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Magnetic resonance imaging (MRI) is regularly used for stereotactic imaging of 
Gamma Knife (GK) radiosurgery patients for GK treatment planning. MRI-induced 
thermal injuries have occurred and been reported for GK patients with attached 
metallic headframes. Depending on the specific MR imaging and headframe con-
ditions, a skin injury from MRI-induced heating can potentially occur where the 
four headframe screws contact the skin surface of the patient’s head. Higher MR 
field strength has a greater heating potential. Two primary heating mechanisms, 
electromagnetic induction and the antenna effect, are possible. In this study, MRI-
induced heating from a 3T clinical MRI scanner was investigated for stereotactic 
headframes used in gamma radiosurgery and neurosurgery. Using melons as head 
phantoms, optical thermometers were used to characterize the temperature profile 
at various points of the melon headframe composite as a function of two 3T MR 
pulse sequence protocols. Different combinations of GK radiosurgery headframe 
post and screw designs were tested to determine best and worst combinations for 
MRI-induced heating. Temperature increases were measured for all pulse sequences 
tested, indicating that the potential exists for MRI-induced skin heating and burns at 
the headframe attachment site. This heating originates with electromagnetic induc-
tion caused by the RF fields inducing current in a loop formed by the headframe, 
mounting screws, and the region of the patient’s head located between any of the 
two screws. This induced current is then resistively dissipated, with the regions of 
highest resistance, located at the headframe screw–patient head interface, expe-
riencing the most heating. Significant heating can be prevented by replacing the 
metallic threads holding the screw with electrically insulated nuts, which is the 
heating prevention and patient safety recommendation of the GK manufacturer. 
Our results confirm that the manufacturer’s recommendation to use insulating nuts 
reduces the induced currents in the headframe nearly to zero, effectively preventing 
heating and minimizing the likelihood of thermal injury. 

PACS numbers: 87.57.-s, 87.61.-c, 87.61.Tg, 87.57.c- 
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I. InTRoducTIon & BackgRound

Magnetic resonance imaging (MRI) is increasingly used in radiation oncology departments for 
radiation treatment planning because of the excellent contrast for soft tissues and tumors.(1-3)  
MRI is also considered a primary imaging modality for Gamma Knife (GK) stereotactic ra-
diosurgery treatment planning. Important MRI safety issues that may be new to the radiation 
oncology clinic include potential damage and injury to property, patients and staff from several 
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sources: the rapid acceleration of nearby ferromagnetic objects by the high-static magnetic field 
(up to 3 T for clinical units);(4-11) the gradient fields, which have been shown to induce nerve 
stimulation in humans;(12,13) the cryogenics, which can cause severe frostbite, suffocation, and 
substantial explosions if the pressure relief system of the cryogen containers become defec-
tive;(14) and the radiofrequency (RF) fields, which are likely the primary source of MRI-induced 
thermal injury.(9,15-23)

This study is motivated by the increasing number of reports of MRI-induced patient thermal 
injuries, including burns,(9,13-23) and by our clinic’s use of a dedicated 3T MR simulator(1,2) that 
serves as an integral part of an active GK radiosurgery program. The causes of reported MRI-
induced thermal injuries and burns are often not well understood, are sometimes described as 
unknown or mysterious, and seem to originate with different heating mechanisms. In some 
cases, burns were associated with wires used with electronic monitoring equipment or implanted 
biomedical devices such as pacemakers,(8-11,15,17,20-24) while in other cases, thermal injuries 
have occurred with no wires present near the patient, in the extremities or around tattoos,(24) 
for instance. While the specific situations leading to these injuries may be difficult to pinpoint, 
the heating mechanisms causing them are not mysterious. They are the well-understood physi-
cal phenomena of electromagnetic induction and the antenna effect, both originating with the 
radiofrequency (RF) outputs of the MRI machine. 

In 2003, headframe and GK manufacturer, Elekta, (Elekta AB, Stockholm, Sweden) notified 
users of the availability of “insulated posts”, with the stated use for “high tesla MR units and 
high frequency MR sequences”.(25) Beginning at approximately the same time, reports to the 
US Food and Drug Administration (FDA) documented thermal injuries due to MR-induced 
heating for patients wearing stereotactic headframes.(26-33)   

The physical explanation of these reported thermal injuries has not been given. Thus, this 
study seeks to prevent MRI-induced burns in GK patients by first understanding the physical 
mechanisms that could lead to these injuries and, subsequently, validating the technique recom-
mended to prevent them. The manufacturer’s recommended burn prevention technique is to 
replace the tapped holes at the GK headframe screw–post interface, a metal-to-metal junction, 
with snap-in insulated nuts. The use of the insulated headframe posts is required for both 1.5 T 
and 3 T MRI scans.(34) The use of uninsulated posts is  permitted  for X-ray-only procedures, 
such as CT scans or biplanar projection angiography.

a.  MRI-induced heating mechanisms
Previous studies of MRI-induced burns considered three potential heating mechanisms:(15,16)  
1) resistive heating from currents induced by direct electromagnetic induction, 2) the unlikely 
coincidental presence of a conducting loop arranged perpendicular to the RF field and contain-
ing the right combination of inductance and capacitance to result in a resonant frequency equal 
to that of the MRI RF field (a special case of electromagnetic induction), and 3) the antenna 
effect, which is antinodal heating at the tips of wires or other conductors of appropriate length 
that act as antennas. A brief review of these potential heating mechanisms is presented.

The first mechanism, electromagnetic induction, is described by Faraday’s law: 

   

  
(1)

 
adBdt

dldE

where E is the electric field, l  is the distance around the loop, B is the magnetic flux density, and a 
is the cross-sectional area enclosed by a conducting loop. This can be stated more simply as: 

   
 dtdBV /  (2)
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where V is the voltage induced in the loop, B is the magnetic field, and t is time. In this case, the 
rapidly changing magnetic fields induce a current in loops of wire or other conducting material, 
with the area enclosed by the loop oriented perpendicular to the changing magnetic field. The 
voltage in turn induces a current:

 V/Ri  (3)

where V is the voltage and R is the resistance of the loop. The induced current is then dissipated 
as heat at a rate:

 RP 2i  (4)

with the greatest heating occurring at locations with the highest resistance. These loops can 
be formed by wires, other conducting material such as the GK headframe posts, and/or loops 
of human tissue such as a patient with his arm forming a closed loop, or human tissue plus a 
section of wire forming a loop. The current will dissipate via resistive heating, the majority 
of which will occur at the position of highest electrical resistance which tends to occur at the 
skin–skin interface (e.g., loop formed by the arm), or the wire–skin interface (e.g., loop formed 
by a wire). 

In the study by Dempsey et al.(16) different diameter loops of copper wire were placed perpen-
dicular to the RF field and the temperature rise was recorded. Larger diameter loops resulted in 
more heating, consistent with Faraday’s law. No resistor was placed in the loop and, therefore, 
the resistive heating was distributed evenly around the loop, resulting in a temperature rise 
along the whole loop. Had a resistor been placed in the loop, most of the heat would have been 
dissipated locally at and near the resistor, resulting in a higher temperature rise over a much 
smaller region of the loop. Whether the induced currents originated with the RF field or with 
the gradient field was not resolved in the Dempsey study. However, direct measurement of the 
induced voltage waveform in a loop of wire showed that the source of the heating is primarily 
the RF field.(17) Subsequent measurements confirmed this result, showing that reducing the 
magnitude of the RF signal reduces the induced voltage in the loop of wire.(17)

Resonance heating is a second possible heating mechanism. Dempsey et al.(16) found very 
high temperature rises of up to 61°C in loops with appropriately valued inductance and capaci-
tance to cause resonance. The resonant frequency of the loop is given by:

  (5)
 LC2

1
f

In practice, it is unlikely that the loops described above will by coincidence happen to have the 
appropriate values of inductance (L) and capacitance (C) so that the resonant frequency matches 
the frequency of the MRI machine; however, if they do, there will be substantial heating. 

The third mechanism that can lead to heating is the antenna effect, which occurs when a 
wire of appropriate length is exposed to the RF frequency and acts as an antenna. This effect 
is exploited in half-wavelength dipole antennas for receiving radio signals. If a length of wire 
or other conductor is ~ λ/2, an electromagnetic oscillation (resonance) will be produced with 
a node in the center of the wire and an antinode at either end. The maximum amplitude will 
occur at the antinodes, resulting in the ends of the wire heating to high enough temperatures 
for thermal injury. Dempsey  and Condon(15) showed that for a 1.5 T MRI machine with op-
erating frequency of 63.87 MHz, the antenna effect occurred in a wire length of ~ 220 cm, 
in rough agreement with the theoretical expectation of λ/2  approximately equal to 235 cm. 
Local temperature increases of up to 63°C were observed at the wire tip, high enough to cause 
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burns to the experimental apparatus,(16) and certainly high enough to cause severe or abla-
tive tissue injury. This mechanism is suspected in a number of cases of MRI induced patient 
burns, including pulse oximeter wires.(24) It is extremely important to realize that the length 
of an ideal λ/2 antenna inside the human body is reduced by an order of magnitude, because 
the EM wavelength is significantly reduced due to the dielectric and electrical properties of 
human tissues. For instance, pacemaker leads in human-equivalent soft tissue will resonate 
at lengths of ~ 20 cm for 1.5 T (64 MHz), or ~ 10 cm for 3 T,(20) not the 220 to 235 cm in-air 
values reported earlier.(15) 

The antenna effect in conductive tissues is explained as follows. The human body is conduct-
ing, and thus the behavior of incident EM waves is described by Maxwell’s equations applied 
to conducting media. For this case, Ampere’s law is:

  (6)
 

where  is the magnetic field,  is the electric field, μ is the permeability, ε is the permittivity, 
and σ is the conductivity. The solutions to the resulting wave equations are plane waves, but 
with a complex wave number

   
  (7)

where
   
   
  (8)
 

k 2 )2 
1
   2 

and  
  

  
(9) 

K 2 )2 
1
   2 

The wavelength, λ, in the human body is thus given by:

 
   
 k

1

 
(10)

which depends primarily on the permittivity, ε, the conductivity, σ, and the frequency, ω.   
Another result is that the amplitude of the wave will decrease with increasing penetration depth 
into the human body, quantified by the skin depth, δ

   
  (11)
 K

1

which describes the depth at which the amplitude is decreased by 1/e, or to about 37% of the 
surface value. For given ω, the wavelength depends on ε, and σ, and the wave amplitude depends 
on its depth below the surface, quantified by the skin depth. Accordingly, the behavior of EM 
waves in the human body varies within the different organs and tissue types, based on ε and 
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σ values over the frequency range.(35,36) It is also important to note that antenna effect heating 
depends on the angle of the conductor with respect to the applied EM wave and is maximized 
when the length of the conductor is parallel to the direction of the EM wave. 

The antenna effect for metallic implants has been studied in tissue equivalent body(20) and 
head(35,36) phantoms (e.g., matched ε and σ). For the brain, for 3 T, the wavelength is estimated 
to be 25.5 cm,(35,36) suggesting that an implant length of ~ 12.75 cm would be susceptible to 
antenna effect heating. At 7 T, wavelength becomes 10.6 cm leading to potential antenna effect 
heating for 5.3 cm implants.(35,36) These implant dimensions give an indication of possible con-
ductor lengths of relevance for antenna effect heating for GK patients wearing headframes.

All reported MRI-induced burns likely originate in some form from either electromagnetic 
induction or the antenna effect. For the case of the headframe screw heating, the results of 
this study show that the cause is electromagnetic induction. This finding is consistent with the 
dimensions of the GK headframe which, with an effective unwrapped length of ~ 62 cm, is 
too short for antenna effect heating at 3 T (128 MHz, λ/2 approximately equal to 117 cm) or 
1.5 T (64 MHz, λ/2 approximately equal to 220 cm).(16) Also, the typical ~ 5–10 mm length 
of the screws embedded in the head surface is less than the ~ 13 cm length expected for the 
antenna effect in the human head to occur. Thus, the cause of heating is most likely due to the 
induction of currents in loops formed by the headframe and the tissue of the patient’s head, with 
the area of the loop oriented perpendicularly to the rapidly changing magnetic fields. Because 
the heat source is resistive heating, P = i2R (Eq. (4)), one needs only to increase the resistance 
of the part of the loop outside the patient’s head (i.e., the headframe) in order to decrease the 
resistive heating in the tissue. 

The following experimental results using melon phantoms show that heating occurs during 
standard MR brain scans near attached GK headframe screws, the heating mechanism is elec-
tromagnetic induction, the amount of heating depends on the material type of the headframe 
screws and posts, and the use of insulated headframe posts renders the induced currents and 
associated resistive heating negligible. 

 
II. MaTERIaLS and METHodS

a. Experimental geometry, pulse sequences, and temperature measurements
Fresh watermelons and honeydew melons were used to simulate the human head (Fig. 1). 
The melons ranged in weight approximately from 1.5 to 3 lbs. The electrical resistance of the 
surface layer of both types of melon, about 1 MΩ, is comparable to the resistance of the hu-
man head measured by point contacts on the skin. Both displayed similar resistive properties, 
with R ~ 1 MΩ within the outer shell of the melon, but decreasing to ~ 50–300 kΩ if the inner 
pulp is penetrated by the meter lead (Fig. 1). As shown in Fig. 2, the melons are mounted in 
the GK headframe and optical thermometers are mounted with tape at various positions on the 
headframe, screws, and melon. All experiments were conducted using a GE 3.0 T MR scanner 
(Signa EXCITE, GE Healthcare, Waukesha, WI). Two pulse sequences were investigated: 1) a  
standard T1-weighted GK Protocol sequence (axial T1 spin echo, with flow compensation,  
TE = ~ 23 ms, TR = 800 ms, NEX = 1, BW = 22.73, and a 384 × 224 matrix), and 2) in order 
to induce increased heating, an enhanced 13 minute fast spin echo sequence (FSCXL with flow 
compensation and tailored RF, TE = 16 ms, TR = 767 ms, NEX = 4, BW = 20.83, ETL = 37,  
and a 256 × 256 matrix). Temperature was measured using two MR-compatible fiber optic 
thermometers, (Veris MR Vital Signs Monitoring System, Medrad, Inc, Warrendale, PA). The 
temperature is determined via a temperature sensitive phosphor located at the probe tip and 
energized by an LED pulse.(37) Thermal connections to the headframe screws were made by 
careful adhesion of the more thermally conductive side (as opposed to the end) of the optical 
thermometer to the tip of the screw (arrow, Fig. 2(c)). Thermal connections to the melon were 
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Fig. 1. Photograph and associated MRI images of a watermelon (a) and (b), and a honeydew melon ((c) and (d)). Head-
frame screws should be kept in the shell region as indicated in the MRI images in order to maintain resistance in the MΩ 
range and thus be comparable to the human head.

Fig. 2. Watermelon mounted in headframe (a); watermelon placed in GK head coil (b) with optical thermometers taped 
to the surface of the watermelon up against the screw–melon surface interface; a similar set-up for a honeydew melon (c). 
It is important to cushion the melon in the head coil (d) to reduce the vibration, which can lead to thermometers coming 
loose from the surface. 
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made by enclosing the optical thermometers in thin plastic wrap and inserting them directly into 
the melon to a depth of 5 mm, preventing air cavities and ensuring good thermal contact.

B. antenna-effect heating
To verify the absence of antenna-effect heating, the GK headframe alone with 4 uninsulated 
posts and 4 tungsten tipped alumina screws (Fig. 3(a)) was placed in the GK standard four-
element head coil and scanned in the MRI using the current standard T1-weighted GK protocol 
pulse sequence. Temperature measurements at the two anterior headframe screws were re-
corded every 30 seconds during the 9.5 minute pulse sequence. No heating was detected at 
either screw, confirming that the headframe–post–screw unit was not behaving as an antenna 
(Fig. 3(b), triangles). Similarly, 45 and 60 mm titanium screws alone, without the headframe 
or posts, were embedded in the melon to depths of 5 mm and evaluated for heating with the 
T1-weighted pulse sequence. Again, no heating was observed at the screw–melon interface, 
indicating the absence of the antenna effect for these length screws for the 0.5 mm portion of 
the screw within the melon. 

c. Electromagnetic induction heating
To determine whether there is any heating from electromagnetic induction in a loop, a 
water melon was subsequently mounted on the same headframe and remeasured in the same 
four-element head coil using the same pulse sequence. The screws were screwed approximately 
5 mm into the surface of the watermelon and the temperature was again measured every 30 
seconds at the top part of the anterior screw tips at the melon surface. A temperature increase 
of approximately 6°C near the screw tips was observed, confirming electromagnetic induction 
as the source of the heating (Fig. 3(b), circles). To further characterize the temperature profile 
of the melon headframe composite, a watermelon was mounted on the GK headframe and with 
the T1 axial GK pulse sequence, the temperature was measured at the screw tip and three posi-
tions along the melon in order to determine where heating occurs. Heating was greatest along 
the screw surface and at two points in the melon nearest to the screw (Fig. 4).

Fig. 3. Photograph of Gamma Knife headframe (a) showing that the length of the longest post is ~ 15 cm, which is much 
lower than the expected length required for heating via the antenna effect, which would be ~ 60 cm. Plot (b) of the time 
dependence of the temperature taken at the top of the headframe post, showing that there is no heating with the melon 
absent (triangles), but significant heating at the screw tips when the melon is mounted in the headframe (circles).
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d. Screw–post combinations 
With the heating mechanism established as electromagnetic induction, the heating characteris-
tics of different screw and post types were measured. The temperature profiles were measured 
for combinations of two different screw types, and two different headframe post materials. 
All screw and post comparison tests were done on the same melon in immediate succession to 
ensure the same measurement conditions. Baseline temperature was determined by the initial 
temperature measured just before starting the initial scan, and subsequent scans were started 
only after temperatures cooled to within 1°C of baseline. Baseline temperatures varied from day 
to day from 18°C to 23°C, with a typical value of 20°C. Titanium- or tungsten-tipped alumina 
screws were measured in combination with either carbon or alumina posts, with both regular 
threads and insulated (plastic) nuts (Fig. 5). These combinations were chosen to represent the 
possible configurations available in the clinic, as well as to represent a range of safety (from 
“not safe” through “safe”) (Table 1). To determine whether the manufacturer-recommended 
insulating posts prevent heating, the standard alumina headframe posts were replaced with 
electrically insulated posts, designed by placing snap–in insulating nuts between the screw and 
the post in the headframe in place of the regular threaded hole (Fig. 5(a), center). Experimental 
results confirm that this increased impedance prevents significant heating at the headframe 
screw–patient head interface. As shown in Table 1, the insulated posts are the only ones that 
rendered the heating negligible.

 

Fig. 4. The time dependence (a) of the temperature measured at each of the three positions indicated in (b) (filled triangles, 
hollow squares, hollow circles) and on the screw surface near the screw tip (filled circles). Photograph (b) of a honeydew 
melon showing three locations (red numbers 1–3) where the time dependence of the temperature was measured during a 
test scan. The arrow indicates the approximately circular current path of the induced current. 
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III. RESuLTS 

a. Electromagnetic induction responsible for MRI-induced heating
The initial experiment was designed to determine which of the two most likely heating mecha-
nisms, the antenna effect or electromagnetic induction, is responsible for the heating that occurs 
at the GK headframe screw–melon interface. Antenna-effect heating can be theoretically ruled 
out because the dimensions of the GK headframe are not large enough for this type of heating 
to occur. For the 128 MHz RF field of the 3 T magnet, the RF wavelength is ~ 235 cm, which 
corresponds to λ/2 ~ 117 cm. The longest posts on the GK headframe are ~ 15 cm and the 
overall unwrapped length is ~ 62 cm, much shorter than the required ~ 117 cm necessary for 
antenna heating to occur in air. Antenna-effect heating was experimentally ruled out based on 
temperature measurements that showed: 1) no heating for the assembled headframe suspended 
in air, and 2 no heating for screws of various lengths embedded at depths of 0.5 cm in the melon. 
This latter null result is expected based on the nominal EM wavelength produced by 3 T scans 
for soft tissue (~ 40 cm) and for brain tissue (~ 25 cm).(35,36)  

Fig. 5. The three types of headframe post (a) that were used in the experiment were from left to right, carbon, alumina 
with the snap in insulated threads, and uninsulated alumina; titanium screws (b); tungsten-tipped alumina screws (c).

Table 1. General heating characteristics for different screw-post combinations. Based on temperature profile plots (see 
associated figures), combinations that showed anything more than negligible heating were deemed “not safe”. 

 Post Type 
 Screw Type Alumina Carbon Insulated Alumina

 Alumina not safe (Fig. 11) not safe (Fig. 12) safe (Fig. 14)
  significant heating  some heating  negligible heating 

 Titanium not safe (Fig. 11) not safe (Fig. 12) safe (Fig. 14)
  most heating  some heating  negligible heating
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Resonance-induced heating is a remaining phenomenon that could possibly result in heat-
ing. We have measured negligible capacitances and inductances in the GK headframe–melon 
composite and there is no evidence of resonance heating occurring in this experiment. 

B. Induced heating location
Temperature measurements versus time as a function of position between the two anterior 
screws show that heating is greatest at the tapered part or tip of the screw along the melon–
screw interface and that heating decreases with increasing distance from the screw tip (Fig. 4). 
Specifically, we found that heating occurs only near the tip of the screw and not primarily at 
back of the screw (Fig. 6). This temperature profile is consistent with the formation of a loop 
with most of the heating occurring at the maximum resistance spot in the loop, which is at the 
screw–melon interface in the conventional frame setup. 

Melon resistivity was measured at different locations on the surface and at depth to determine 
variability that would impact temperature measurements. Using a handheld resistance meter, 
we measured a resistance of 1–3 MΩ for the outer flesh of the melon. Deeper into the melon, 
however, where the pulp is located, there is a significant drop in resistance down to ~ 100 kΩ. 
Experiments repeated with the thermometers placed in this deeper region show significantly 
decreased heating, owing to the reduced resistance (Fig. 7). This result shows that the region of 
heat is resistance dependent, again confirming that the source of the heating is the induced current 
loop with the same current heating more in higher resistance regions. To further  characterize the 

Fig. 6. Plot (a) of the time dependence of the temperature measured near the screw tip (filled circles) and at the back part 
of the screw (filled triangles), as indicated in the photograph of the melon headframe composite (b).

Fig. 7. The time dependence of the temperature at the melon–screw interface for the screws penetrating the standard 5 mm 
depth (circles) and a much deeper penetration of approximately 2 cm (triangles). The lower resistance of the pulp of the 
melon located > 1 cm below the melon surface results in less heat dissipated at deeper positions.
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heating that occurs in the melon headframe composite, the time dependence of the temperature 
was measured on the posterior loop, which would be expected to have less heating than the 
anterior loop due to the smaller area enclosed. In Figure 8, the time dependence of the tempera-
ture of the posterior loop (Fig. 8(a), triangles) is plotted with that of the anterior loop (circles). 
As expected from current induced in accordance to Faraday’s law, the induced current and its 
associated heating is less in the posterior loop because of the smaller cross sectional area. Other 
potential loops are separately measured to find the relative contributions to the screw heating 
of the composite system. Fig. 9 shows the time dependence of the temperature taken near the 
tip of the right anterior headframe screw at the screw–melon interface during the 13 minute 
FSE scan for each of the indicated loops. The anterior loop shows the most heating, with the 
side and diagonal loops each showing less heating (Fig. 9). 

Fig. 8. The time dependence of the temperature measured near the screw tips for the larger anterior loop ( circles) and the 
smaller posterior loop ( triangles), showing that there is more heating induced in the larger loop, as noted in (b), consistent 
with electromagnetic inductive heating.

Fig. 9. The time dependence of the temperature measured with just two headframe screws attached in the configurations 
depicted in the photographs, isolating the anterior loop (top, filled circles), the right loop (middle, filled stars), and a 
diagonal loop (bottom, hollow squares). 
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c. Screw–post combinations
Temperature measurements for the two different screw materials, tungsten-tipped alumina and 
titanium, show that there is more heating at the screw–melon interface for the titanium screws 
(Fig. 10, filled circles), indicating a higher resistance at this interface for the titanium screws 
compared with the alumina screws (hollow circles). Different combinations of headframe screw 
and post materials show different heating characteristics associated with different resistance 
characteristics. Several different screw–post combinations were measured. First, using the 
titanium screws, the time dependence of the temperature was again measured, but with carbon 
posts instead of alumina posts (Fig. 11). At the screw tips, the heating decreased for the carbon 
posts relative to the alumina post, but the heating increased at the screw–post interface (Fig. 12). 
This effect is also consistent with heating by electromagnetic induction. With the alumina posts, 
there is very little resistance at the screw–post interface, but with the carbon posts, there is 
significant heating, showing that there is a significant resistance at the post–screw interface. 
Because the size of the loop is the same, the same voltage is induced in the loop. However, 
now there are two locations of significant resistance, so the heat is dissipated at two locations 
instead of just one. Thus the heating at the screw–melon interface decreases, but increases at 
the screw–post interface. This occurs only for the carbon posts. Because carbon posts may offer 
some advantages for CT imaging, it would be possible to use these posts with minimal heating 
via a similar insulated nut setup as is currently used with the alumina posts.

Fig. 10. The time dependence of the temperature of the headframe screw at the screw–melon interface near the screw 
tip for titanium screws (filled circles) and tungsten-tipped alumina screws (hollow circles), taken during the same  
pulse sequence.

Fig. 11. The time dependence of the temperature measured at screw tip screwed into an alumina post (circles) and a carbon 
post (triangles), showing that more heating occurs at the screw tip in the alumina post compared with the carbon post. 
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Temperature measurements with the uninsulated alumina posts replaced with the insulated 
posts using snap-in insulated nuts prove that the insulated posts diminish heating to a negligible 
level (Fig. 13). A close–up view shows the small amount of heating (Fig. 13(b)). For mixed 
headframe–post–screw combinations, the results for one insulated alumina post and three un-
insulated alumina posts are compared with the case for one insulated alumina post and three 
carbon posts (Fig. 14). As expected, there is less heating at the screw tips when carbon posts 
are used, compared with alumina posts.

In general, for the case of the GK headframe, the greatest heating occurs at the headframe 
screw–patient head interface, with the loop formed by the frame in contact with the skin. The 
results of this study show that this patient–frame loop is the only mechanism that can lead to 
GK patient burns that occur in the vicinity of the headframe screws.

 

Fig. 12. Plot (a) of the time dependence of the temperature at the threaded region of the screw–post interface as indicated 
in (b), showing that there is more heating at this position with the carbon post than with the titanium post, which is con-
sistent with Faraday’s law. 

Fig. 13. The time dependence (a) of the temperature near the screw tip for the uninsulated alumina post and titanium 
screws (filled circles) and for the insulated alumina post with titanium screws (hollow circles), showing the prevention of 
significant heating by the increased resistance of the insulating nuts. Plot (b) of the time dependence of the temperature 
using the insulated post showing that while the heating is almost completely eliminated, there still is some heating present, 
which is consistent with heating by electromagnetic induction.



67  Bennett et al.: Preventing MR-induced gk headframe burns 67

Journal of applied clinical Medical Physics, Vol. 13, no. 4, 2012

IV. dIScuSSIon

This set of experiments was designed to determine which physical mechanism could lead to 
local heating of the GK headframe for patients undergoing stereotactic MR imaging, and to test 
the manufacturer’s recommended method for heating prevention using electrically insulated 
posts. Additional experiments were conducted to characterize typical heating profiles of the GK 
headframe–patient system that occurs during MRI scans, and to learn how this profile changes 
when headframe post and screw materials are changed. 

Initial experiments (Fig. 3) ruled out the antenna effect as a headframe heating mechanism and 
confirmed that the observed heating originates with the resistive dissipation of currents induced 
by the rapidly changing magnetic fields passing perpendicularly through the area enclosed by 
electrically conducting loops comprised of the headframe, headframe screws, and region of 
the patient’s head between the two headframe screws, as described by Faraday’s law. Further 
experiments showed that the resistive heating occurs primarily at the screw tips (Fig. 4, Fig. 6), 
where the electrical resistance is highest. Subsequent experiments found no antenna-effect heat-
ing in the portion of the screw embedded in the melon with no headframe attached.

The heating profile can be controlled by changing the materials of the headframe posts and 
screws. This was observed in the experiments comparing combinations of alumina, insulated 
alumina, and carbon posts, and titanium- and tungsten-tipped alumina screws (Figs. 10-14). 
Figures 11 and 12 compare the heating characteristics of the headframe composite with alumina 
screws and alumina posts with that of same setup, but with carbon posts in place of the alumina 
posts. While additional heating occurs at the carbon post–headframe screw interface (Fig. 12), 
causing the region of the post surrounding the headframe screw to heat, there is slightly less 
heating at the screw–patient head interface (Fig. 11), which again is consistent with electromag-
netic induction heating. The carbon post–screw interface has a significantly higher impedance 
compared with the alumina post–screw interface and, thus, dissipates a larger amount of the 
induced current here, resulting in a reduced dissipation at the patient head–screw interface.

Replacing the uninsulated posts with the insulated posts prevented all but negligible heat-
ing of the melon headframe composite (Fig. 13), which is consistent with Faraday’s law. The 
insulating nuts greatly increase the resistance of the loop. If, for example, the resistance of the 
loop is doubled, then the induced voltage, which is a function only of the cross-sectional area 
of the loop, is still the same, resulting in the current being halved. Resistive heating P = i2R, 

Fig. 14. Heating from mixed-post configurations, measured at the screw–melon interface. Circles show heating for carbon 
posts, with one insulated post (right anterior, hollow circles) and three uninsulated posts (temperatures obtained at left 
anterior, filled circles) at the other locations. Triangles show heating for alumina posts, with one insulated alumina post 
(right anterior, hollow triangles) and three uninsulated posts (temperatures obtained at left anterior, filled triangles) at the 
other locations. Uninsulated posts show higher temperature increases than insulated posts, and alumina posts have higher 
heating than carbon posts. 



68  Bennett et al.: Preventing MR-induced gk headframe burns 68

Journal of applied clinical Medical Physics, Vol. 13, no. 4, 2012

so that while the resistance is doubled, the induced current squared is quartered; therefore, the 
heating is halved. Thus increasing the resistance in any given loop reduces the heating when 
the mechanism is Faraday’s law (e.g., electromagnetic induction). The manufacturer’s rec-
ommended method works because the heating mechanism is electromagnetic induction. It is 
important to note that all four posts should be insulated, because as shown in Fig. 9, multiple 
loops contribute to the heating at any given screw tip. This same antiheating technique is ef-
fective for any headframe post material, and because carbon posts may offer some advantages 
in CT scans, it would be possible to use these posts with minimal heating by using the same 
insulated nut setup that is currently used with the alumina posts.

The manufacturer’s recommended heating prevention method, however, works only to 
prevent heating by electromagnetic induction and would not prevent antenna-effect heating. 
An entirely different method would be required to prevent heating by the antenna effect. Fortu-
nately, the GK headframe geometry is not a problem at 1.5 T or 3 T field strengths, because the 
dimensions are too small to heat by this method. However, if the static field operated at 7–10 T, 
the implant dimensions required for the antenna effect would be decreased to ~ 30–50 cm in 
air, and as small as just a few cm in the human body, depending on the type of tissue or organ 
where the implant is located, with the amount of heating dependent on the implant’s depth 
below the surface and its angle with respect to the applied EM wave. This effect may be a 
major concern for patients with small implants in the human body, such as stents or aneurysm 
clips, that could pose a severe burn hazard at very high field strengths. Thus, with current MRI 
scanners operating at fields up to 7 T, the antenna effect may become the dominant heating 
hazard in the near future. 

One of the key implications of this study is that therapists and other health professionals 
who image GK patients with headframes in MRI scanners and have not yet obtained insulated 
posts need to be aware of new safety regulations (such as the requirement to use only insulated 
posts for MRI scans of GK patients with headframes). It may be useful for GK health profes-
sionals to obtain additional training to understand how RF interacts with and potentially heats 
the human body through resistive heating in loops. It should be understood how current loops 
could potentially form through complex combinations of parts of a patient, a patient monitoring 
device, or instrument wiring via capacitive coupling, especially for higher field MRI units. The 
more complex heating mechanism of the antenna effect should also be understood by GK health 
professionals so that they are aware that thermal injuries can occur by mechanisms other than 
EM induction. Tables of conductivities and permittivities of different organs and tissues within 
the human body should be made readily available, along with dimensions of conducting implants 
that lead to antenna-effect heating in various tissues in different field strength MRI scanner.

 
V. concLuSIonS

This study shows that heating caused by the RF field of a 3T MRI scanner due to electro-
magnetic induction, as described by Faraday’s law, occurs at the GK headframe screws when 
melon phantoms are mounted in the headframe during stereotactic MR imaging. Titanium 
screws combined with the uninsulated alumina posts result in maximum heating at the screw 
tips. This heating can be greatly reduced to negligible levels by the use of insulating nuts (the 
manufacturer’s recommended procedure) that electronically separate the metallic screws from 
the posts. This method would, in principle, work for any conducting headframe post material 
(e.g., steel and carbon fiber). 

There is increased risk of thermal injury at field strengths higher than 3T. The antenna ef-
fect was ruled out as the cause of headframe screw heating. However, above 3T it poses an 
increased risk of internal heating for GK and other patients with metallic implants having 
lengths suitable for standing wave formation (such as pacemaker wires), because resonant length 
decreases with increasing field strength and RF frequency. Thus, injury may be possible with 
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even  small-dimension implants, such as aneurysm clips and stents. Electromagnetic induction, 
the principal heating mechanism identified for GK patients with attached headframes, also 
poses an increased risk because higher RF frequencies at field strengths above 3T may create 
unintended current paths through unintended capacitances. Thus, at sufficiently high magnetic 
fields beyond 3T, the electrically insulating nuts may no longer protect against induced heating. 
Their effective protection will need to be validated before use for GK patients with headframes 
undergoing stereotactic very high-field (e.g., 4T, 7T, and higher) MR imaging. 

 
acknowLEdgMEnTS

The authors would like to thank S. Shave at General Electric Healthcare, O. Eriksson at Elekta, 
and Lisa Wilkins and Darrell Sloan at the Department of Radiation Oncology at Wake Forest 
University for their time and help with this project. This work is supported by the TRADONC 
post-doctoral training program at Wake Forest University School of Medicine, funded by Grant 
No. NCI-32 CA113267.

 
REFEREncES

 1. Bourland JD, Shaw EG, Flowers KI, Huey KH. Dedicated PET-CT and MR-simulators in a state-of-the-art radia-
tion treatment facility [abstract]. Med Phys. 2006;33(6):2165.

 2. Saconn PA, Shaw EG, Chan MD, et al. Use of 3.0-T MRI for stereotactic radiosurgery planning for treatment of 
brain metastases: a single-institution retrospective review. Int J Radiat Oncol Biol Phys. 2010;78(4):1142–46.

 3. Karlsson M, Karlsson MG, Nyholm T, Amies C, Zackrisson B. Dedicated magnetic resonance imaging in the 
radiotherapy clinic. Int J Radiat Oncol Biol Phys. 2009;74(2):644–51.

 4. Chaljub G, Kramer LA, Johnson RF 3rd, Johnson RJ Jr, Singh H, Crow WN. Projectile cylinder accidents result-
ing from the presence of ferromagnetic nitrous oxide or oxygen tanks in the MR suite. AJR Am J Roentgenol. 
2001;177(1):27–30.

 5. Chen DW. Boy, 6, dies of skull injury during M.R.I. The New York Times. 2001 July 31; B1–B5.
 6. McNeil DG Jr. M.R.I.’s strong magnets cited in accidents The New York Times. 2005 Aug 19.
 7. Shellock FG. Reference manual for magnetic resonance safety implants and devices. Los Angeles, CA: Biomedi-

cal Research Publishing Group; 2007.
 8. Kangarlu A and Shellock FG. Aneurysm clips: evaluation of magnetic field interactions with an 8.0 T MR system. 

J Magn Reson Imaging. 2000;12(1):107–11.
 9. Kanal E, Barkovich AJ, Bell C, et al. ACR guidance document for safe MR practices: 2007. AJR Am J Roentgenol. 

2007;188(6):1–27.
 10. Shellock FG and Spinazzi A. MRI safety update 2008: Part 2, screening patients for MRI. AJR Am J Roentgenol. 

2008;191(4):1140–49.
 11. Shellock FG and Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology. 

2004;232(3):635–52.
 12. Den Boer JA, Bourland JD, Nyenhuis JA, et al. Comparison of the threshold for peripheral nerve stimulation 

during gradient switching in whole body MR systems. J Magn Reson Imaging. 2002;15(5):520–25.
 13. Bourland JD, Nyenhuis JA, Schaefer DJ. Physiologic effects of intense MRI gradient fields. Neuroimaging Clin 

N Am. 1999;9(2):363–77.
 14. McGraw M. MRI magnet explosions. Available from: http://imaging-radiation-oncology.advanceweb.com/Article/

MRI-Magnet-Explosions.aspx
 15. Dempsey MF and Condon B. Thermal injuries associated With MRI. Clin Radiol. 2001;56(6):457–65.
 16. Dempsey MF, Condon B, Hadley DM. Investigation of the factors responsible for burns during MRI.  J Magn 

Reson Imaging. 2001;13(4):627–31.
 17. Nakamura T, Fukuda F, Hayakawa K, et al. Mechanism of burn injury during magnetic resonance imaging (MRI) 

– simple loops can induce heat injury. Frontiers Med Biol Eng. 2001;11(2):117–29.
 18. Kim LJ, Sonntag VKH, Hott JT, Nemeth JA, Klopfenstein JD, Tweardy L. Scalp burns from halo pins following 

magnetic resonance imaging. Case illustration. J Neurosurg. 2003;99(1):186.
 19. Landman A and Goldfarb S. Magnetic resonance-induced thermal burn. Ann Emerg Med. 2008;52(3):308–09.
 20. Mattei E, Triventi M, Calcagnini G, et al. Complexity of MRI induced heating on metallic leads: experimental 

measurements of 374 configurations. Biomed Eng Online. 2008;7:11.
 21. Shellock FG. Comments on MR heating tests of critical implants. J Magn Reson Imaging. 2007;26(5):1182–85.
 22. Yeung CJ, Susil RC, Atalar E. Modeling of RF heating due to metal implants in MRI. Antennas and Propagation 

Society International Symposium, IEEE. 2002;1(4):828–826.
 23. Shinbane J, Colletti P, Shellock FG. MR in patients with pacemakers and ICDs: defining the issues. J Cardiovasc 

Magn Reson. 2007;9(1):5–13.



70  Bennett et al.: Preventing MR-induced gk headframe burns 70

Journal of applied clinical Medical Physics, Vol. 13, no. 4, 2012

 24. MRI Safety Issues: Burns. Available from: http://www.mrisafety.com/safety_info.asp
 25. Elekta. Insulated fixation posts: instructions for use. (Doc. Art. No.: 012594 Rev. 01). Stockholm, Sweden: Elekta 

Instrument AB; 2003.
 26. U.S. Food and Drug Administration. MAUDE Adverse Event Report: Elekta instrument ableksell sterotactic 

systeminstrument, stereotaxic and accessories. Available from http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfMAUDE/detail.cfm?mdrfoi__id=1212610

 27. U.S. Food and Drug Administration. MAUDE Adverse Event Report: Elekta instrument ableksell sterotactic 
systeminstrument, stereotaxic and accessories. Available from http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfMAUDE/detail.cfm?mdrfoi__id=1293246

 28. U.S. Food and Drug Administration. MAUDE Adverse Event Report: Elekta instrument ableksell sterotactic 
systeminstrument, stereotaxic and accessories. Available from http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfMAUDE/detail.cfm?mdrfoi__id=1293247

 29. U.S. Food and Drug Administration. MAUDE Adverse Event Report: Elekta instrument ableksell sterotactic 
systeminstrument, stereotaxic and accessories. Available from http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfMAUDE/detail.cfm?mdrfoi__id=1317745

 30. U.S. Food and Drug Administration. MAUDE Adverse Event Report: Elekta instrument ableksell sterotactic 
systeminstrument, stereotaxic and accessories. Available from http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfMAUDE/detail.cfm?mdrfoi__id=1360645

 31. U.S. Food and Drug Administration. MAUDE Adverse Event Report: Elekta instrument ableksell sterotactic 
systeminstrument, stereotaxic and accessories. Available from http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfMAUDE/detail.cfm?mdrfoi__id=1405138

 32. U.S. Food and Drug Administration. MAUDE Adverse Event Report: Elekta instrument ableksell sterotactic 
systeminstrument, stereotaxic and accessories. Available from http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfMAUDE/detail.cfm?mdrfoi__id=1516543

 33.  U.S. Food and Drug Administration. MAUDE Adverse Event Report: Elekta instrument ableksell sterotactic 
systeminstrument, stereotaxic and accessories. Available from http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfMAUDE/detail.cfm?mdrfoi__id=1567365

 34. Elekta. Insulated fixation posts kit. Stockholm, Sweden: Elekta; n.d. Available from: http://ecatalog.elekta.
com/stereotactic-neurosurgery/products/19167/20366/22153/20231/stereotactic-neurosurgery/frame-fixations/ 
fixation-posts/insulated-fixation-posts-kit.aspx

 35.  Italian National Research Council. An Internet resource for the calculation of the dielectric properties of body 
tissues in the frequency range 10 Hz–100 GHz. Reference section. Florence, Italy: INRC; n.d. Available from: 
http://niremf.ifac.cnr.it/tissprop/#refs

 36. Yang QX, Wang J, Collins CM, et al. Phantom design method for high-field MRI human systems. Mag Reson 
Med. 2004;52(5):1016–20.

 37. MEDRAD veris MR vital signs monitoring system: operation manual. Chapter 9 – Temperature. Warrendale, 
PA: MEDRAD Inc.; 2005.


