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Abstract: Asthma is a chronic inflammatory airway disease characterized by variable airflow
obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line
of defense and plays an important role in initiating host defense and controlling immune responses.
Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier
function in asthma. A central part of this impairment is a disruption of the airway epithelial layer,
allowing inhaled substances to pass more easily into the submucosa where they may interact with
immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed
in the airway epithelium. This review focuses on the biology of the airway epithelium in health
and its pathobiology in asthma. We will specifically discuss external triggers such as allergens,
viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in
asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of
transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium
as a potential treatment target in asthma.
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1. Introduction

Affecting more than 300 children and adults worldwide [1], asthma is a chronic inflammatory
disease characterized by chest tightness, variable airflow limitation, coughing, wheezing and airway
hyperresponsiveness to environmental triggers (i.e., allergens, pollen, animal dander, tobacco smoke
and air pollution) [2,3]. Asthma symptoms are a result of an ongoing chronic airway inflammation.
Allergic asthma is the most common type, where reversible airway limitation is caused by allergic
airway inflammation and allergic sensitization is the major risk factor. Allergen exposure in sensitized
individuals typically triggers a type 2 (T2)-biased inflammatory response. In the sensitization phase,
inhaled allergens are captured by dendritic cells (DCs) and presented to naive CD4+ T cells in
the presence of coactivators, including epithelial-derived cytokines, which promotes activation and
polarization of T helper 2 (Th2) cells that produce IL-4, IL-5, and IL-13 [3,4]. These T2 cytokines are
also produced by type 2 innate lymphoid cells (ILC2s) and are prominent orchestrators of the allergic
inflammatory cascade that occurs in asthma. IL-4 drives isotype switching of B cells and production
of IgE, which binds to the high affinity IgE receptor on mast cells. Allergen re-exposure results
in allergen-mediated IgE cross-linking, which causes rapid mast cell activation and degranulation.
IL-5 promotes airway eosinophilia, IL-4 and IL-13 act directly on the airway epithelium to induce
goblet cell metaplasia and mucus hypersecretion, and IL-13 mediates airway hyperresponsiveness by
effects on airway smooth muscle cells [4].
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While allergic and non-allergic asthma are the most common asthma phenotypes, these can
be further divided into a variety of subgroups, including eosinophilic or non-eosinophilic asthma,
as well as late-onset asthma [5]. Adding to the complexity, asthma phenotypes are driven by
different immunological mechanisms, so-called endotypes. Thus, to date it is clear that asthma is a
heterogeneous disease [6,7]. However, current knowledge of the underlying molecular mechanisms in
asthma subgroups is limited, and more information is needed in order to improve disease diagnosis
and treatment regimes.

The airway epithelium is the first line of defense against pathogenic environmental factors such
as allergens, pollution, viruses, fungi, and bacterial infections [8]. Hence, the airway epithelium plays
an important role in initiating host defense and controlling immune responses and plays a key role in
disease development and progression in asthma [8,9].

2. The Structure and Function of the Airway Epithelium

All surfaces of the mammalian body are covered with epithelial cells, including the skin,
the gastrointestinal tract, and the airways from the nose and mouth all the way down to the alveoli.
Though the structure and functions of epithelial cells differ depending on their location, they all are
tightly interconnected through epithelial junctions. This reveals one key role of the epithelium in
serving as a physical barrier against the environment.

The focus of this review is the lower conducting airways, or lower respiratory tract, which includes
the trachea and the bronchi that branch out throughout each lung and end as terminal bronchioles
just before the alveoli where gas exchange occurs. In the trachea and bronchi, the epithelium is
pseudostratified with a clear apical-basolateral orientation and consists of ciliated cells, goblet cells,
club cells, and the underlying basal cells (Figure 1). The ciliated cells together with goblet and club
cells make up the mucociliary escalator on the apical side in which inhaled particles are trapped in
secreted mucus and the beating cilia transport it upwards to the mouth where it is then swallowed or
expectorated [10,11]. The basal cells comprise the stem-cell niche of the conducting airways by having
the ability to differentiate into the other cell types mentioned above [12–15].
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Figure 1. The structure and protective functions of the human airway epithelium in the lower
respiratory tract.

Under normal conditions, the mucociliary escalator ensures homeostasis by preventing any
possible irritants or large pathogens from accessing the epithelial cells or underlying systemic
circulation [11,16]. Additionally, airway epithelial cells produce various antimicrobial peptides (AMPs)
which prevent microbes from colonizing the airways [17–19]. In asthma, both of these secretion-based
protections are usually impaired, either due to endogenous genetic variations [20] or as an effect of an
ongoing inflammation [9,21,22].
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If inhaled agents escape the mucus or AMPs, through inherent properties or impairment of these
defenses, they reach and can affect or infect the epithelial cells themselves [11,16]. Due to the tight
barrier formed by the cells, many pathogens and allergens are prevented from reaching the circulation
and accessing other cells and organs. The barrier is maintained by anchoring of the extracellular
domains of proteins found near the cellular membrane and is organized into tight and adherens
junctions, as well as desmosomes [23]. Tight junctions are located close to the apical side of the cells
and are made up of transmembrane proteins occludin and members of the claudin and junctional
adhesion molecule (JAM) families, which anchor to cytoplasmic proteins cingulin and members of
the zonula occludens (ZO) family [23]. These proteins also interact with polarity proteins, which aid
in the correct localization of the tight junctions; the tight junctions are then involved in maintaining
the apical-basolateral polarity of the cells [24], which ensures the functionality of the epithelium.
Beneath the tight junctions are adherens junctions, where transmembrane-spanning E-cadherin binds
to intracellular p120-, β-, and α-catenin [25]. Several junctional proteins have been found to be
disorganized or dysregulated in asthma [26,27], leading to an impaired barrier and dysfunction of
the epithelium.

On the basolateral side of the airway epithelium is the basement membrane, consisting of
extracellular matrix, to which the epithelial cells are strongly anchored through hemidesmosomes [28,29].
Farther below, there are airway smooth muscle cells, fibroblasts, and blood vessels, as well as cartilage
rings around the trachea and first-generation bronchi [30]. These cells and structures, together with the
epithelium, all contribute to the functionality of the airways and lungs through providing structure,
contraction, and nutrients. There is also crosstalk between these underlying cells and the epithelium,
mediated mainly through soluble factors [28,30,31].

On each side of the epithelial cells, and reaching between them, are both innate and adaptive
immune cells. These cells include ILCs, DCs, mast cells, eosinophils, and T cells. In asthma, both the
type and number of these cells are altered. Secreted factors produced by these cells, such as cytokines,
proteases, and lipid mediators, affect the airway epithelium which in turn release alarmins and
chemokines that affect the immune cells, creating a bridge between innate and adaptive immunity.

3. Genetic Associations with Asthma Linked to the Airway Epithelium

Several genomic screens and genome-wide association (GWA) studies have found genes and
genetic loci associated with asthma that are expressed by the epithelium [20,32]. These findings
highlight the importance of the airway epithelium in healthy individuals as well as in the pathology
of asthma. One group of genes associated with asthma are related to the epithelial barrier function
(see summary in ref. [33]); these include PCDH1 (protocadherin-1), which is involved in cell adhesion
and epithelial barrier formation [34] and CDHR3 (cadherin-related family member 3), which is also
involved in cell adhesion as well as epithelial polarity and is the receptor for rhinovirus (RV) C,
where the risk variant could increase susceptibility to infection [35–37]. Additionally, ORMDL3
(orosomucoid-like 3) has been linked to asthma in several populations [38–40], and its corresponding
protein may be involved in cell adhesion and integrity; when increased, it has been shown to promote
airway remodeling and hyperresponsiveness [41]. However, deletion of ORMDL3 was also associated
with increased airway hyperresponsiveness and remodeling [42], indicating that its mechanistic
link to asthma risk is yet unknown. Other asthma-associated genes with possible roles in barrier
function are DPP10 (dipeptidyl peptidase 10) [43] and GPRA (G protein–coupled receptor for asthma
susceptibility) [44].

Associations have also been found between variants of mucin-encoding genes (MUC5AC and
MUC5B) and the risk for asthma [45,46], where the variants are predicted to cause increased mucin
production. CLCA1 (calcium-activated chloride channel regulator 1), which is involved in mucus
secretion, has also been linked to asthma [47]. Lastly, several studies have linked polymorphisms in
epithelial alarmins TSLP and IL33 with the risk for asthma [36,39,46,48–51]. These findings indicate
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that genetic defects or variations within the airway epithelium can cause, drive, or worsen asthma,
most likely driven through interactions with the environment.

4. Impairment of the Airway Epithelial Barrier in Asthma

Compelling evidence indicates a range of abnormalities in various aspects of epithelial barrier
function in asthma. Part of this impairment is a disruption of the airway epithelial layer, which may
facilitate submucosal infiltration of inhaled substances and consequently their interaction with immune
cells. In situ observations of the airway epithelium have revealed structural changes in asthmatic
individuals, including patchy disruption of tight junctions, detachment of ciliated cells, and reduced
expression of E-cadherin as well as other cell-cell adhesion molecules [26,27,52,53]. In line with these
findings, functional studies of airway epithelial cells cultured at air-liquid interface (ALI) indicate
increased permeability and sensitivity to environmental insults in cells from individuals with asthma
compared with healthy controls [27,54,55]. Although the mechanisms contributing to loss of airway
epithelial barrier function in asthma have not been fully elucidated, a combination of different extrinsic
and intrinsic factors are likely to play a role.

Allergens, viral infections, and T2 inflammation are strongly associated with the pathogenesis
of allergic asthma and are all considered to have detrimental effects on the barrier integrity of
the airway epithelium. A number of in vitro studies have demonstrated the ability of various
protease-containing allergens to disrupt the airway epithelial barrier, either directly or indirectly
via activation of protease-activated receptor (PAR)-2, a proinflammatory innate immune receptor
on epithelial cells [56]. The latter has been shown to cause loss of barrier integrity in house dust
mite (HDM)-treated airway epithelial cells through a mechanism of epidermal growth factor receptor
(EGFR) transactivation and subsequent E-cadherin destabilization [57]. The major allergen from HDM,
Dermatophagoides pteronyssinus antigen P1 (Der p1), can also directly cleave the tight junction proteins
occludin and ZO-1 [58,59]. In accordance, HDM extracts and Der p1 cause increased permeability and
decreased transepithelial electrical resistance (TEER) in cultured airway epithelial cells [55,59]. Similar
effects have been reported for other allergens, including the fungi Alternaria alternata (Alternaria) [53]
and various pollen allergens [60–62].

In addition to promoting allergic sensitization, increased barrier permeability may also lower
the threshold for epithelial damage and activation of a T2 response, which itself may affect barrier
function, thus generating a positive feedback loop of increased epithelial permeability. Indeed, the two
central T2 cytokines IL-4 and IL-13 have been found to induce barrier disruption by inhibiting the
surface expression of ZO-1, occludin, E-cadherin, and β-catenin in bronchial epithelial cells [63,64].
Recently, ILC2s, which constitute an early source of T2 cytokines in asthma, were shown to induce
increased epithelial barrier permeability and reduced expression of epithelial tight junction proteins
via secretion of IL-13 in an ALI-coculture model of human bronchial epithelial cells (HBECs) and
ILC2s [65]. IL-13 has also been found to decrease epithelial expression of claudin-18, the only known
lung-specific tight junction protein [66]. Interestingly, lower expression of claudin-18 was identified in
epithelial brushings from asthmatic individuals compared to healthy controls and loss of claudin-18
impaired epithelial barrier function both in vitro and in vivo [66].

Furthermore, infections with some respiratory viruses, such as influenza virus, can cause epithelial
barrier dysfunction as a result of direct cytopathic effects. RV on the other hand cause little cell
death, but have been shown to disrupt epithelial tight junctions by reducing occludin expression in a
NADPH-oxidase-dependent manner, leading to increased airway epithelial permeability [67]. A recent
study further demonstrated that RV infection caused loss of ZO-1 from tight junctions in ALI-cultured
HBECs from asthmatic and healthy children, and that the effect was more pronounced and sustained
in cells from children with asthma [68]. Moreover, infection with respiratory syncytial virus (RSV)
has been found to cause adverse effects on airway epithelial junctional complexes through sustained
activation of protein kinase D [69].
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In addition to the impact of different environmental risk factors, the genetic background of the
individual may also influence epithelial barrier properties. As described above, several susceptibility
genes with potential implications in epithelial barrier function have been identified through GWA
studies. Furthermore, epigenetic modifications serve as a secondary level of gene regulation that
is likely to effect the translation of disease susceptibility into transformed airway epithelial biology.
A more detailed discussion of epigenetic mechanisms in relation to airway epithelial barrier function
will be given later in this review.

5. Airway Epithelial Responses to Inhaled Agents

It is now evident that the airway epithelium plays a key role in the initiation and orchestration
of the immune response to various environmental factors. Inhaled agents such as aeroallergens,
pollutants, and respiratory viruses are sensed by the airway epithelium via a diverse set of pattern
recognition receptors (PRRs) like the toll-like receptors (TLRs), retinoic acid-inducible gene (RIG)-I-like
receptors (RLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), C-type
lectin receptors (CLRs), and PARs. Following activation of these receptors, airway epithelial cells
release various inflammatory cytokines, chemokines, endogenous danger signals, and other mediators
alarming and activating a variety of immune cells, importantly DCs and ILC2s. In the following
sections, we will focus on some aspects of the interactions of airway epithelial cells with common
aeroallergens and respiratory viruses and the effects on the airway epithelium in asthma.

5.1. Allergen-Airway Epithelial Interactions

As already highlighted, the airway epithelium does not simply act as a passive barrier hindering
allergens from penetrating the mucosal surface, but is highly active in the recognition of allergens
and initiation of innate immune responses that are critical for influencing the outcome of allergen
inhalation. Allergens commonly involved in asthma development and exacerbation include dust
mites, grass and tree pollen, animal dander, and fungi. These aeroallergens are complex mixtures of
various constituents, including proteins with different structures and activities, which can interact with
epithelial cells through diverse mechanisms. Importantly, repeated or sustained activation of epithelial
PRRs, either by allergens themselves or by contaminating microbial pathogen-associated molecular
patterns (PAMPs), has been proposed as one of the key steps in the modulation of DC-driven adaptive
immune responses and the allergen sensitization process [70].

We have previously discussed the ability of certain protease-containing allergens to disrupt
the airway epithelial barrier by acting on tight junctions. In addition, sensing of this protease
activity by airway epithelial cells may also induce the release of various inflammatory mediators.
For example, Alternaria has been shown to trigger protease-dependent PAR-2-mediated release of IL-6,
CXCL8, and GM-CSF from HBECs in vitro [71], and similar effects have been found with cockroach
proteases [72,73].

Furthermore, allergens can also activate airway epithelial cells via protease-independent
mechanisms. Accordingly, HDM was reported to trigger protease-independent release of the
DC-chemoattractant CCL20 via the interaction of HDM-derived β-glucan with the CLR dectin-1
in a bronchial epithelial cell line [74]. Additionally, the non-proteolytic HDM allergen Der p2, has been
shown to induce airway epithelial release of CCL20, IL-6, CXCL8, GM-CSF, and MCP-1 via activation of
NF-κB and MAPK pathways [75]. Surface expression of the intracellular adhesion molecule (ICAM)-1
was also upregulated on the same cells in response to Der p2, and this was associated with increased
adhesion of monocytes to the epithelial cells [75]. Of note, ICAM-1 is also used as the receptor for
cellular internalization by the major group RVs [76]. It has been suggested that at least part of the effects
of Der p2 on airway epithelial cells could be due to TLR4 activation, since Der p2 shows high sequence
homology with myeloid differentiation factor 2 (MD2), a TLR4 co-signaling molecule required for
optimal TLR4 activation by LPS, and LPS is a known contaminating factor in extracts from HDM [77].
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Thymic stromal lymphopoietin (TSLP), IL-33, and IL-25 are three epithelial-derived cytokines
with critical roles in asthma pathogenesis as they are potent activators of DCs and ILC2s, which act
upstream in the T2 immune response cascade. Exposure to aeroallergens in vitro has been shown to
trigger epithelial release of all three cytokines [78–81]. Importantly, increased expression of TSLP, IL-33,
and IL-25 was recently demonstrated in the airway epithelium of allergen-challenged individuals
with mild atopic asthma and correlated with increased airway obstruction [82]. In addition, various
allergens have been reported to trigger epithelial release of endogenous danger signals, such as ATP
and uric acid [80,83], which may further influence DC and ILC2 behavior as well as amplifying the
production of epithelial-derived T2-promoting cytokines [80].

Several in vitro studies have demonstrated synergy between allergens and different inflammatory
mediators. For example, a study using HDM allergens showed that HDM acts synergistically with
IL-4 and TGF-β, two mediators found to be increased in asthmatic airways [84,85], to trigger airway
epithelial release of the Th2 cell chemoattractant CCL17 [86]. A further study found that IL-4 also
increased Alternaria-induced release of TSLP, whereas the induction of TSLP was prevented by the
type 1 (T1) cytokine interferon (IFN)-γ [78]. These findings suggest that the local microenvironment
in the airways is likely to dictate the outcome of allergen-epithelial cell interactions, and may partly
explain why allergens do not cause inflammation in healthy individuals, despite their capacity for
direct activation of airway epithelial cells. Another important question is whether there is differential
regulation of allergen-induced innate immune responses in asthmatic and healthy airway epithelium.
Although few reports of altered epithelial innate immune responses to allergens in asthma are available
to date, an in vitro study in HBECs demonstrated that cells from asthmatic individuals released more
CCL20 compared with cells from healthy controls in response to stimulation with the HDM allergen
Der p1 [87], indicating that such dysregulation may exist.

5.2. Virus-Airway Epithelial Interactions

In healthy individuals, upper respiratory tract viral infections are usually self-limiting and manifest
as a common cold with relatively mild symptoms. In individuals with asthma, however, respiratory
viruses, particularly RV, are able to subvert host immune defense systems and act as major triggers
of exacerbations in both children and adults [88–90]. These acute, disease-worsening events impair
quality of life, are a major cause of hospitalization, and can, in their most severe form, be fatal [91].
In addition to the causative role of viruses in asthma exacerbations, there is considerable evidence that
virus-induced wheezing illnesses early in life are a significant risk factor for later asthma development,
especially in genetically susceptible children [92–94]. Again, this association is particularly strong with
RV [92–96], but RSV has also been suggested to be a risk factor [97,98].

Although important progress has been made over the past decade, the precise pathogenic
mechanisms by which respiratory viruses may drive asthma inception and exacerbations are not
completely understood. Bronchial epithelial cells are the primary targets of respiratory viruses
and the main site of viral replication in the lower airways [99,100]. Hence, dysregulated epithelial
production of mediators that influence the immune response has been suggested as one explanation
to why respiratory infections trigger asthmatic and allergic reactions in susceptible individuals.
Even though RSV, influenza virus, and some additional respiratory viruses have been detected in
airway samples from asthma patients with exacerbating disease, RV infections are by far the most
frequent cause of viral-induced asthma exacerbations, accounting for up to 70–80% of all cases [101].
As a consequence, experimental studies on epithelial responses to RV infection in asthma currently
dominate the research field.

Early host recognition of respiratory viruses by the airway epithelium mainly occurs through a
number of PRRs that sense viral RNA. Replication of single-stranded RNA viruses such as RV leads
to the production of double-stranded RNA (dsRNA), which is recognized as a potent stimulus for
antiviral innate immune responses [102]. Airway epithelial cells constitutively express TLR3, which in
a coordinated manner with the IFN-inducible RLRs melanoma differentiation-associated gene (MDA)-5
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and RIG-I, interacts with dsRNA, leading to activation of downstream signaling pathways involving
NF-κB and IRF3/IRF7 [102,103]. Ultimately, this results in the production of type I (IFN-α/β) and III
(IFN-λ1, 2, and 3) IFNs [104]. In addition, a wide range of proinflammatory cytokines (IL-1β, IL-6),
chemokines (CXCL8, CXCL5, CXCL10, CCL5/RANTES), and growth factors (G-CSF, GM-CSF) are
produced, which can contribute to the activation and recruitment of various immune cells to the
airways [104].

Epithelial generation of IFNs is essential for effective antiviral responses and viral clearance.
IFNs are able to induce hundreds of IFN-stimulated genes, which cooperate to limit viral replication
and invasion by a number of mechanisms [105]. Despite some controversial reports, there is evidence
that RV-induced epithelial production of IFNs is reduced in some individuals with asthma, providing
one plausible explanation to the increased susceptibility to viral infections in at least a subgroup of
asthmatic individuals. Wark et al. were the first to demonstrate impaired IFN production in the
asthmatic epithelium. In their study they found that HBECs from subjects with asthma exhibited
increased RV replication in vitro compared with healthy individuals, and that this was reflected by
delayed and deficient IFN-β induction [106]. Contoli et al. later made similar observations of deficient
IFN-λ induction in RV-infected HBECs from atopic individuals with asthma [107]. By using a human
experimental model of RV exacerbation, the authors further showed that exacerbation severity was
inversely proportional to IFN-λ generation. Though there have been contradictory results [108–110],
these initial findings have since been confirmed in several reports [111–116], and different factors have
been proposed to negatively regulate RV-induced epithelial IFN production, including suppressor
of cytokine signaling (SOCS)1, the T2 cytokines IL-4 and IL-13, HDM, and oxidative stress [117–120].
Despite extensive research, however, mechanistic insight into the impaired IFN responses in asthmatic
individuals is still lacking and further studies are warranted.

Viral infections are classically associated with the induction of a T1 immune response. Yet, emerging
evidence suggests the involvement of the T2-promoting cytokines IL-25, IL-33, and TSLP in the response
to respiratory viruses and associated exacerbations in asthma. By using a human experimental model
of RV exacerbation, Jackson et al. found that subjects with asthma had increased levels of IL-33 and that
this correlated with the T2 cytokines IL-5 and IL-13 in the airway lining fluid as well as exacerbation
severity after virus inoculation [121]. They also showed that supernatants from RV-infected HBECs
triggered IL-33-dependent induction of IL-4, IL-5, and IL-13 in human T cells and ILC2s in vitro. In a
similar model, Beale et al. showed that IL-25 was induced by experimental RV infection, and that IL-25
expression both at baseline and during infection was higher in asthmatic individuals [122]. They further
demonstrated in vitro that RV-infected HBECs from asthmatic subjects had greater IL-25 induction
compared with cells from healthy individuals. Moreover, several studies have found overproduction of
TSLP in response to dsRNA or RSV infection ex vivo in HBECs from asthmatic individuals compared
with healthy controls [112,123,124]. Taken together, these data suggest that airway epithelial cells
from asthmatic individuals may have an increased capacity for IL-33, IL-25, and TSLP production in
response to virus infections, and that these cytokines may be important mediators in exaggerated T2
inflammatory responses in viral-induced asthma exacerbations. The biological functions of IL-33, IL-25,
and TSLP, as well as their proposed roles in T2 immunity and asthma, will be further discussed below.

6. Epithelial-Derived Cytokines as Master Regulators of T2 Immunity

Overwhelming evidence supports a central role for the three epithelial-derived cytokines, TSLP,
IL-33, and IL-25, in asthma. These three cytokines, commonly referred to as alarmins, act as master
regulators that mediate both innate and adaptive immune responses, leading to sustained T2-skewed
inflammation (Figure 2). Although distinct in their mode of action, crosstalk within this triad of alarmins
is likely to exist and is underpinned by the findings that some of the triggers for release are shared by
all three cytokines. In light of the strong indication that they act as upstream drivers of T2-mediated
disease, TSLP, IL-33, and IL-25 have attracted a lot of interest as potential therapeutic targets in asthma,
and monoclonal antibodies targeting TSLP and IL-33 are currently under clinical evaluation.
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Figure 2. The epithelial-derived cytokines TSLP, IL-33, and IL-25 are released in response to various
insults, including allergens and respiratory viruses, and act as key upstream drivers of type 2
inflammation in the airways through effects on both innate and adaptive immune cells.

6.1. TSLP

TSLP is a member of the IL-2 cytokine family and considered a pivotal upstream cytokine driving
a pronounced T2 immune response [125–127]. The airway epithelium is a major source of TSLP under
both homeostatic and inflammatory conditions [128–130]. A range of stimuli involved in asthma
pathogenesis, including respiratory viruses, proinflammatory (TNF-α and IL-1β) and T2 (IL-4 and
IL-13) cytokines, and proteolytic allergens have been shown to cause increased expression and release
of TSLP from airway epithelial cells through activation of different PRRs and cytokine receptors,
supporting its function as an alarmin signaling a compromised airway epithelium [78,123,126,131–134].

TSLP binds to a heterodimeric receptor complex composed of the TSLP receptor (TSLPR) and
the IL-7Rα chain. The broad effect of TSLP on the immune response in the airways is reflected by the
various cell types that express the TSLPR, including many cells of the hematopoietic system, but also
structural cells like airway smooth muscle cells [135,136]. The role of TSLP in asthma and allergic
inflammation has been extensively investigated. Both in vitro and in vivo studies have demonstrated a
strong link between TSLP expression and the production of IL-4, IL-5, and IL-13, which are central in the
development of a T2 phenotype in asthma [125,133,137–140]. It is believed that a major T2 promoting
effect of TSLP is its ability to induce OX40 ligand on DCs, priming them to drive differentiation of naive
CD4+ T cells into functional Th2 cells, which produce IL-4, IL-5, and IL-13 [125,139,140]. In addition,
TSLP can interact directly with other cells of the immune system, such as mast cells, eosinophils,
Th2 cells, and ILC2s to promote a T2-biased inflammatory response [126,133,138,141–143].

As previously mentioned, several single-nucleotide polymorphisms (SNPs) in the TSLP gene
associated with increased asthma risk have been identified through GWA studies, indicating a role of
TSLP in asthma pathogenesis [39,48,144]. In support of these findings, a number of studies have shown
that TSLP expression is elevated in the airway epithelium and bronchoalveolar lavage (BAL) fluid of
individuals with asthma and that it correlates with disease severity and loss of lung function [128–130].
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Furthermore, clinical trials have now provided strong evidence for a central role of TSLP as an important
modulator in asthma. A humanized monoclonal anti-TSLP antibody, tezepelumab, which blocks the
interaction of TSLP with TSLPR recently completed a phase 2 clinical trial for uncontrolled, severe
asthma where tezepelumab-treated individuals displayed significant reduction in asthma exacerbation
rate together with improved lung function and asthma control [145]. In addition, an earlier clinical trial
demonstrated that anti-TSLP reduced bronchoconstriction and airway inflammation in mild asthmatic
individuals before and after allergen challenge [146].

6.2. IL-33

IL-33 is a member of the IL-1 superfamily and has been forwarded as a multifactorial alarmin
cytokine with critical roles in T2 immunity and asthma pathophysiology [147]. Airway epithelial cells
are the primary cell type in the human airways that express IL-33 under basal conditions, where it
is predominantly localized to the nucleus in a full-length precursor form [148,149]. Cellular release
of immunologically active full-length IL-33 (IL-33FL) occurs rapidly following epithelial injury or
exposure to environmental stressors such as airborne allergens and viruses [80,81,121]. Although IL-33
has primarily been considered to be passively released due to cell necrosis, findings also indicate active
mechanisms of IL-33 secretion in response to allergens, mediated via purinergic receptor-dependent
signaling or dual oxidase 1 (DUOX1)-dependent activation of EGFR-signaling [80,81].

Similar to other IL-1 family cytokines, the activity of IL-33 is regulated by both its cellular
localization and by proteolytic cleavage. Recent studies have shed new light on how IL-33 activity
can be regulated by direct sensing of proteolytic activities, as well as oxidative changes. Cayrol et al.
demonstrated that various allergens with protease activity, including HDM, Alternaria, Aspergillus
fumigatus and pollens, can induce IL-33FL release and subsequent cleavage in a central sensor domain
into a shorter form with considerably enhanced bioactivity that potently stimulates ILC2s [150].
In another study, Scott et al. demonstrated that IL-33 activity can be enhanced by proteolytic
mechanisms involving allergen proteases as well as endogenous proteases from damaged airway
epithelial cells [151]. In addition, they showed that allergen proteases degraded mature oxidized forms
of released IL-33, suggesting a regulatory mechanism for rapid inactivation of IL-33 in an oxidative
milieu, such as during tissue injury.

IL-33 binds to a heterodimeric receptor formed by IL-1 receptor-like 1 (IL1RL1, also known as
ST2) and the IL-1 receptor accessory protein, which leads to activation of NF-kB and MAPK signaling
pathways [147,152]. In addition to membrane-bound ST2, there is also a soluble form (sST2), which can
act as a decoy receptor to sequester free IL-33, preventing IL-33/ST2 signaling [152]. The most established
function of IL-33 is activation of ST2 expressing immune cells involved in T2 immunity, such as ILC2s,
Th2 cells, mast cells, eosinophils, basophils, and DCs [153–159]. The functional role of IL-33 in T2
immunity-associated allergic responses and asthma has been extensively investigated in vivo and
numerous studies have shown that inhibition of IL-33/ST2 signaling attenuates T2 inflammation in
murine models of allergic asthma [155,157,160–162].

Significant associations between genetic variants of IL33 and IL1RL1 and human asthma have
consistently been identified in several genetic studies, suggesting that the IL-33/ST2-axis is likely to
play a role in the disease [39,144,163]. In support of this, IL-33 has been shown to be upregulated in
the airway epithelium and BAL fluid from individuals with moderate to severe asthma, and release of
IL-33 is increased during experimental RV-induced asthma exacerbation [121,149]. Clinical phase 2
trials with monoclonal antibodies targeting either IL-33 or ST2 are currently ongoing and will evaluate
the potential of IL-33 as a therapeutic target in asthma.

6.3. IL-25

IL-25, also known as IL-17E, is a member of the IL-17 cytokine family, consisting of six structurally
related but functionally distinct proteins [164]. Whereas other IL-17 cytokine members such as IL-17A
and IL-17F seem to have important roles in neutrophilic inflammation, proinflammatory cytokine
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induction, and T1 immunity, IL-25 is unique in that it promotes T2 immune responses, including
eosinophilic inflammation and overproduction of IL-4, IL-5, and IL-13 [165]. A specialized group of
epithelial cells called solitary chemosensory cells were recently identified to be the main epithelial
source of IL-25 in the upper airways [166]. Airway epithelial cells have been demonstrated to
contain preformed IL-25, which is stored or sequestered in the cytoplasm [79]. When exposed to
protease-containing allergens such as HDM, epithelial cells rapidly release IL-25, implying a role in
allergic disease [79]. Other proteases, such as papain and trypsin, or breakdown of cell-cell adhesion
molecules may also trigger epithelial release of IL-25 [79,167]. The exact mechanisms of IL-25 release
and regulation, however, have yet to be defined.

IL-25 binds to a heterodimeric receptor, IL-17RA/IL-17RB (IL-25R), which is expressed on several
cell types such as ILC2s, activated memory Th2 cells, TSLP-activated DCs, mast cells, eosinophils,
and endothelial cells [164,168–170]. Thus, IL-25 is able to mediate both innate and adaptive immune
responses to induce a sustained T2-biased mucosal inflammation. For example, IL-25 may amplify
Th2-cell dependent pathways leading to enhanced allergic inflammation [171]. Although IL-33
seems to be superior in driving the development and activation of ILC2s, IL-25 also functions as an
ILC2-inducing cytokine [159].

Studies in both mice and humans suggest a role for IL-25 in asthma. Different experimental
murine models have shown that allergic inflammation can be attenuated by blocking IL-25
signaling [122,167,172]. In a study by Cheng et al., the role of IL-25 in the lower airways was investigated
in steroid naive, newly diagnosed asthmatic individuals and healthy control subjects [173]. By analyzing
bronchial brushings and biopsies, BAL, sputum, and blood, the authors could reveal an “IL-25-high”
subgroup among asthmatic individuals who exhibited increased airway epithelial expression of
IL-25 associated with severe airway eosinophilia, marked subepithelial fibrosis, higher expression
of MUC5AC and elevated IgE levels. Further, plasma IL-25 levels correlated with epithelial IL-25
expression, suggesting that IL-25 may have potential as a systemic biomarker for stratifying patients
for treatment. As previously described, a role for IL-25 in viral-induced asthma exacerbations has also
been indicated [122]. Although the collected data supports an association between IL-25 and asthma,
clinical trials using anti-IL-25 antibodies, as for TSLP and IL-33, have not yet been conducted.

7. The Effect of T2 Inflammation on the Airway Epithelium

Airway epithelial cells are able to respond to many cytokines, both pro- and anti-inflammatory,
including the key T2 cytokines IL-4, IL-5, and IL-13 [174–176]. Several studies by Woodruff and
colleagues have demonstrated the ability of the airway epithelium to respond with unique gene and
protein signatures in response to T2 cytokines, and that these signatures could be used as biomarkers
for T2 asthma [177–179]. One of the proteins from this T2 signature is periostin, which is increased in
epithelial cells in response to IL-13 +/− IL-4 [177,180,181], and which may have potential as a systemic
biomarker of eosinophilic airway inflammation [182,183]. Periostin, a matricellular protein, has been
implicated in processes related to airway remodeling such as cell proliferation, collagen production
and epithelial-to-mesenchymal transition [184], as well as subepithelial fibrosis [185], mainly driven
by TGF-β activation. Periostin could also increase the expression of mucin genes in airway epithelial
cells [186], as well as act as a binding partner for eosinophils and thereby promote their migration [187],
both processes involved in T2 airway inflammation and asthma (Figure 2).

A widely studied effect from T2 cytokines on the epithelium is the induction of mucus
production [11,188], an important clinical feature in asthma (Figure 2). The effect is mediated by
altered expression and secretion of the mucins MUC5AC and MUC5B, which have different viscoelastic
properties and are therefore believed to have different roles in the human airways. MUC5AC is
commonly found to be increased in asthmatic individuals and in airway epithelia exposed to IL-13,
whereas there are conflicting results around levels of MUC5B, meaning that the ratio between the
two mucins may be altered in asthma, leading to altered properties of the mucin gel layer [189,190].
Linked to increased mucus production are SPDEF (SAM pointed domain-containing Ets transcription
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factor) and CLCA1, both also induced by T2 cytokines in the airway epithelium and the latter,
as mentioned previously, is also linked genetically to asthma and part of the epithelial T2 signature
introduced above [47,177,191,192]. Out of these, SPDEF, a transcription factor, appears to be most
critical for goblet cell hyperplasia and increased mucus release in human [191,193], which when silenced
or knocked out abolishes goblet cell differentiation and mucus release, by decreasing both CLCA1 and
MUC5AC [192,194]. How CLCA1 modulates mucus production and secretion is, however, not yet
fully elucidated and points towards possible differences between mice and man [195,196], but there
are indications that CLCA1 could activate MAPK13 which in turn increases MUC5AC expression [197]
whereas blocking chloride channels by niflumic acid lowers MUC5AC expression [198].

The increase in mucus production can lead to mucus plugging and impaired mucociliary clearance,
the latter possibly due to IL-13-induced tethering of the mucus gel to the epithelial cells rather than
impaired ciliary function [199]. A recent single-cell sequencing study identified a novel mucous ciliated
cell state in asthma, induced by T2 cytokines, which could contribute to mucous cell metaplasia [200].
Mechanistic studies are being employed to further understand this effect and thus aid in how to possibly
modulate mucus hypersecretion in asthma. Studies have highlighted the importance of autophagy
in IL-13-induced mucus production [201], as well as the involvement of NOTCH3 signaling [202],
both providing possible pathways for therapeutic intervention. The airway epithelium also responds
to T2 cytokines by secreting proteins that could aid in counteracting impaired mucociliary clearance.
An example of this being gelsolin, which has been found to be increased in epithelial cell cultures
treated with IL-4, where it may improve fluidity of the airway surface liquid through the breakdown
of released filamentous actin [203].

Another important clinical feature in asthma is increased nitric oxide, a gas involved in airway
reactivity and inflammation, which is detectable in exhaled breath and used as a biomarker for T2
asthma [204–207]. Higher levels of nitric oxide are usually linked to increased levels of inducible nitric
oxide synthase (NOS2) in the airway epithelium, which can be normalized through the administration
of corticosteroids [208–210]. Several cytokines can increase the levels of NOS2 on both the gene and
protein level [208,210], though the effect is suggested to be stronger from T2 cytokines including IL-4
and IL-13 [181,211].

A key inflammatory cell in T2 asthma is the eosinophil, of which there are increased numbers both
locally and systemically in individuals with asthma. Eosinophils are recruited by eotaxins, a group
of chemokines with three members in humans, comprised of CCL11 (eotaxin-1), CCL24 (eotaxin-2),
and CCL26 (eotaxin-3). Of these, CCL26 has been shown to be the strongest inducer of eosinophil
migration in asthmatic individuals [212]. Several studies have shown that this chemokine is strongly
induced by IL-13 in airway epithelial cells (Figure 3) [181,207,213,214] and further that it is elevated
in serum and bronchial biopsies from asthmatic individuals [183,207] and correlates with sputum
eosinophil counts [213]. Recently, interest has grown when it comes to the involvement of extracellular
vesicles, or exosomes, in asthma pathology and their potential as biomarkers. Airway epithelial cells
have been shown to secrete extracellular vesicles that could be involved in cell-cell communication
both during homeostasis and disease. These epithelium-derived vesicles tend to be coated with mucins,
and the number of vesicles increase upon stimulation with T2 cytokines [179,215–218]. Additionally,
in T2 conditions, epithelium-derived exosomes can induce chemotaxis of macrophages [206] and their
cargo, such as proteins and microRNA (miRNA)s, are altered [181,219,220], all possibly contributing to
pathological pathways observed in asthma.
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8. Epigenetic Regulation of the Airway Epithelium in Asthma

The common feature of epigenetic mechanisms is that they regulate gene expression without
affecting the nucleotide sequence of the genomic DNA [221]. The classical epigenetic modifications
are DNA methylation and histone modifications, both of which are highly relevant to asthma
pathophysiology. A recent study by Stefanowicz et al. showed six histone modifiers to be
differently expressed in airway epithelial cells derived from individuals with asthma as compared
to healthy individuals [222,223]. In addition to human studies, beneficial effects by targeting histone
deacetylases have been carried out in animal models of asthma (can be reviewed in [224]). However,
DNA methylation is probably the most studied epigenetic modification in general, but also in asthma.
Indeed, a recent study demonstrated that SNPs identified by GWA studies affect asthma risk through
DNA methylation and expression of cis-genes in airway epithelium [225]. In another study, bronchial
mucous tissues obtained from atopic or non-atopic individuals with asthma revealed similar DNA
methylation levels as in healthy control. Importantly, a set of loci was identified with significant
differences in DNA methylation between the asthma groups [226]. Several studies have demonstrated
DNA methylation changes in asthma genes, induced by environmental factors [227–229]. RV infection
was shown to induce DNA methylation changes in nasal epithelial cells derived from both children
and adults with asthma. Furthermore, diesel exhaust particle exposure and allergen challenge induced
DNA methylation patterns in human airway epithelial cells 48 h post exposure. In addition to DNA
methylation changes, airway epithelial gene expression can be modulated by miRNAs. Thus, miRNAs
have shown to be differentially expressed in bronchial epithelial cells following tobacco smoke exposure,
diesel exhaust particle exposure, and virus exposure (reviewed in [230]). These data highlight the
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role of environmental exposures in epigenetic regulation of gene expression in airway epithelium
in asthma.

8.1. Epigenetic Regulation of the Airway Epithelium through miRNAs

Although the classical epigenetic modifications mentioned above are the most studied mechanisms
to date, noncoding RNAs such as miRNAs are involved in the epigenetic regulation of epithelial
gene expression. miRNAs are gene-regulatory small noncoding RNAs that bind to target mRNAs
leading to mRNA degradation and in some cases translational repression [231–233]. miRNAs are
crucial in most biological and pathological processes, including immune responses, cell proliferation,
cell differentiation, and apoptosis. To date there are a limited number of studies examining miRNA
expression in the airway epithelium of asthmatic individuals compared to healthy individuals.
However, one of the first studies using bronchial brushing samples of airway epithelial cells from
asthmatic individuals, cultured at ALI, demonstrated higher expression of let-7f, miR-181c, -487b
and lower expression of miR-203 compared with healthy control samples. Network analysis has
suggested the aquaporin gene AQP4 as a target gene of miR-203 and this gene was also shown to be
highly increased in cells from asthma patients [234]. However, recent studies have identified Abelson
tyrosine kinase (Abl) as a target for miR-203, which may have functional impact on epithelial cell
proliferation, adhesion, growth, and development [235]. Therefore, a reduced level of this miRNA in
airway epithelium in asthma may lead to cell proliferation and goblet cell hyperplasia [234].

In another study, bronchial brushings from asthma patients have shown a reduced expression of
miR-181b, which was inversely correlated with sputum eosinophilia. Interestingly, overexpression
of miR-181b reduced levels of IL-13 induced secretion of IL-1B and the eosinophil chemoattractant,
eotaxin-1 (CCL11) by targeting SSP1 in a bronchial epithelial cell line. Furthermore, dexamethasone
restored IL-13-induced miR-181b downregulation and inhaled corticosteroid treatment increased
miR-181b in plasma from asthma patients. This study highlights a possible role for miR-181b as
a biomarker for eosinophilic asthma [236]. In addition, the miR-34/449 family (miR-34b, miR-34c,
miR-449a, and miR-449b) were shown to be suppressed in bronchial brushings from individuals with
asthma, which was associated with an increased IL-13 expression (Figure 3). Interestingly, IL-13-induced
inhibition of miR-34/449 family members resulted in an altered mucociliary differentiation towards
a reduced number of ciliated cells and increased number of mucous cells, suggesting a role for this
miRNA family in asthma pathogenesis [237].

A recent study has suggested that reduced levels of miR-146a in HBECs from asthma patients
may contribute to neutrophilic asthma. However, reduced levels of miR-146a were found irrespective
of asthma phenotype, but the neutrophil chemoattractant CXCL8 and CXCL1 were only increased
in the neutrophilic asthma phenotype [238]. Both stimulated and unstimulated HBECs transfected
with miR-146a mimics revealed reduced levels of both CXCL8 and CXCL1 mRNA. Even though the
exact target for miR-146a was not identified, this study suggests that reduced levels of miR-146a may
contribute to the development of a neutrophilic asthma phenotype [238].

8.2. miRNAs and the Airway Epithelial Barrier in Asthma

Little is known about how miRNAs influence the epithelial barrier function in asthma. However,
studies have suggested that the impact of miRNAs on the airway epithelium may differ with severity
of disease. Notably, several differentially expressed miRNAs in airway epithelial cells target genes
involved in airway epithelial barrier functions (Figure 3). In severe asthma, miR-19, -221, and -744
were shown to be differently expressed in HBECs, specifically from individuals with an eosinophilic
allergic asthma [239–241]. miR-19a was shown to enhance proliferation of HBECs, specifically in
severe asthmatics by targeting the TGF-β2 receptor in HBECs [240]. In contrast to miR-19 and -221,
the expression miR-744 was reduced in HBECs from severe asthma. This miRNA inhibits proliferation
of HBECs by regulating the Smad3 pathway via targeting TGF-β1, a major proinflammatory mediator
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involved in fibrotic tissue remodeling within the asthmatic lung, highlighting a possible role for this
miRNA in asthma pathogenesis [241].

8.3. miRNAs and Airway Epithelial Cell Responses to Virus Infection

Common viruses that affect the respiratory system are human RVs, RSV, and influenza viruses.
As previously described, these viruses are known to cause illness and exacerbations in individuals with
asthma. One of the most studied miRNAs is miR-155, which, in addition to regulating T2 inflammation
in animal models of asthma [242,243], has been shown to be involved in RV replication in HBECs [244].
Inhibition of miR-155 in HBECs resulted in an increased viral replication of RV-1B [244]. An additional
study demonstrated decreased expression of miR-18a, -27a, -128 and -155 in HBECs derived from
individuals with asthma, and further knockdown of these miRNAs led to increased expression of the
proinflammatory cytokines IL-6 and CXCL8. Indeed, IL-6 and CXCL8 are known to be increased in
HBECs from asthmatics both under baseline conditions and after stimulation, suggesting a regulatory
role for miRNAs in the control of IL-6 and CXCL8 expression in asthma [245].

In addition, miRNAs have also been shown to take part in essential pro-viral host factors through
their regulation of the downstream p38 MAPK kinases, MK2 and Myc. Thus, miR-24, -124a, and -744
were shown to have antiviral effects on influenza A virus in the human lung epithelial cell line A549,
whereas miR-124a and -744 had antiviral effects in RSV infection. These antiviral effects were through
the suppression of the p38 MAPK pathway [246]. Influenza A viruses also increase the expression of
miR-29, -29c, -136, 449b, and let-7c in A549 cells [247–252]. All of these miRNAs affect the influenza A
viral response by targeting genes involved in antiviral host defense. In addition, miR-146a is induced
in influenza virus A infection and downregulation of miR-146a was shown to inhibit influenza A virus
replication by enhancing IFN type 1 responses by directly targeting the tumor necrosis factor receptor
association factor 6 (TRAF6) [253].

Together, these data suggest a role for miRNA regulation of immune responses to respiratory
viruses (Figure 3), and it is tempting to speculate that the miRNAs that affect virus replication therefore
play a pivotal role in virus-induced exacerbations in asthma.

9. Conclusions

Today it is evident that the airway epithelium is not merely a passive barrier, but an essential part
of the local immune response in the airways, bridging innate and adaptive immunity against various
environmental insults. Overwhelming evidence indicates that the airway epithelium is dysfunctional
in asthma, and plays a critical role in the development, progression, and exacerbation of the disease.
This impairment includes both structural and immunological components, which collectively may
influence the outcome of environmental challenges and contribute to asthma pathology. A role of the
airway epithelium in asthma is further supported by findings from GWA studies, where many genes
associated with asthma development are expressed in the airway epithelium.

Furthermore, epigenetic regulatory mechanisms may also contribute to abnormalities in asthma.
miRNAs have recently been recognized as important modulators of airway epithelial functions.
Although several studies have described differential expression of miRNAs in the asthmatic airway
epithelium, the functional consequences of such dysregulation have not been investigated to the same
extent. Hence, more mechanistic studies delineating the role of miRNAs in various aspects of airway
epithelial dysfunction, including barrier impairment and deficient antiviral responses, are warranted,
and could potentially pave the way for new treatment strategies in asthma.

About half of all individuals with asthma exhibit active T2 inflammation. It is now recognized
that factors beyond IgE-mediated allergen sensitization, such as respiratory viruses, can trigger T2
immune responses. In addition, various allergens, including HDM, have the capacity to stimulate
T2-skewed innate immune responses through epithelial PRR activation. The airway epithelium is a
major source of TSLP, IL-33, and IL-25, which are rapidly released in response to both viruses and
allergens. These alarmin cytokines activate various cells of both the innate and adaptive immune
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system, importantly DCs and ILC2s, thus acting as key upstream drivers of the T2 inflammatory
cascade in asthma. This notion has led to an immense interest in targeting these epithelial-derived
cytokines as a potential treatment strategy in asthma, and recent clinical trials blocking TSLP have
shown promising results.

When activated by the alarmins, immune cells secrete T2 cytokines, which further affects the airway
epithelium. This includes increased production of mucus and immune cell recruiting chemokines,
as well as effects on the epithelial barrier such as remodeling and fibrosis. These changes thus lead to
sustained inflammation and a persisting disease. Additionally, the epithelium is a potential source
of both local and systemic biomarkers in the form of for example proteins or miRNAs, as the large
surface area of the epithelium would enable production of high enough levels to be detected.

Taken together, it is clear that the airway epithelium is a central player in asthma, and further
insight into the regulatory mechanisms underlying airway epithelial dysfunction could identify novel
targets for future asthma intervention.
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AMP Antimicrobial peptide
DC Dendritic cell
ILC2 Type 2 innate lymphoid cell
GWA Genome-wide association
ALI Air-liquid interface
T2 Type 2
PAR-2 Protease-activated receptor 2
HDM House dust mite
Th2 T helper 2
EGFR Epidermal growth factor receptor
RV Rhinovirus
RSV Respiratory syncytial virus
PRR Pattern recognition receptors
TLR Toll-like receptor
HBEC Human bronchial epithelial cell
TSLP Thymic stromal lymphopoietin
IFN Interferon
dsRNA Double-stranded RNA
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BAL Bronchoalveolar lavage
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