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Variability in multiple paternity 
rates for grey reef sharks 
(Carcharhinus amblyrhynchos) and 
scalloped hammerheads (Sphyrna 
lewini)
M. E. Green   1,2,3, S. A. Appleyard1,2, W. White1,2, S. Tracey3 & J. Ovenden4

This study assessed the presence and prevalence of multiple paternity (MP) in litters of grey reef sharks 
(Carcharhinus amblyrhynchos) and scalloped hammerheads (Sphyrna lewini) opportunistically caught in 
Papua New Guinea (PNG). Litter size between species were significantly different with an average of 3.3 
pups for grey reef sharks and 17.2 pups for scalloped hammerhead. Using 14 and 10 microsatellite loci 
respectively, we identified MP in 66% of grey reef sharks (4 out of 6 litters) and 100% MP in scalloped 
hammerheads (5 litters). We found high paternal skew (the uneven contribution of sires per litter) and a 
positive correlation between female adult size and litter size in scalloped hammerheads but not in grey 
reef sharks. Differences in the frequency of MP between species and the identification of paternal skew 
may be linked with mating strategies and post-copulatory mechanisms. Multiple paternity is thought 
to benefit populations by enhancing genetic diversity therefore increasing the population’s genetic 
resilience to extrinsic pressures. The identification of MP in two shark species reported here, further 
elucidates the complex breeding strategies elasmobranchs undertake.

Increasing resolution of molecular tools allows for a greater understanding of shark and ray (elasmobranch) 
reproductive systems which are often difficult to observe in the wild1–3. Elasmobranchs exhibit a variety of repro-
ductive modes including live-bearing (viviparity), egg laying (oviparity)4 and parthenogenesis5 and also display 
monogamous and polyandrous mating behaviours6, 7. Elasmobranchs do not often form pairs before and/or after 
mating and do not provide postnatal care to offspring8, making their propensity for behavioural monogamy gener-
ally low. Instead, it is more likely for females to display polyandrous behaviour, mating with a number of males8, 9,  
the outcome of which may be a single litter, sired by many males and composed of full and half-siblings (sibs) 
(i.e. multiple paternity)10. Polyandry with multiple paternity has a number of benefits3, 11–13. Firstly the fitness of 
the mother is increased as she is more likely to produce offspring; secondly, the adaptive fitness of individuals 
within litter may be improved as genetic variation is more likely to increase; thirdly, increases in genetic diversity 
can counteract issues of inbreeding facilitated by close-kin mating (especially for small populations); and finally, 
multiple paternity can increase the effective population size by providing an opportunity for a greater number of 
males to mate with an increased number of females3.

The occurrence and prevalence of multiple paternity within an elasmobranch litter varies between species, 
populations and even individuals, but reasons for this are poorly understood3, 14. Previous studies have suggested 
the likelihood of genetic monogamy or polyandry within a litter is dependent on a number of factors including 
the mother’s size, home range or philopatric tendencies, population size, species-specific behaviours and the 
presence of post copulatory mechanisms (e.g. sperm storage)3, 12, 14–19.
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Sharks have life-history characteristics that make them highly susceptible to population declines, e.g. slow 
growth, delayed maturation and low fecundity20, 21. An estimated 25% of all shark and ray species are threatened 
under the criteria of the International Union for Conservation of Nature (IUCN) Red List, with overfishing con-
sidered one of the main causes21.

In Papua New Guinea (PNG), grey reef sharks (Carcharhinus amblyrhynchos) and scalloped hammerheads 
(Sphyrna lewini) are commonly caught by coastal artisanal and commercial fisheries. Regionally, the level 
of exploitation of both species is undocumented, making it difficult to assess the status of local populations. 
Globally, overexploitation has led to international conservation measures for scalloped hammerheads (i.e. listed 
as Endangered on the IUCN Red List22 and included in Appendix II of the Conservation on International Trade in 
Endangered Species), while grey reef sharks are recognised as Near Threatened (IUCN Red List), thereby demon-
strating the capacity to recover if managed accordingly23.

Grey reef sharks and scalloped hammerheads differ ecologically; while both species have overlapping distri-
butions, their habitat usage differs. Grey reef sharks have a strong affiliation with reef systems and often smaller 
individuals will show signs of site attachment to specific reefs24. Furthermore, telemetry studies have identified 
sex-specific movement traits for grey reef sharks, with males more likely to travel to neighbouring reefs than 
females25. Scalloped hammerheads display more complex habitat usage patterns including large ontogenetic dif-
ferences and broader sex-specific movement traits26, 27. Generally, juvenile scalloped hammerheads are found 
in shallower inshore waters, while adults migrate to deeper continental shelf environments27. Genetic analyses 
suggests females are more likely to display philopatric tendencies, adhering to coastal habitats, while males are 
known to disperse across oceans19. Both grey reef sharks and scalloped hammerheads form large female aggre-
gations27, 28 and, once gravid, they are known to move inshore seeking refuge in nursery areas for birthing19, 25.  
Additionally, scalloped hammerheads have post-copulatory mechanisms allowing for long-term (months to 
years)29 sperm storage.

Obtaining mother and litter information for sharks is challenging given mothers are required to be sacrificed 
for collection of pups, and the common opportunistic nature of sampling regimes often means sample sizes 
are limited3, 30. Recently, MP analyses were undertaken for scalloped hammerheads in southern Africa30. Using 
up to six microsatellite loci, Rossouw et al.30 identified MP in 46% of 13 litters tested. Given maternal popula-
tion differentiation has been identified between the regions and differences in average litter sizes, South Africa 
n = 3031 and Indo-Pacific n = 2532, it is of interest if rates of MP also differ between regions. Conversely, there 
has been no assessment of multiple paternity in grey reef sharks from any location. Here we investigated MP in 
grey reef sharks and scalloped hammerheads captured in the Indo-Pacific Ocean. Given that all studies which 
have undertaken paternity tests on shark litters have uncovered MP (see review in Rossouw et al.30) we predict 
MP will also be found for both species in this current study. However rates of MP are likely to differ given the 
variation in behaviour, ecology and physiology between the species. Using suites of microsatellite markers, litters 
were genetically determined as consisting of full or half sibs with an estimate of the number of fathers and their 
contribution to the litters in each species also obtained. This is the first study to investigate multiple paternity in 
grey reef sharks and the first for scalloped hammerheads in the Indo-Pacific Ocean.

Methods
Sampling and Microsatellite Analyses.  Sample collection was undertaken on board commercial fish-
ing vessels operating in PNG between 3rd May 2014 and 6th June 2014. Sampling was undertaken by observers 
deployed as part of an Australian Centre for International Agricultural Research project led by the National 
Fisheries Authority (NFA) of PNG and CSIRO to assess shark and ray catches throughout the commercial and 
artisanal fisheries in PNG (experiments approved by ACIAR and CSIRO; project FIS/2012/102). All samples were 
collected within a single month from the Bismarck and Solomon Seas (Fig. 1). Tissue samples including fin clips, 
vertebral chord or muscle were collected from pregnant females and all pups. Observers recorded total length of 
the adult females and measurements from the smallest and largest pups within a litter.

Figure 1.  Sample locations for grey reef sharks C. amblyrhynchos (circles) and scalloped hammerhead S. lewini 
(triangles) in Papua New Guinea. Map created using ArcMap 10.2.1 (http://desktop.arcgis.com/en/arcmap/).

http://desktop.arcgis.com/en/arcmap/
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DNA was extracted using the Wizard© SV Genomic DNA Purification system (Promega, Australia); tissue 
extractions were undertaken using SV minicolumns following modifications to the manufacturer’s instruc-
tions (i.e. overnight tissue digestion; amount of supernatant used to elute DNA was reduced; DNA elution times 
increased). DNA was quantified using a Nanodrop 8000 UV-Vis Spectrophotometer (Thermo Scientific, USA) 
and standardised to 20ng/uL.

Microsatellites from pups in each litter were amplified by Polymerase Chain Reaction (PCR) and compared to 
genotypes in the corresponding mother. Species-specific microsatellite primers for grey reef sharks and scalloped 
hammerheads were from Momigliano et al.33 and Nance et al.34 respectively33, 34. In the current study, microsat-
ellite multiplexes were developed to enable cost effective screening. Forward primers were labelled with 6-FAM, 
VIC, NED and PET proprietary dyes and multiplexed (Table 1). PCR reactions consisted of GoTaq© Colourless 
Master Mix (Promega, USA), Bovine Serum Albumin (Promega, USA), 0.2 µM of each individual F and R 
primer (see Table 1 for multiplexes), and 0.8 ng/µl DNA in a 25 µL reaction. For scalloped hammerheads, thermal 
cycling consisted of initial denaturation at 94 °C × 3 minutes, 35 cycles of 94 °C × 1 minute, 58 °C × 30 seconds, 
72 °C × 1 minute and a final extension of 72 °C × 10 minutes. Thermal cycling for grey reef sharks consisted of a 
touch-down protocol including initial denaturation at 94 °C × 3 minutes, 35 cycles of 94 °C × 1 minute, 5 cycles 
of 56 °C × 30 seconds, 5 cycles of 54 °C × 30 seconds, 25 cycles of 52 °C × 30 seconds, 35 cycles of 72 °C × 1 minute 
and a final extension of 72 °C × 10 minutes. Following PCR amplification, Gene ScanTM LIZ 500® size stand-
ard (Thermofisher Scientific, USA) and formamide were added to 3 µL of each PCR reaction and 20 µL sample 
volumes were run on an ABI 3130XL AutoDNA sequencer (Thermofisher, USA). Genotypes were scored and 
checked by eye using Geneious© R8.1.4 Microsatellite plug-in program (Biomatters Ltd Auckland, New Zealand).

Statistical Analysis.  For each microsatellite locus, numbers of alleles, allele frequencies, and observed (Ho) 
and expected heterozygosities (He) were determined using Genepop web service v4.0.1035. Significance of Ho and 
He tests were estimated by the Markov Chain method including 10,000 dememorizations, 500 batches and 10,000 
iterations (not reported). Polymorphic information content (PIC) was estimated using Cervus v3.036.

Analysis of paternity was initially checked by visual inspection of multi-locus genotypes. Secondly, putative 
fathers (number of sires) and paternal skew within litters were inferred using two programs: Gerud v2.037 which 
identifies the minimum number of fathers through exclusion calculations, and Colony v2.0.4.538 which uses a 
maximum likelihood approach. Polygamous mating systems were assumed for both sexes to allow for the assign-
ment of full and half-sibs in Colony. Probability of detecting multiple paternity was calculated post-hoc using 
PrDM software39 (available at http://publish.uwo.ca/~bneff/software.html). Six different scenarios were tested and 

Locus Name n Na Ho He PIC

C. amblyrhynchos 26

C. amb111 14 0.938 0.895 0.878

C. amb31 26 0.844 0.921 0.908

C. amb71 8 0.703 0.759 0.715

C. amb21 13 0.887 0.883 0.863

C. amb272 10 0.797 0.823 0.793

C. amb92 6 0.641 0.601 0.530

C. amb282 12 0.844 0.807 0.779

C. amb42 16 0.828 0.81 0.782

C. amb183 25 0.938 0.952 0.942

C. amb153 15 0.746 0.865 0.842

C. amb53 9 0.813 0.766 0.726

C. amb223 4 0.094 0.134 0.129

C. amb254 10 0.906 0.826 0.797

C. amb204 14 0.828 0.883 0.863

S. lewini 91

SLE0271 9 0.867 0.804 0.773

SLE0181 4 0.545 0.516 0.472

SLE0891 18 0.966 0.91 0.898

SLE0382 7 0.943 0.781 0.744

SLE0452 4 0.818 0.721 0.665

SLE0542 5 0.685 0.664 0.621

SLE0533 12 0.667 0.84 0.817

SLE0813 8 0.922 0.787 0.753

SLE0713 11 0.582 0.738 0.713

SLE0773 13 0.681 0.889 0.873

Table 1.  Characterisation of microsatellite loci for grey reef sharks (C. amblyrhynchos) and scalloped 
hammerheads (S. lewini). Number of individual mothers and pups (n), number of alleles (NA), observed 
heterozygosity (Ho), expected heterozygosity (He) and Polymorphic Information Criteria (PIC).

http://publish.uwo.ca/~bneff/software.html
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defined according to the number of pups per litter and the minimum number of fathers identified in Gerud v2.037. 
These scenarios were defined according to the number of pups observed in the present study (for each species) 
and the degree of paternity tested in other shark PrDM MP analyses3, 13, 15.

Results
Six litters of grey reef sharks and five litters of scalloped hammerheads were used to investigate the presence of 
multiple paternity for sharks captured in PNG waters. Litter size between the species was significantly different 
(P = 0.007, Wilcoxon rank sum test), with grey reef sharks having an average litter of 3.3 pups and scalloped 
hammerheads an average of 17.2 (Table 2). Sex ratios within litters showed no significant bias towards either sex 
(P > 0.05, chi-square test). Litter size was positively correlated with adult female length for scalloped hammer-
heads (P = 0.023, R2  = 0.859, Pearson’s rank correlation) but not for grey reefs (P = 0.675, R2 = 0.000) (Fig. 2). We 
note however, that these analyses are based on small sample sizes (i.e. litter numbers per species) and should be 
treated with caution.

Species

Total 
Length 
(cm)

Litter 
Size

M:F 
Ratio

Size range 
of pups 
(cm)

# Sires 
(Gerud)

Skew 
(Gerud)

# Sires 
(Colony)

C. amblyrhynchos 160 4 3:1 51–54 2 2:2 2

C. amblyrhynchos 160 5 3:2 52–56 2 3:2 3

C. amblyrhynchos 153 3 0:3 40–41 2 2:1 2

C. amblyrhynchos 158 3 1:2 54–56 1 - 1

C. amblyrhynchos 150 2 1:1 45–62 1 - 1

C. amblyrhynchos 177 3 3:0 20–21 2 2:1 2

S. lewini 249 18 8:10 46–50 3 6:10:2 8

S. lewini 292 25 17:8 44–51 3 5:17:3* 7

S. lewini 238 13 NA 5–7 4 3:5:3:2 4

S. lewini 209 13 4:9 38–41 2 10:3* 2

S. lewini 235 17 9:8 42–48 4 8:3:4:2 3

Table 2.  Summary of analysed litters, including female total length, litter size, sex ratio of pups (M:F Ratio), 
size range of pups, number of sires as estimated by Gerud and Colony, skew (paternal) for grey reef sharks 
(C. amblyrhynchos) and scalloped hammerhead (S. lewini). NA Indicates pups were too young to identify sex, 
*P < 0.05 chi-square test.

Figure 2.  Correlation between adult female length (TL) and litter size for grey reef sharks (C. amblyrhynchos) 
and scalloped hammerhead (S. lewini). Shaded points indicate litter with multiple paternity, unshaded 
represents litters without multiple paternity.
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Alleles were amplified in microsatellite suites of 14 and 10 loci for all mothers and pups across 26 grey reef 
sharks and 91 scalloped hammerheads, respectively (Table 1). Ho ranged from 0.094–0.938 in grey reef sharks 
and 0.545–0.966 in scalloped hammerheads. Polymorphic Information Content (PIC) values were generally high, 
with 86% and 70% of grey reef shark and scalloped hammerhead loci greater than 0.7 respectively. The probability 
of detecting multiple paternity (PrDM) was highest for scalloped hammerheads (0.94-1), while probabilities were 
varied and reduced for grey reef sharks (0.47-1; Table 3). Number of loci had less effect than the number of pups 
within a litter in the detection of multiple paternity. Multiple paternity was identified in 66% of grey reef shark lit-
ters (4 out of 6) and in all scalloped hammerhead litters (all five) (Table 2). The number of putative fathers ranged 
from 1–3 for grey reef sharks and 2–8 for scalloped hammerheads based on Gerud and Colony estimates. In most 
cases, Colony analysis detected the same or a higher number of sires than Gerud. Paternal skew was identified in 
two scalloped hammerhead litters indicating an uneven contribution of pups per sire (Table 2).

Discussion
Results from this study provide the first evidence of multiple paternity in grey reef sharks, and the presence of 
MP in all studied litters of scalloped hammerheads in the Indo-Pacific Ocean. This is the first identification of 
100% MP for a species of shark (albeit with a limited number of litters, n = 5) and the second within all elasmo-
branchs studied; 100% multiple paternity (n = 4) has previously been identified in the thornback ray Raja clav-
ata40. Multiple paternity was observed in 66% of grey reef shark litters, but the power to detect multiple paternity 
decreases with decreasing litter size, as shown in PrDM analyses (Table 3). Given the small litter sizes, it is possible 
analyses presented here underestimate levels of MP for grey reef sharks. Alternatively, we believe small litter sizes 
may simply create a limited number of embryos available for fertilization by multiple males.

The percentage of litters reported to have MP for grey reef sharks (66%) is comparable to that of other large 
live bearing sharks, including the sandbar shark Carcharhinus plumbeus (40%)16. The benefits of polyandrous 
behaviour have been previously described and include ensuring successful fertility, increasing genetic diversity 
and genetic fitness (of mother and pups), and reducing close-kin mating (important, if populations are small or 
inbred)41–43. Our observation that polyandrous mating was detected in the larger of the grey reef shark females 
may have implications for populations exploited in PNG waters. For example, the gear used in longline fisheries 
including bait and hook size affect the size selectivity of a harvest44. If larger individuals are targeted and these 
individuals are more likely to undertake MP, their removal could mean reduced effective population size and a 
potential loss in genetic fitness for the population. It is therefore important future work (including larger sample 
sizes, than this current study) is undertaken to understand the relationship between MP and female size for grey 
reef sharks.

The finding of 100% multiple paternity in scalloped hammerhead litters in this study contrasts with another 
study which identified only 46% multiple paternity across 13 litters in South Africa30. Interestingly, however, 
Rossouw et al.30 reported an average litter size of seven pups, well below the documented litter size for scalloped 
hammerheads in South Africa (n = 30)31. Sharks in the Rossouw et al.30 study were captured in bather protection 
nets, and it is possible the mothers may have aborted the majority of pups prior to landing, potentially limiting 
the study to a subset of all pups in the litter. This could lead to an underestimate of the level of multiple paternity 
for scalloped hammerheads in South Africa.

Multiple paternity is thought to be more common in species that display high levels of philopatry and low dis-
persal rates, as such behaviour is likely to reduce the chance of individuals breeding with a genetically incompat-
ible (related) partner, thereby decreasing the chance of localized inbreeding depression3, 11, 43. For both scalloped 
hammerhead and grey reef sharks, genetic19, 45 and telemetry studies25, 46 have revealed strong patterns of female 
mediated site fidelity and male-biased dispersal. Male dispersal has been prevalent enough to facilitate connec-
tivity (gene flow) between reefs spanning 1,200 km for grey reef sharks45 and across ocean basins for scalloped 
hammerheads19. For both species in PNG, it would seem the presence of MP is unlikely to be driven by the threat 
of close-kin mating or inbreeding depression, given the significant gene flow facilitated by male dispersal in these 
species shown elsewhere.

Two of the five scalloped hammerhead litters were identified as having significant paternal skews. The pres-
ence of paternal skew, (i.e. the uneven contribution of sires to a litter) is thought to be attributed to a combination 

Paternal skew

Litter Size

C. amblyrhynchos S. lewini

3 4 5 13 17 18 25

2 males (50:50) 0.74 0.88 0.94 1.00 1.00 1.00 1.00

2 males 
(66.7:33.3) 0.71 0.84 0.91 1.00 1.00 1.00 1.00

2 males (80:20) 0.47 0.59 0.68 0.94 0.98 0.98 1.00

3 males 
(33.3:33.3:33.4) 0.88 0.96 0.99 1.00 1.00 1.00 1.00

3 males 
(57:28.5:14.5) 0.78 0.89 0.94 1.00 1.00 1.00 1.00

4 males 
(25:25:25:25) 0.93 0.99 1.00 1.00 1.00 1.00 1.00

Table 3.  Probability to detect multiple males (PrDM) using different suites of microsatellite markers: 14 loci for 
C. amblyrhynchos and 10 loci for S. lewini under a number of paternal skew scenarios.
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of female choice, the timing/order of males mating, and sperm competition18, 30. The processes of post-copulatory 
mechanisms are thought to increase the level of paternal skew within a litter47–50. Scalloped hammerheads have 
complex oviducal glands capable of stimulating bundles of sperm to be released, giving control over sperm utili-
zation and its contribution to paternal skew within a litter29, 51, 52. Additionally, it is thought that polyandrous mat-
ing may create an internal environment within a female that promotes sperm competition, leading to increased 
fertilization and consequently increased fitness of young (‘sexy-sperm hypothesis’)53, 54. This hypothesis suggests 
females mate with different males to create conditions selecting for the most competitive sperm; which results 
in male offspring possessing the gene for heightened sperm competitiveness and therefore increasing offspring 
fitness54. It is possible males with heightened sperm competitiveness would sire more pups within a litter creating 
paternal skew. The mechanisms behind paternal skew in scalloped hammerheads could be one or a combination 
of factors described here and remains unresolved. The observed lack of paternal skew in grey reef sharks may be 
connected to the smaller litter size of the species; more litters are required to conclusively verify this hypothesis.

The results of this research concur with similar studies and reiterate the prevalence of MP in sharks. Our 
results highlight the difference in litter size between the grey reef sharks and scalloped hammerheads and demon-
strates differences in levels of multiple paternity. Additionally, the discovery of positive correlations between 
adult size, litter size and MP suggests genetic mating systems in sharks are complex and may be species- and 
location-specific. Sample sizes presented here are relatively small and further investigation is required to con-
clusively understand the relationship between adult size and breeding behaviours. However, a number of studies 
assessing multiple paternity in sharks (and elasmobranchs more widely) have tested five or less litters1, 13, 40, 42, 55, 56 
and given the opportunistic nature and difficulties associated with sampling gravid elasmobranchs, the findings 
from this research provide valuable insight for these two species.
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