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Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNAs that regulate genes at the post-transcriptional level
in spatiotemporal manner. Several miRNAs are identified as prognostic and diagnostic markers in many human
cancers. Estimation of the temporal activities of the miRNAs is an important step in the way to understand the
complex interactions of these important regulatory elements with transcription factors (TFs) and target genes (TGs).
However, current research on miRNA activities excludes network dynamics from the studies, disregarding the
important element of time in the regulatory network analysis.

Results: In the current study, we combined experimentally verified miRNA-TG interactions with breast cancer
microarray TG expression data to identify key miRNAs and compute their temporal activity using network
component analysis (NCA). The computed activities showed that miRNAs were regulated in a time dependent
manner. Our results allowed constructing a synergistic network of miRNAs using the computed miRNA activities
and their shared regulation of TGs. We further extended this network by incorporating miRNA-TG, miRNA-TF, TF-
miRNA and TF-TG regulations in the context of breast cancer. Our integrated network identified several miRNAs
known to be involved in breast cancer regulation and revealed several novel miRNAs. Our further analysis detected
substantial involvement of the miRNAs miR-324, miR-93, miR-615 and miR-1 in breast cancer, which was not known
previously. Next, combining our integrated networks with functional annotation of differentially expressed genes
resulted in new sub-networks. These sub-networks allowed us to identify the key miRNAs and their interactions
with TFs and TGs of several biological processes involved in breast cancer. The identified markers are validated for
their potential as prognostic markers for breast cancer through survival analysis.

Conclusions: Our dynamical analysis of the miRNA interactions greatly helps to discover new network based
markers, and is highly applicable (but not limited) to cancer research.

Keywords: Network component analysis, microRNAs, Breast cancer, Activity, Data decomposition, Cancer markers,

EGFR signaling, Survival analysis, Kaplan-Meier plots

Background

Cell functions are exerted through gene regulation in
response to external cues. MicroRNAs (miRNAs) and
transcription factors (TFs) are key regulators in the
gene regulation process [1, 2]. miRNAs are small (~22
nucleotides in length) non-coding RNAs that regulate
gene expression post transcriptionally in a sequence-
specific manner [3]. Many miRNAs are shown to be
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involved in cancer related biological processes, such as
cell division, growth, development, apoptosis, prolifera-
tion and differentiation [4—7]. Therefore, constructing
the miRNAs mediated gene regulation networks by
utilizing gene expression data has become a regular
practice in today’s miRNA research. However, all these
studies of miRNA regulatory networks focused on static
reconstruction of the miRNA regulatory activities. By
doing so, they excluded the important element of time
from the network analysis. However, since we know
regulatory networks are dynamic (time dependent) by

© 2016 Jayavelu and Bar. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-2260-3&domain=pdf
mailto:nareshd@chemeng.nnu.no
mailto:nadi.bar@chemeng.ntnu.no
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Jayavelu and Bar BMC Genomics

nature, important network information in those studies
may have been lost.

Several studies applied statistical methods to investi-
gate the role of miRNAs in gene regulatory networks.
Madden et al identified key miRNAs associated with
diseases through time-independent multivariate statis-
tical analysis [8]. _ENREF_47Liang et al developed a
web based tool to compute the microRNA activity from
its TG expression data based on the negative regulatory
relationship between miRNAs and TGs [9]. Mezlini et
al developed a regression model to identify key miR-
NAs and their activity from TG expression and
miRNA-TG network [10]. _ENREF_47 ENREF 44 The
approach proposed by Cheng et al [11] computed a
series of static miRNA activities using the differential
expression values of the TGs at each time point. Al-
though their approach appears to construct a time-
series miRNA activity profiles, it considers each time
point regardless of the expression levels in the other
time points. Recently, Schulz et al extended the DREM
(Dynamic Regulatory Events Miner) model to mir-
DREM to reconstruct the dynamic miRNA regulated
interaction networks [12]. This model presents the list
of significantly pivotal miRNAs and TFs at each time
point. However, none of these methods computed the
changes in miRNA activity with time.

Network component analysis (NCA) [13, 14] is a data
decomposition approach that has been successfully
employed in several species and in numerous research
studies to compute the temporal activity profiles of TFs
and construction of dynamic networks [14-28]. The
method integrates temporal TG expression data and
known network topology. _ENREF_24 In the current
study, we exploited this approach for computing the
temporal activities of the key miRNAs using only TG ex-
pression data (no miRNA data) and experimentally veri-
fied miRNA-TG relations. Using the NCA, we identified
the key miRNAs, TFs and their activities in epidermal
growth factor receptor (EGFR) signaling in breast cancer
cells._ENREF_22_ENREF_23 We used the computed
miRNAs temporal activities to identify co-regulating
miRNAs (synergistic network) that show similar activity
patterns and co-regulating common TGs, and validated
these miRNAs with a literature study. Additionally, we
built an integrated network of miRNAs, TFs and their
TGs by retrieving miRNA-miRNA, miRNA-TG, TF-TG
and TF-miRNA interactions from literature and combin-
ing these with the results of the NCA. With this ap-
proach, we identified several miRNAs that were known
to be involved in regulation in breast cancer cells, and
we revealed several novel miRNAs that are most likely
to be involved in breast cancer, but were not known pre-
viously. These miRNAs can potentially serve as breast
cancer markers.
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Results

Our approach for reconstructing the miRNA temporal
activity from its TG expression using NCA is presented
in Fig. la and complete details are described in the
Methods section.

Dynamics of miRNA activity

The activity profiles (normalized) of several miRNAs
which are already known to be involved in breast cancer
cells are presented in Fig. 1b. Although the miRNAs
showed activity at all-time points, peak activity is dem-
onstrated at 1 or 2 time points. The miRNA let-7a-5p
displayed increasing repressing activity with time. This
miRNA is known to be a tumor suppressor regulating
many genes that inhibit cell migration in breast cancer
[29]. The miRNA miR-18b-5p is also involved in breast
cancer, regulating genes involved in cell migration and
metastasis [30]. This miRNA showed peak activation at
8 h in the current study. The miRNA let-7d-5p showed
a peak repressing activity around 2 h after EGF treat-
ment and it is aberrantly expressed in breast cancer cells
in previous study [31]. The miRNA miR-20a-5p dis-
played a peak repressing activity at 10 min and this
miRNA also involved in previous breast cancer studies
[32]. Yu et al showed that miR-20a-5p and miR-17-5p
suppressed the breast cancer cell proliferation by nega-
tively regulating the gene cyclin D1 [32]. The miRNA
miR-30a-5p is identified to be a novel prognostic marker
in breast cancer in several past studies [33-35] and it
showed a peak repression very late (around 36 h) in the
current study. The miRNA miR-200c-3p also displayed a
very late activation at 36 h and it is involved in regulat-
ing epithelial to mesenchymal transition (EMT) by tar-
geting the genes ZEB1 and SIP1 in breast cancer in
response to transforming growth factor (TGF) [36]. The
miRNA miR-155-5p demonstrated periodic peak activa-
tions at 10 min, 2 and 24 h. This miRNA is also known
to be involved in the previous breast cancer studies
with roles in cell survival, growth and chemosensitivity
[37, 38]. The miRNA miR-210-3p exhibited peak re-
pression activities very early at 15 min and late during
8-36 h time period and this miRNA has been identified
as prognostic marker in breast cancer [39]. Next, we
used hierarchical clustering to explore groups of miR-
NAs with similar activity profiles (Fig. 1c). We found
two distinctive groups of miRNAs that activates or re-
press at all time, and two smaller groups of miRNAs
that alternate between activation and repression.

The computed activities demonstrated that EGF acti-
vated microRNAs in time dependent manner. To further
understand the timely cascade of regulation of EGF in
breast cancer, we studied the time points of peak activa-
tion of the TGs, (from differential expression data) the
TFs and the miRNAs, the last two were computed from
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Fig. 1 Schematic of the approach and computed miRNA activities: (@) NCA approach for reconstructing the temporal activities of miRNAs.
b Reconstructed temporal activity profiles (normalized values) of selected breast cancer associated miRNAs. ¢ Hierarchical clustering of miRNAs
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NCA (Fig. 2). This analysis revealed that EGFR signaling
is a highly dynamic process, and the regulation operates
in cascades, activating groups of TGs, miRNAs and TFs
in a timely manner. The larger effects of EGF stimula-
tion on TGs are observed around 10 min, 2 h 36 h and
72 h. Interestingly, for the regulators (miRNAs and TFs)
also larger effects are observed at the same time points
respectively.

miRNA-miRNA synergistic network

Synergistic interactions between miRNAs are a key to
understand the complex mechanisms of cancers, several
miRNAs are usually found together in a particular can-
cer or disease. In the present study, a miRNA-miRNA
synergistic network (MMSN) was constructed based on
the computed temporal activities and shared co-regulating
TGs (Fig. 3a). In this constructed network, each node rep-
resents the miRNA and edges represent similar activity
profile (Pearson correlations >0.7) and at least 3 shared
TGs. Thus, the constructed network included 112
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Fig. 2 EGF dynamic regulation: The number of active TGs, TFs and
miRNAs at each time point is presented. (@) TGs (b) TFs (c) miRNAs.
The active TGs, TFs and miRNAs are defined at each time point based

on peak expression or activity at that time point
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miRNAs and 314 interactions between the miRNAs
(Fig. 3b, Additional file 1). The network followed a
power law degree distribution which is a typical bio-
logical network property (Fig. 3c). The network is
highly interconnected with a clustering coefficient of
0.356 and a mean connectivity of 5.6. 25 % of miRNAs
have at least 10 synergistic interactions with other
miRNAs. 38 % of the miRNAs in this network were
already experimentally verified to be involved in breast
cancer studies (according to miRcancer, miR2Disease
databases and manual curation [40, 41]). The miRNAs
miR-324-3p, miR-17-5p, miR-30a-5p, miR-93-3p and
miR-196a-5p were densely connected, each having
more than 17 synergistic interactions with other miR-
NAs in the network. Furthermore, these miRNAs are
interacting with at least 5 known breast cancer associ-
ated miRNAs in the network. Of these, miR-17-5p,
miR-30a-5p and miR-196a-5p were already known to
be involved in breast cancer. To further strengthen our
prediction of miRNA-miRNA interactions, we com-
pared the predictions from this study with previously
reported data. For this purpose, we downloaded
complete miRNA-miRNA regulation data of Sengupta
et al [42] and found that more than 80 % (258 out of
314) overlapping interactions between these two studies
(Additional file 2). We stress that although we found a
large overlap between the two studies, the interactions
from Sengupta et al [42] are purely computational, just
as our’s do, but are independent of ours, taken with a
completely different approach. In addition to this, we
evaluated the synergy of miRNAs in the current net-
work with randomly generated 100 miRNA-miRNA
networks keeping the same node degrees as the original
network. The mean value (0.114) for clustering coeffi-
cient of the random networks is significantly (P-value <
le-10) lower than the value (0.356) of the original
network.

Analysis of the integrated network in breast cancer

One of the main objectives of this study is to determine
the core regulators of EGFR signaling in breast cancer
cells and understand their role in breast cancer. To
achieve this goal, we constructed an integrated network
of miRNAs, TFs and TGs (Methods, Additional files 1,
2, 3,4, 5, 6 and 7). The final integrated network followed
a power law degree distribution (The network is pro-
vided as a cytoscape file (.cys) in Additional file 3). The
network includes 168 miRNAs, 328 TFs and 1072 TGs
and 20534 interactions. In this network, we find that
87 % of the TFs have at least 3 or more connections.
Similarly, 89 % (150/168) of the miRNAs regulate at
least five TGs and 82 % of TGs are targeted by five or
more regulators including both miRNA and TFs. Thus,
the integrated regulatory network is complex in terms of
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(See figure on previous page.)

Fig. 3 Synergistic network of miRNAs: (@) Schematic of miRNA-miRNA synergistic network construction. b Predicted synergistic interaction pairs
of miRNAs in the form of network in breast cancer. Here cyan squares represent breast cancer associated miRNAs in previous studies and red
squares represent new miRNAs with no previous involvement in breast cancer studies. ¢ Degree distribution. Right panel: scatter plot of the node
degree (number of connections to a specific MIRNA) vs. the number of nodes (miRNAs) revealed the power law degree distribution. Left panel:
Distribution of miRNA as a function of their node number. We found several hub miRNAs with large number of connections

targets multiplicity and miRNAs co-operativity in the
regulation of TGs. The in-degree and out-degree distri-
butions of the network follow a power-law degree dis-
tribution with slopes of -1.9 and -4.66 respectively.
This indicates that the network is not random but a
complex biological network with organized structure
[43]. We hypotheses that regulating elements with large
number of connections (node degree, whether they are
miRNAs or TFs), can be considered as ‘core’ regulators
[43]. In order to identify these core regulators, we fo-
cused on hub nodes with the largest number of interac-
tions in the network. The identified top 20 hub
miRNAs and TFs are presented in Table 1 and Table 2
respectively. Of these, 14 miRNAs were already known
to be involved in breast cancer cells and six were unex-
plored yet. There were 11 TFs known to be involved in

breast cancer, and 9 that were yet to be studied
(Table 2).

Functional annotation and pathway analyses of
differentially expressed TGs

To increase our understanding on the role of EGF in
breast cancer, we performed functional annotation of the
TGs and TFs in the integrated network using functional
annotation tool DAVID (Methods). We found that path-
ways in cancer, TGF-beta signaling pathway, the MAPK
signaling pathway, the Wnt signaling pathway, the cell
cycle, Notch signaling pathway, melanogenesis, the ErbB
signaling pathway and several cancers were all statisti-
cally significant affected by the differentially expressed
genes in breast cancer cells (Table 3).

Table 1 The top 20 miRNAs with highest degree in breast cancer integrated regulatory network. The degree of a node is the sum
of in-coming and out-going connections with other nodes in the network. PMIDs denote the ‘pubmed’ identification numbers

Rank miR Name Degree Breast cancer related PMIDs

1 hsa-miR-335-5p 220 Yes 18185580

2 hsa-miR-124-3p 185 Yes 22333974, 22085528
3 hsa-miR-26b-5p 174 Yes 23374284, 21510944
4 hsa-miR-16-5p 137 Yes 22583478

5 hsa-let-7b-5p 114 Yes 23339187

6 hsa-miR-615-3p 110 No -

7 hsa-miR-155-5p 107 Yes 23372341, 16103053
8 hsa-miR-92a-3p 105 Yes 23052693

9 hsa-miR-1 96 No -

10 hsa-miR-21-5p 90 Yes 23052693, 19419954
11 hsa-miR-484 88 No -

12 hsa-miR-30a-5p 86 Yes 22476851, 23389917
13 hsa-miR-193b-3p 82 Yes 19701247

14 hsa-miR-34a-5p 79 Yes 23032974

15 hsa-miR-17-5p 78 Yes 16940181, 20505989
16 hsa-miR-192-5p 77 No -

17 hsa-miR-324-5p 73 No -

18 hsa-miR-98-5p 72 Yes 18812439

19 hsa-miR-324-3p 71 No -

20 hsa-miR-125b-5p 64 Yes 22693547, 21444677
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Table 2 The top 20 TFs or TGs with highest degree in breast cancer integrated regulatory network. The degree of a node is the
sum of in-coming and out-going connections with other nodes in the network. PMIDs denote the ‘pubmed” identification numbers

Rank TF Name Degree Breast cancer related PMIDs

1 SP1 371 Yes 19812674

2 TCF12 343 Yes 20525248

3 SP4 337 No -

4 SP3 309 No -

5 SP2 259 Yes Breast cancer database (www.breastcancerdatabase.org)
6 MYOD1 222 Yes 20525248

7 JUN 215 Yes 20525248

8 ERG 211 No -

9 MYF6 199 No -

10 ETV7 189 Yes 20525248

" ARID5B 187 No -

12 MYF5 183 No -

13 EGR2 182 Yes 20525248

14 MYOG 182 No -

15 ETST 181 Yes 20668451, 20525248
16 ASCL1 180 No -

17 MYC 178 Yes 20525248

18 ETS2 176 Yes Breast cancer database (www.breastcancerdatabase.org)
19 TCF3 174 No -

20 ELF2 173 No -

The significantly enriched biological terms that were
identified from the PANTHER database include PDGF
signaling pathway, PI3 kinase pathway, JAK/STAT signal-
ing pathway, apoptosis pathway and several overlapping
pathways that are identified from KEGG database (Full list
is provided in Additional files 4 and 5). The involvement
of these pathways in human breast cancers has been de-
scribed in previous studies [44—47]. This analysis facili-
tated the identification of previously known and newly

Table 3 Statistically significant biological pathways affected by
differentially expressed TGs in breast cancer cells identified from
the KEGG database using DAVID

KEGG ID Description # Genes P-Value

hsa05200 Pathways in cancer 69 5.51E-08
hsa04350  TGF-beta signaling pathway 24 3.61E-05
hsa04010 MAPK signaling pathway 51 6.72E-05
hsa04310  Whnt signaling pathway 31 7.22E-04
hsa04110  Cell cycle 25 0.003827
hsa04330 Notch signaling pathway 11 0.027579
hsa04662 B cell receptor signaling pathway 15 0.030166
hsa04910 Insulin signaling pathway 23 0.034331
hsa04660 T cell receptor signaling pathway 19 0.043201
hsa04012 ErbB signaling pathway 16 0.047711

discovered pathways in breast cancer. Positive and nega-
tive regulation of transcription and gene expression, regu-
lation of transcription factor activity, regulation of cell
differentiation, proliferation, migration, apoptosis, mor-
phogenesis, angiogenesis and regulation of signal trans-
duction are enriched biological processes (Table 4).

Next, we combined the pathways and gene ontology
(GO) results with the integrated network and extracted
significantly enriched biological process specific sub-
networks (Fig. 4). For instance, Cell-cycle sub-network is
mainly regulated by E2F family of TFs (E2F1, E2F2,
E2F4, and E2F5), SMAD family of TFs (SMAD?2,
SMAD3, SMAD4) and miRNAs has-miR-335-5p, has-
miR-26b-5p and has-miR16-5p. Many of these regulators
are involved in cell-cycle control. In the similar manner,
we constructed the angiogenesis and cell migration sub-
networks.

Discussion

Understanding regulation and precise control of gene
expression in higher organisms is a complex process,
and miRNAs and TFs are two key regulators of this
process. In the current study, we used the well-studied
NCA approach to compute the temporal activities of the
TFs, and for the first time, for the miRNAs as well. Al-
though several previous studies demonstrated the
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Table 4 Statistically significant biological processes affected by differentially expressed TGs in breast cancer cells identified using

DAVID

GO ID Description # Genes P-Value

GO:0010628 positive regulation of gene expression 220 2.59E-79
GO:0045941 positive regulation of transcription 215 4.94E-78
GO:0051173 positive regulation of nitrogen compound metabolic process 229 1.65E-76
GO:0016481 negative regulation of transcription 122 3.60E-26
GO:0010629 negative regulation of gene expression 129 5.17E-26
GO:0045596 negative regulation of cell differentiation 66 1.18E-17
GO:0045597 positive regulation of cell differentiation 64 5.79E-15
GO:0042981 regulation of apoptosis 139 4.34E-12
G0:0008285 negative regulation of cell proliferation 72 3.28E-09
GO:0008284 positive regulation of cell proliferation 73 4.58E-07
GO:0051090 regulation of transcription factor activity 28 9.89E-07
GO:0045787 positive regulation of cell cycle 16 2.38E-04
GO:0009966 regulation of signal transduction 115 4.86E-04
GO:0010608 posttranscriptional regulation of gene expression 37 493E-04
GO:0000902 cell morphogenesis 55 5.06E-04
G0O:0030334 regulation of cell migration 31 7.23E-04
GO:0001525 angiogenesis 28 8.51E-04

construction of miRNA mediated gene networks, their
approaches required the expression data of both miR-
NAs and TGs. In contrast, our reconstruction approach
needs only expression data of TGs. With the publicly
available large volumes of the microarray and RNA-
sequencing (RNA-seq) TG expression data and experi-
mentally verified miRNA-TG data, the NCA approach
may serve as a powerful tool to study and understand
the miRNA mediated gene regulation. With the com-
puted temporal activities and gene expression data, we
are able to identify the time specific active miRNAs, TFs
and TGs. This analysis resulted in the identification of
EGF stimulation’s dominant response at selective time
points. Another interesting observation from this ana-
lysis is that the number of activated TGs are strongly
correlated with their active regulators, TFs (Pearson cor-
relation = 0.815) and miRNAs (Pearson correlation =
0.867) over entire time period.

We constructed the miRNA-miRNA synergistic net-
work based on similar temporal activity of miRNAs and
their shared TGs. There are several past studies con-
structed miRNA-miRNA networks but they mostly are
based on combinations of shared TGs of miRNA pair,
enriched in same gene ontology term, sequence, second-
ary structure and shared pathways [48-51]. However,
none of these studies were used the temporal informa-
tion knowing that miRNA-TG regulation is highly dy-
namic. Therefore, the synergistic network constructed in
this study is one of the first attempts to incorporate

temporal information. This network not only captured
synergistic interactions between miRNAs but also identi-
fied novel miRNA regulators in breast cancer.

To understand the miRNA regulation more compre-
hensively, we further extended this synergistic network
with TGs and TFs. Further examination of network iden-
tified hub miRNAs (hsa-miR-335-5p, hsa-miR-124-3p,
hsa-miR-26b-5p, and hsa-miR-16-5p) and TFs (SP1,
TCF12, JUN, MYOD1). Most of these hubs are either
well-known regulators or are reported to play key roles
in breast cancer. For instance, the miRNA miR-335-5p,
the top hub node in the network is already known to be
a key regulator in suppressing breast cancer metastasis
and migration through regulation of targets SOX4 and
TNC [52]. The miR-124-3p was shown to be a novel
tumor suppressor and a co-regulating EGFR driven cell
cycle protein, inhibiting proliferation in breast cancer
[53]. The miRNA miR-26b-5p was also shown to be a
potential therapeutic target for breast cancer. This
miRNA inhibits the cell proliferation by regulating the
target PTGS2 [54]. The synthetic growth hormone pro-
gestin down regulated the miR-16-5p and cyclin E was
identified as one of its targets in breast cancer [55]. Fur-
thermore, this miRNA inhibited the growth of progestin
treated breast cancer cells and thus its role as tumor
suppressor. The miRNA let-7b-5p was also shown to
have a tumor suppressor role in breast cancer patients
with lymph node metastasis, by repressing the expres-
sions of the genes PAK1, DIAPH2, RDX and ITGB8
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[29]. The miRNA miR-193b-3p was shown to be an im-
portant marker in clinical metastasis of human breast
cancer cells, which potentially up-regulates the expres-
sion of uPA [56]. In addition to those hub miRNAs, we
found hub miRNAs with no previous association in
breast cancer, including miR-615-3p, miR-1, miR-484,
miR-192-5p and miR-324-5p. We suggest that the novel
miRNAs found from our integrated network have poten-
tial therapeutic outcomes in breast cancer and should be
further explored. Similarly, the top hub TFs we found in
the integrated network such as SP1, SP2, TCF12, MYC,
JUN and EGR2, were also well-known regulators in
breast cancer. Yang et al showed that SP1 and HSF1 play

an important role in the regulation of FUT4 (Fucosyl-
transferase IV), which is associated with breast cancer
epithelial cell proliferation [57]. Zhang et al identified
that oncoprotein HBXIP activates the gene PDGFB
through transcription factor SP1, to promote prolifera-
tion in breast cancer cells [58]. Chen et al showed that
JUN miR-21 activates Bcl-2 expression and thus pro-
motes chemo resistance in triple negative breast cancer
cells [59]. The TF ETS1 promotes proliferation, migra-
tion and invasion through stimulation of estrogen recep-
tor alpha (ERa). Verschoor et al showed the ETS1
involvement in energy metabolism and oxidative stress
in breast and ovarian cancers [60].
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To further validate our identified markers both miR-
NAs and TFs, we performed survival analysis with the
publicly available clinical data to uncover their role in
breast cancer survival outcome (see Methods for details).
Figure 5 presents the Kaplan-Meier plots for the miR-
NAs and TFs, selected from Tables 1 and 2, respectively
(see Additional file 5 for the remaining miRNAs and
TFs). The patients with high expression of miR-335 and
miR-16 had significantly better survival rates compared
to patients with low expression. Similar findings are ob-
served with the TFs SP1 and MYODI1. We suggest that
these miRNAs and TFs can potentially serve as positive
prognostic markers in breast cancer. We note that al-
though the majority of the markers presented in this
study (Tables 1 and 2) were identified as markers with
potentially better survival rates, few markers did not
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performance. For instance, TCF12 which was identified
as a marker in this study did not show better survival
(see Additional file 6A).

We further analyzed the TGs and TFs from integrated
network to find the common KEGG pathways and Gene
Ontology (GO) biological process terms they regulated.
Several previous studies showed that EGFR signaling is
one of the potentially targeted pathways for identifying
anticancer drugs and treatment strategies for various
cancers [61, 62]. The involvement of Wnt signaling
pathway in breast cancers have been described previ-
ously. Schlange et al had shown that autocrine Wnt sig-
naling controls proliferation and tumor growth through
activation of canonical Wnt pathway and EGFR transac-
tivation [63]. Loh et al had shown the important role of
this pathway in inhibiting the effects of Tamoxifen in

demonstrated in the survival analysis any better tumor growth [64]. TGF-beta signaling pathway is also
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widely studied to identify therapeutic drug targets in
many metastatic cancers including breast cancer as this
pathway plays a key role in regulating tumor invasion
and metastasis [65—67]. Another significantly enriched
term was apoptosis. Dysregulation of apoptosis was
shown to play key roles in breast cancer [68]. This find-
ing explains the role of EGF as a potential therapeutic
target in breast cancers. The MAPK pathway is the cen-
tral part of the signal transduction initiated by EGF that
controls the cellular processes of proliferation and differ-
entiation. This pathway was also highly enriched in the
current study and has been widely targeted to find diag-
nostic and prognostic markers of breast cancer [69]. Al-
though this analysis identified the ErbB as a significantly
enriched pathway (as the gene expression data set is ob-
tained from ErbB signaling), to our surprise only 16 out
of 1072 differentially expressed TGs were known to be
associated with ErbB. This may indicate that our current
study identified several new TGs associated with this
signaling.

There are few limitations in the current approach used
in this study. Firstly, we used only the experimentally
verified miRNA-TG regulations from miRTarBase data-
base. This database contains the regulation data re-
trieved from heterogeneous systems and it may not be
accurate for a specific system. Secondly, the NCA ap-
proach has very strict criteria on network structure
(miRNA-TG, TE-TG) and might have lost few key miR-
NAs, TFs and their TGs. Thirdly, in spite of the fact that
potential prognostic markers for breast cancer in this
study were predicted using computational approach
only, the validations were based on Kaplan-Meier sur-
vival analysis conducted with heterogeneous data
sources from clinical trials.

Methods

Data preprocessing

The gene expression data used in this study were ob-
tained by measuring the response of MCF7 breast cancer
cells treated with epidermal growth factor (EGF) at 17
time points over a time period of 72 h [70]. The original
gene expression data was downloaded from the GEO
database with accession number GSE13009. We applied
loess normalization within time points and quantile
normalization across time points. The expression values
were averaged over two replicate measurements. We
computed statistical significance, P-values based on t-
tests by comparing control versus treatment samples at
each time point to identify differentially expressed genes
(DEGs). The DEGs with a fold change > 1.5 and P-value
<0.05 at least at two time points were selected for fur-
ther analysis. To reduce the noise and to smooth the
data, we used Fourier transform functions to fit the
time-series data [71]. The initial networks were defined
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using experimentally verified miRNAs, TFs and its inter-
actions with TGs from databases. All the computations
were performed using bioinformatics toolbox in
MATLAB.

miRNA-TG interactions

Although several databases are available for predicting
miRNA-TG interactions, we chose miRTarBase because
it contains manually curated and experimentally verified
regulations [72]. We downloaded the regulation data as
an adjacency list, which was used in NCA analysis to
predict the temporal dynamic activity of miRNAs.

TF-TG interactions

We collected the experimentally verified TF-TG regula-
tions from TFacts [73], a database containing 6401 ex-
perimentally validated regulations between 2720 TGs
and 330 TFs. This database includes integrated informa-
tion from different resources, such as TRED, TRDD,
PAZAR NFlregulomeDB and their own experimental
predictions. In addition, we retrieved TF-TG interactions
from the Chip-X experiments of Transcriptome Browser
[74]. This list includes 312 TFs, 13133 TGs and the
173156 interactions among them.

Network component analysis (NCA)

Network component analysis (NCA) is a computational
method for reconstructing hidden regulatory signals
(miRNAs activity or TFs activity) from gene expression
data with known connectivity information in terms of
matrix decomposition [13]. The NCA method can be
represented in matrix form as follows:

[E] = [C][T] ()

where the matrix [E] represents the expression values
of genes at various time points, the matrix [C] is the
control strength of each miRNA on a target gene (TG),
and the matrix [7] represents the activities of all of the
miRNAs. The dimensions of [E], [C] and [T] are N X M,
N X L and L X M, respectively. Where, N is the number
of TGs, M is the number of time points or measurement
conditions, and L is the number of miRNAs or TFs.

Based on above formulation, the decomposition of [E]
into [C] and [T] can be achieved by minimizing the fol-
lowing objective function:

min|| ([E]-[C][T])]l (2)
s.t. CeZ,

where 7, is the initial connectivity pattern. [C] and [7]
are estimated using a two-step least-squares algorithm
and are normalized through a nonsingular matrix [S] ac-
cording to
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(3)

To guarantee the uniqueness of the solution for equa-
tion (3) up to a scaling factor, certain criteria, termed
NCA criteria, must be satisfied:

e The connectivity matrix [C] must have full-column
rank

e When a node in the regulatory layer is removed
along with all of the output nodes connected to it,
the resulting network must be characterized by a
connectivity matrix that still has full-column rank

e The [T] matrix must have full row rank

Using NCA as the reconstruction method, we pre-
dicted significant miRNAs, TFs and their temporal activ-
ity profiles. The NCA toolbox can be downloaded from
here (http://www.seas.ucla.edu/~liaoj/downloads.html).

Integrated approach

Our integrated approach to study the miRNAs role in
the gene regulation networks is composed of several
phases (see Fig. 6 and Figs. la, 3a). Firstly, we down-
loaded the gene expression data, pre-processed and
combined with connectivity data, run NCA to recon-
struct temporal miRNA and TF activities. We clustered
the miRNAs that exhibit similar temporal activity pat-
terns and constructed the miRNA-miRNA synergistic
network. We then constructed an integrated network by
applying the NCA procedure using the differentially
expressed genes (DEGs) data that we filtered, and the
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retrieved TF-TG topology (from the database TFacts and
Transcriptome Browser), miR-TG (from the database
miRTarBase), and TF-miR (from TransmiR). The inter-
actions in all these databases were experimentally veri-
fied interactions. We then extended the resulting
network with the predicted synergistic interactions of
miRNAs. The detailed description and original sources
are provided in the Additional file 7.

The miRNA-miRNA networks

We computed the pairwise Pearson correlation coeffi-
cient between reconstructed activity profiles of all the
miRNAs and the number of common TGs between each
pair of miRNAs. We assumed a synergistic interaction
between a pair of miRNAs if the correlation is greater
than 0.7 and common TGs are greater than 3. The con-
structed network has 112 miRNAs and 314 synergistic
interactions between them. Schematic of the approach is
presented in Fig. 3.

The random networks for the comparison purposes
are generated in Cytoscape software using ‘Randomnet-
works’ plugin. These networks are created keeping the
number of nodes and connections same as the original
network.

Pathway and biological processes

We used DAVID (Database for Annotation, Visualization
and Integrated Discovery) with the default settings to
find statistically enriched biological pathways. Informa-
tion related to the pathways was identified from DAVID
[75, 76]. DAVID is a comprehensive set of functional
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annotation tools for investigators to understand the bio-
logical meaning behind a large list of genes. DAVID uses
the biological information retrieved from various re-
sources and databases. For instance, information related
to pathways is retrieved from KEGG (Kyoto Encyclopedia
of Genes and Genomes), PANTHER, BioCarta and REAC-
TOME pathway databases. Pathways and biological pro-
cesses that had at least 10 DEG members and a P-value <
0.001 were considered significant. P-values are computed
using modified Fisher’s exact test based on hyper geomet-
ric distribution.

The networks are created using the Cytoscape soft-
ware tool [77]. All statistical calculations, NCA and clus-
tering were done in Matlab, Mathworks.

Survival analysis

We conducted survival analysis of miRNAs and TFs using
the tools ‘MIRUMIR’ [78] and ‘PPISURV’ [79] respectively,
both developed by Antonov AV et al. These tools integrate
publicly available clinical data such as the GEO repository.
Briefly, these tools utilize the rank information of expres-
sion profiles of miRNAs and TFs. Patients are divided into
low and high expression groups, based on the average ex-
pression of the selected miRNAs or TFs. Then, the two
distinguished groups of patients along with their survival
information are used to identify any significant statistical
differences in survival outcome using the statistical pack-
ages in R program. The survival outcomes are represented
through Kaplan-Meier plots using R. The information
about the clinical data source for survival analysis for miR-
NAs and TFs are provided in Additional file 6B.

Conclusion

The analytical method we presented here was able to
predict the involvement of several key miRNA regulators
in processes related to breast cancer. It has also allowed
us to explore the role of these regulators in the network
and their interactions with TGs and TFs. We demon-
strated that this dynamic miRNA-TF network analysis
identifies regulation pathways, processes and connec-
tions that significantly involved in breast cancer. Fur-
thermore, the identified markers are validated for their
potential as prognostic markers for breast cancer though
publicly available clinical data and survival analysis. We
propose that this analysis can be applied to assist under-
standing miRNA regulation in other systems as well,
suggesting individual miRNAs and entire pathways as
target for cancer research.

Additional files

Additional file 1: The complete list of predicted synergistic
interactions of miRNAs is provided as a text file. (ZIP 710 kb)
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Additional file 2: The overlapping synergistic interactions of
miRNAs in this study and Sengupta et al study is provided as a tab
delimited file (.txt). (DOC 21 kb)

Additional file 3: The integrated network as a cytoscape file (.cys
file) is provided, which can be opened locally by a reader for
interactive exploration. (DOC 21 kb)

Additional file 4: Statistically significant biological pathways
affected by differentially expressed TGs in breast cancer cells
identified from the PANTHER database is provided in a text file.
(DOC 21 kb)

Additional file 5: Statistically significant biological pathways
affected by differentially expressed TGs in breast cancer cells
identified from the REACTOME database is provided in a text file.
(DOC 21 kb)

Additional file 6: A: The Kaplan-Meier plots for the miRNAs and
TFs. B: The information about the clinical data source for survival
analyses for miRNAs and TFs are provided in excel sheet. (DOC 21 kb)

Additional file 7: The complete details of the integrated procedure
with original sources are provided in a pdf file. (DOC 21 kb)
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