szendro, Franke, et al. 2013; de Visser and Krug
2014). Increasing the mutation supply rate leads to the ap-
pearance of double mutants and a more diverse population
that is able to robustly adapt to rugged landscapes. If the
mutation rate is too high, selection ceases to play a role and
genetic drift dominates.

It is impractical to evolve a population with enough
unique sequences for our data sets. Thus, we set N to 1,000
and l to 10�3, which leads to a population that is dominated
by a couple of very fit sequences while containing a substan-
tial diversity of less fit sequences. Under these parameter
settings the mean population fitness initially increases rapidly
before slowing down and eventually reaching a quasi-steady
state after a few thousand generations (supplementary fig. S2,
Supplementary Material online). Because of the large amount
of semineutrality in the fitness landscape, the population
drifts randomly through sequence space, while selecting for
structures that are similar to the target. We evolved an initial
monomorphic population for 20,000 generations and sam-
pled unique sequences every 50 generations after discarding
the first 10,000 generations. The initial monomorphic popu-
lation is composed of the fittest sequence selected from a
random sampling of 100 sequences, where all sequences are
20 mutations from the focal genotype.

Supplementary Material
Supplementary notes, tables S1 and S2, and figures S1–S17 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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