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Abstract

Background: The inference of biological networks from high-throughput data has received huge attention during
the last decade and can be considered an important problem class in systems biology. However, it has been
recognized that reliable network inference remains an unsolved problem. Most authors have identified lack of data
and deficiencies in the inference algorithms as the main reasons for this situation.

Results: We claim that another major difficulty for solving these inference problems is the frequent lack of
uniqueness of many of these networks, especially when prior assumptions have not been taken properly into
account. Our contributions aid the distinguishability analysis of chemical reaction network (CRN) models with mass
action dynamics. The novel methods are based on linear programming (LP), therefore they allow the efficient
analysis of CRNs containing several hundred complexes and reactions. Using these new tools and also previously
published ones to obtain the network structure of biological systems from the literature, we find that, often, a
unique topology cannot be determined, even if the structure of the corresponding mathematical model is
assumed to be known and all dynamical variables are measurable. In other words, certain mechanisms may remain
undetected (or they are falsely detected) while the inferred model is fully consistent with the measured data. It is
also shown that sparsity enforcing approaches for determining ‘true’ reaction structures are generally not enough
without additional prior information.

Conclusions: The inference of biological networks can be an extremely challenging problem even in the utopian
case of perfect experimental information. Unfortunately, the practical situation is often more complex than that,
since the measurements are typically incomplete, noisy and sometimes dynamically not rich enough, introducing
further obstacles to the structure/parameter estimation process. In this paper, we show how the structural
uniqueness and identifiability of the models can be guaranteed by carefully adding extra constraints, and that
these important properties can be checked through appropriate computation methods.

Background
During the last decade, the wide availability of high-
throughput biological data has made it possible to pro-
duce new knowledge via a systems biology approach
[1-3]. The inference of biochemical networks (i.e. the
mathematical mapping of the molecular interactions in
the cell) is therefore a question of key importance in the
field. During the last decade, many methods have been
developed to solve the network-inference (sometimes

called reverse-engineering [4]) problems arising in e.g.
gene expression [5-13], signal transduction [14-17] and
metabolic networks [18-25].
In this context, it is particularly worth mentioning the

DREAM initiative (Dialogue for Reverse Engineering
Assessments and Methods) [26], which targeted the pro-
blems of cellular network inference and quantitative
model building in systems biology. DREAM tries to
address two fundamental questions: (i) how can we
assess how well we are describing the networks of inter-
acting molecules that underlie biological systems? and
(ii) how can we know how well we are predicting the
outcome of previously unseen experiments from our
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models? Interestingly, one of the main conclusions of
the DREAM3 event was that the vast majority of the
teams’ predictions were statistically equivalent to ran-
dom guesses. Moreover, even for particular problem
instances like gene regulation network inference, there
was no one-size-fits-all algorithm [27].
The use of a performance profiling framework with

the DREAM3 benchmark problems revealed that current
inference methods are affected by different types of sys-
tematic prediction errors [6]. These authors conclude
that reliable network inference from gene expression
data remains an unsolved problem. Further, they high-
light two major difficulties in the case of gene-network
reverse engineering: limited data (which may leave the
inference problem underdetermined), and the difficulty
of distinguishing direct from indirect regulation. Prill et
al [27] further explored the issue of intrinsic impedi-
ments to network inference, designating identifiability of
certain network edges and systematic false positives as
the main barriers. In this paper, we consider the widely
used reaction kinetic formalism, where dynamic models
of biological networks are described by a set of ordinary
differential equations (see, e.g. [28-30] and the related
literature). In particular, we consider the central ques-
tion of the identifiability of such a network as under-
stood in the systems and control area [31,32].
Identifiability analysis studies whether there is a theo-

retical chance of uniquely determining the parameters
of a mathematical model assuming perfect noise-free
measurements and error-free modeling [33-35]. One of
the early approaches for identifiability testing of non-
linear models is based on the Taylor-series expansion of
the system output using the fact that the Taylor coeffi-
cients are unique [36]. A similar but more general
method uses the generating series or Volterra-series
coefficients of the system which is the nonlinear gener-
alization of the Laplace-transform method used for lin-
ear systems [37]. In [38] a similarity transformation
approach is proposed that gives necessary and sufficient
conditions on local and global identifiability through the
checking of nonlinear controllability and observability
conditions. The appearance of differential algebra meth-
ods in systems and control theory [39,40] opened the
possibility for new types of identifiability tests that have
gained significant popularity [41-43]. Further theoretical
developments in the field include the identifiability con-
ditions of rational function state space models [43], the
possible effect of initial conditions on identifiability [44],
and the application of Lie-algebras [45]. While identifia-
bility is the property of a certain parameterized model, a
related notion called distinguishability addresses the
problem whether two or more parameterized models
(with the same or with different structure) can produce
the same output for any allowed input [46-48]. The

literature about identifiability and distinguishability of
biological and chemical system models is relatively wide:
Compartmental systems (that form a special subclass of
general mass-action networks) are studied in [38,49,50].
The authors treat general nonlinear CRNs in [51,52]
and [53] where it is shown that for thermodynamically
meaningful models, nonlinearity reduces the chance of
indistinguishability compared to the linear case [54].
Geometric conditions for the indistinguishability of
CRNs are given in [55] with a related comment in [56].
Computer algebra tools can be successfully used for the
symbolic computations needed for identifiability and
distinguishability testing of complex models [57-60].
The importance of identifiability has been recognized

previously in systems biology, too [14,61-64]. However,
and despite a number of works illustrating ways to test
the structural and practical identifiability of models
[65-67], a significant portion of modeling studies in sys-
tems biology continue to ignore this key property.
It has been known for long that chemical reaction net-

works with different structure and/or parametrization
may produce the same dynamical models describing the
time-evolution of species concentrations [28,55]. A
related problem, namely the non-unique structure of
Petri nets associated to reaction network dynamics, is
studied in [68]. Additionally, the value of prior informa-
tion in biological network inference was clearly shown
in [69,70] by applying Bayesian network models. How-
ever, a constructive optimization-based approach for the
study of dynamically equivalent (or similar) reaction net-
works is a recent development [71-74], which we further
extend in this paper.
As a novelty, we present in this paper the definition

and a computational method to find the so-called core
reactions that are present in any dynamically equivalent
reaction network if the set of complexes is given a
priori. Moreover, a computationally improved method is
introduced for the computation of dense realizations of
CRNs together with a modified algorithm to check the
uniqueness of a constrained reaction network structure.
Structural non-uniqueness and the use of the proposed
computational methods will be illustrated with the help
of biological models known from the literature.
The structure of the paper is the following. The

‘Methods’ section introduces the notions of chemical
reaction networks, structural identifiability and distin-
guishability of dynamical models. Moreover, it contains
the procedures to obtain core reactions of a network
and its sparse and dense representations, which rely on
standard methods of linear programming (LP) and
mixed integer linear programming (MILP) [75-78]. The
analysis of four biological system models can be found
in the ‘Results and discussion’ section, followed by the
conclusions.
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Methods
The model class considered in this paper is of the fol-
lowing form

ẋ = f (x, u, θ), x(0) = x0

y = h(x, u, θ),
(1)

where x Î ℝn is the state vector, y Î ℝm is the output,
u Î ℝk is the input, and θ Î ℝd denotes the parameter
vector. We assume that the functions f and h are poly-
nomial in the variables x, u and θ. Clearly, mass action
type CRNs described in the following subsection (where
θ is typically the set of reaction rate coefficients), and
simple deterministic models of gene regulation such as
the one in Example 4 belong to this model class.

Basic notions and known results related to mass-action
models
In this subsection, the basic definitions for the descrip-
tion of CRNs will be given together with the already
published results on finding dynamically equivalent net-
work realizations with certain prescribed properties.
Structural and dynamical description of mass-action
networks
Following [79] and several other works, we will charac-
terize CRNs with the following three sets.

1. S = {X1, . . . , Xn} is the set of species or chemical
substances.
2. C = {C1, . . . , Cm} is the set of complexes. Formally,
the complexes are represented as linear combina-
tions of the species, i.e.

Ci =
n∑

j=1

αijXj, i = 1, . . . , m, (2)

where aij are nonnegative integers and are called the
stoichiometric coefficients.
3. R = {(Ci, Cj)|Ci, Cj ∈ C , and Ci is transformed to
Cj in the CRN} is the set of reactions. The relation
(Ci, Cj) ∈ R will be denoted as Ci ® Cj. Moreover,
a nonnegative weight, the reaction rate coefficient
denoted by kij is assigned to each reaction Ci ® Cj.
Naturally, if the reaction Ci ® Cj is not present in
the CRN then kij = 0.

The above characterization naturally gives rise to the
following graph structure (often called ‘Feinberg-Horn-
Jackson graph’ or simply reaction graph) of a CRN [29].
The weighted directed graph G = (V, E) of a CRN con-
sists of a finite nonempty set V of vertices and a finite

set E of ordered pairs of distinct vertices called directed
edges. The vertices correspond to the complexes, i.e. V
= {C1, C2, ... Cm}, while the directed edges represent the
reactions, i.e. (Ci, Cj) Î E if complex Ci is transformed
to Cj in the CRN. The positive reaction rate coefficients
kij are assigned as weights to the corresponding directed
edges Ci ® Cj in the graph. (Edges corresponding to
zero rate coefficients are not drawn in the reaction
graph.) A set of complexes {C1, ..., Ck} is called a linkage
class of a CRN, if the complexes of the set are linked to
each other in the reaction graph but not to any other
complex. It is remarked that loops (i.e. directed edges
that start and end at the same vertex) are not allowed in
reaction graphs.
Assuming mass-action kinetics, the following dynami-

cal description will be used to describe the time-evolu-
tion of species concentrations [29,79]:

ẋ = Y · Ak · ψ(x), (3)

where xi denotes the concentration of species Xi. Let
us denote the transpose and the (i, j)th element of an
arbitrary matrix W by WT and Wi,j, respectively, where i
is the row index and j is the column index. The jth col-
umn of Y contains the composition of complex Cj, i.e.
Yi,j = aji. The structure and parameters of the reaction
graph are stored in the column conservation matrix Ak

(also called the Kirchhoff matrix of the CRN) as follows

[Ak]i,j =
{−∑m

l=1,l�=i kil, if i = j
kji, if i �= j.

(4)

Finally, ψ : ℝn ↦ℝm is a monomial-type vector map-
ping defined by

ψj(x) =
n∏

i=1

x
Yi,j

i , j = 1, . . . , m. (5)

Dynamical equivalence of mass-action networks
As it is known even from the early literature [28], CRNs
with different structures and/or parametrization can
give rise to the same kinetic differential equations.
Therefore, we will call two CRNs given by the matrix

pairs (Y(1), A(1)
k ) and (Y(2), A(2)

k )dynamically equiva-

lent, if

Y(1)A(1)
k ψ(1)(x) = Y(2)A(2)

k ψ(2)(x) = f (x), ∀x ∈ R̄n
+,(6)

where for i = 1, 2, Y(i) ∈ �
n×mi have nonnegative inte-

ger entries, A(i)
k

are valid Kirchhoff matrices, and

ψ
(i)
j (x) =

n∏
k=1

x
[Y(i)]k,j

k , i = 1, 2, j = 1, . . . , mi. (7)
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In this case, (Y(i)A(i)
k ) for i = 1, 2 are called realiza-

tions of a kinetic vector field f (see, e.g. [80] for more

details). It is also appropriate to call (Y(1), A(1)
k ) a reali-

zation of (Y(2), A(2)
k ) and vice versa.

We will assume throughout the paper that the set of
complexes (i.e. the stoichiometric matrix Y) is fixed and
known before the computations. In this case, the condi-
tion (6) for dynamical equivalence can be written as

Y · A(1)
k = Y · A(2)

k =: M, (8)

where A(1)
k

and A(2)
k

are valid Kirchhoff matrices and

M is the invariant matrix containing the coefficients of
the monomials.
Among the dynamically equivalent realizations, it is

important to recall the following characteristic ones
described in [71,72]. A sparse realization contains the
minimal number of reactions that is needed for the
exact description of the corresponding dynamics (3). A
dense realization contains the maximal number of reac-
tions among dynamically equivalent realizations with a
fixed complex set given by Y. While sparse realizations
are generally structurally non-unique (as it will be illu-
strated for the constrained case, too, in Example 1), the
structure of dense realizations with a given complex set
is unique, and it contains every possible dynamically
equivalent structure as a proper subgraph (i.e. a dense
realization is a kind of super-structure) [71].

Known computation approaches for finding preferred
CRN realizations
Here we briefly summarize the already published results
corresponding to the computation of preferred dynami-
cally equivalent CRN realizations (more details of these
methods can be found in the publications [71-73,81]).
The computation of dense and sparse realizations can
be traced back to mixed integer linear programming
(MILP) where the decision variables are the non-diago-
nal elements of Ak, the linear constraints encode the
kinetic properties of the model, and the objective func-
tion contains integer variables for minimizing/maximiz-
ing the number of nonzero reaction rate coefficients
[72]. It is remarked that the computation of sparse reali-
zations is an NP-hard problem, where generally mixed
integer linear programming cannot be avoided [82].
There exist certain conditions under which the problem
can be solved in polynomial time [83] but these are
often not fulfilled in the case of CRNs. Moreover, there
are effective heuristics to address the problem [84], but
convergence to one of the truly sparsest structures is
not guaranteed. Luckily, the MILP-based computation
of sparse CRN realizations can be parallelized effectively

thus allowing a larger number of complexes to be trea-
ted. The computation of realizations having the mini-
mal/maximal number of complexes or the reversibility
property can also be solved in the MILP framework
[71]. Moreover, it was shown in [73] that finding
detailed balanced and complex balanced realizations of
CRNs is a simple linear programming (LP) problem.
Finally, weakly reversible dynamically equivalent CRN
realizations can also be determined (if they exist) using
MILP [85].
Constrained realizations of CRNs and testing their structural
uniqueness
The following is a straightforward extension of the
results published in [71]. To prove the uniqueness of a
CRN structure given a set of simple constraints, we
have to extend the notions of dense and sparse realiza-
tions. The constraint set denoted by K will be used for
the exclusion of selected reactions from the CRN, i.e. it
is of the form:

K = {[Ak]i1,j1 = 0, . . . , [Ak]is,js = 0}, (9)

where s is the number of individual constraints, and ik
≠ jk for k = 1, ..., s. Now we can introduce the following
definitions. A dynamically equivalent constrained reali-
zation of a CRN (Y, Ak) is a reaction network (Y, A′

k)

such that Y · Ak = Y · A′
k and the prescribed constraints

K in the form of eq. (9) are fulfilled for A′
k . A dynami-

cally equivalent constrained dense realization of a CRN
(Y, Ak) is a constrained realization that contains the
maximal number of nonzero elements in A′

k . Similarly,
the constrained sparse realization is a constrained reali-
zation with the minimal number of nonzeros in A′

k . To

characterize constrained dense/sparse realizations, the
results of [71] can be adapted easily as follows.

P1 Given a CRN (Y, Ak) and a constraint set K , the
unweighted reaction graph of any constrained reali-
zation is the subgraph of the unweighted reaction
graph of the constrained dense realization.
P2 If the sets of complexes and constraints are fixed,
then for any CRN, the structure of the constrained
dense realization is unique.
P3 The reaction graph structure of a CRN with
given sets of complexes and constraints is unique if
and only if the unweighted directed graphs of its
constrained dense and sparse realizations are
identical.

The proofs of P1, P2 and P3 follow similar (although
not completely identical) lines that were published in
[71], and they are given for convenience in the Appen-
dix at the end of the paper.
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New concepts and computation results related to
dynamically equivalent networks
This subsection contains new methodological contribu-
tions that extend the previously published results.
Making the computation of dense realizations more
efficient
Computing dense realizations is treated originally also in
a MILP-framework in [72]. However, using the struc-
tural uniqueness of such realizations given by P1, it is
easy to give a polynomial-time algorithm based on a
finite series of linear programming (LP) optimization
steps. The idea of the improved algorithm is simple: the
reaction Ci ® Cj belongs to the (constrained) dense rea-
lization if and only if there exists any dynamically
equivalent (constrained) realization where [Ak]j,i >0. The
result directly follows from the fact that the unweighted
reaction graphs of (constrained) dense realizations give a
unique super-structure. This allows us to formulate a
polynomial-time method based on pure LP to determine
(constrained) dense realizations as follows.
The task of determining which reactions of a CRN

belong to the dense realization can be effectively solved
through the following problem set consisting of m(m -
1) LP computation steps, where m is the number of
complexes in the CRN.

for each p, q = 1, . . . , m, p �= q do :

maximize fpq = [Ak]p,q

subject to :

Y · Ak = M,
m∑

i=1

[Ak]i,j = 0, j = 1, . . . , m,

0 ≤ [Ak]i,j ≤ Uij, i, j = 1, . . . , m, i �= j,

[Ak]i,i ≤ 0, i = 1, . . . , m,

(10)

where the decision variables are the off-diagonal
entries of Ak, and Uij are appropriately large positive
upper bounds for [Ak]i,j to exclude the possibility of
unbounded feasible solutions. The reaction Cq ® Cp is
in the dense realization if and only if the maximal objec-
tive function value for fpq in (10) is positive. Let us
denote the solution of (10) corresponding to (p, q), p ≠

q by A
pq
k . Since the linear equality and inequality con-

straints in (10) are trivially convex, we will use the aver-

age of the obtained solutions A
pq
k as a lower bound to

compute a possible dense realization in the final optimi-
zation step. For this, we define

εij =

⎡
⎣ 1

m(m − 1)

m∑
p,q=1
p �=q

Āpq
k

⎤
⎦

i,j

, i �= j. (11)

By construction, εij ≥ 0 ∀i ≠ j, and εij >0 if and only if
the reaction Cj → Ci is in the dense realization. Then
the actual dense realization can be determined by sol-
ving the following LP feasibility problem for Ak (with
arbitrary linear objective function):

Y · Ak = M,
m∑

i=1

[Ak]i,j = 0, j = 1, . . . , m,

εij ≤ [Ak]i,j ≤ Uij, i, j = 1, . . . , m, i �= j,

[Ak]i,i ≤ 0, i = 1, . . . , m.

(12)

It is important to remark that the definition of εij in
the form of (11) guarantees the solvability of (12). Natu-
rally, the above described method can also be used for
determining constrained dense realizations by adding
constraints of the form (9) to the LP problems (10) and
(12).
Using the notion and described properties of con-

strained realizations, we are now able to test the struc-
tural uniqueness of given CRNs. To accomplish this,
only the (constrained) dense and sparse realizations
have to be computed and compared (see P3). This
method will be illustrated in Example 2.
Definition and computation of core and non-core reactions
We will call a reaction a core reaction, if it is present in
any dynamically equivalent realization of a CRN with a
given complex set (and possibly an additional constraint
set). Other reactions, the rate coefficient of which can
be zero in certain realizations, are called non-core reac-
tions. It clearly follows from the definition, but is
remarked separately that the set of core reactions is gen-
erally not identical to the set of reactions of a sparse
realization. The identification of core reactions of a
CRN has not been published yet, therefore we give the
outline of the corresponding computation method.
Firstly, a dense realization of the network has to be
computed to get all the mathematically possible reac-
tions. Then, for each reaction Cp ® Cq in the dense rea-
lization, the feasibility of the following constraint set has
to be checked:

Y · Ak = M (13)

m∑
i=1

[Ak]i,j = 0, j = 1, . . . , m (14)

[Ak]i,j ≥ 0, i, j = 1, . . . , m, i �= j, (i, j) �= (q, p) (15)

[Ak]i,i ≤ 0, i = 1, . . . , m (16)
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[Ak]q,p = 0, (17)

where the matrix Ak contains the decision variables,
and the known matrices are Y and M. It is well-known
that this task is equivalent to an LP problem where the
objective function is an arbitrary linear function of the
elements of Ak [76]. Then, reaction Cp ® Cq is a core-
reaction if and only if the set defined by (13)-(17) is
empty (i.e. the corresponding LP problem is infeasible),
because in this case there is no dynamically equivalent
CRN realization where Cp ® Cq is not present. We
remark here that the presented procedures for deter-
mining constrained dense realizations and computing
core reactions are parallel in their original forms since
the individual LP steps are independent of each other.
Therefore the proposed methods can be very effectively
implemented in a grid or multi-core hardware environ-
ment [86].

Basic concepts on structural identifiability and
distinguishability
Let us recall eq. (1). Shortly speaking, global structural
identifiability means that

ŷ(t|θ ′) ≡ ŷ(t|θ ′′) ⇒ θ ′ = θ ′′, (18)

where

ŷ(t|θ) = h(x(t, θ), u(t), θ), (19)

and x(t, θ) denotes the solution of (1) with parameter
vector θ. According to (18), a structurally non-identifi-
able model can produce exactly the same observed out-
put with different parametrization. This is clearly a
fundamental obstacle of determining the true model
parameters from measurements even if the selected
model structure is considered to be correct.
Let us denote two parameterized models with possibly

different structure by M1(θ1) and M2(θ2) , respec-
tively, where θi denote the parameter vector. Then M1

is called distinguishable from M2 if for any θ1 (possibly
except for a finite number of values) there is no θ2 such
that the input-output behaviour of M1 and M2 is the
same [47]. Clearly, if M1 and M2 are indistinguishable
and both model structures are feasible in a certain appli-
cation, then there is no way to decide from input-output
measurements to which one corresponds to the true
model that generated the data.
In the case of CRNs, we will assume that all species

concentrations are measured (i.e. y = x), the input is
zero (i.e. we study autonomous systems), and that the
set of possible chemical complexes is given. Generally,
the model parameter vector θ is the set of reaction rate
coefficients which are the off-diagonal elements of Ak.
Clearly, if a CRN has several different dynamically

equivalent realizations, then these realizations are not
distinguishable without additional constraints, and the
model cannot be identifiable if all the rate coefficients
are to be determined [55]. This situation can be
improved by using prior knowledge in the form of add-
ing further constraints on the model parameters such as
the simple ones given by eq. (9). This way, the number
of parameters to be estimated can be reduced and/or
their feasibility region can be shrinked. It is important
to note that although the structural uniqueness of a
CRN definitely reduces the degree of non-identifiability
(since zero and non-zero parameters are separated), it
does not necessarily imply structural identifiability [53],
and this latter property has to be checked by further
numerical methods [31,32].

Results and discussion
In this section, the application of the previously men-
tioned methods for finding different dynamically equiva-
lent structures will be illustrated using biological models
taken from the literature. The detailed numerical data
corresponding to Examples 1-3 are contained in a stan-
dard spreadsheet form with brief explanations in Addi-
tional file 1: CRN_data.xls.

Example 1: a positive feedback motif
The first example is a positive feedback motif shown in
Figure 1a and taken from [87] containing 5 species, 11
complexes and 9 reactions. This basic motif is also dis-
cussed in [88]. The network contains a gene that pro-
motes its own transcription and translation after
dimerization. In the model, X1 and X2 denote the

Figure 1 Positive feedback motif: original reaction graph and
dense realization structure. (a) This subfigure shows the reaction
graph of a gene regulation network model with positive feedback
described originally in [87] and used in Example 1. (b) This subfigure
shows all the mathematically possible reactions that can result in
the same dynamical behaviour as the original biologically
meaningful network shown in Figure 1. The core-reactions in the
dense realization are shown with solid arrows, while the non-core
reactions are indicated by dashed arrows.
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concentrations of protein monomers and dimers, respec-
tively. X3 and X4 are the concentrations of unoccupied
and occupied promoters, respectively, and X5 corre-
sponds to the mRNA. The degradation of dimers is
ignored. The roles of the reaction rate coefficients are the
following: k1 and k2 are the dimerization and re-dimeriza-
tion rates, respectively. k3 and k4 are the binding and dis-
sociation rates of the dimer to the promoter, while k5 and
k6 denote the activated and basal transcription rates,
respectively. k7 is the degradation rate of the mRNA, k8 is
the degradation rate of the monomer, and k9 denotes the
translation rate. The time-evolution of the species-con-
centrations is described by the following ODEs:

ẋ1 = −2k1x2
1 + 2k2x2 + k9x5 − k8x1 (20)

ẋ2 = k1x2
1 − k2x2 − k3x2x3 + k4x4 (21)

ẋ3 = −k3x2x3 + k4x4 (22)

ẋ4 = k3x2x3 − k4x4 (23)

ẋ5 = k5x4 + k6x3 − k7x5. (24)

Our starting point is that we have a dynamic model of
the process in the standard polynomial form of (20)-
(24), the parameters of which are known from the
results of identification and/or from literature. As we
will see below, without well-defined constraints on the
possible set of complexes and reactions, exactly the
same dynamics can be realized in principle by a wide
range of mechanisms.

The matrices characterizing the stoichiometry and
graph structure of the system are the following (indicat-
ing only the nonzero non-diagonal elements of Ak):

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0
1 0 0 0 1
1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 0 1 0 1
0 0 1 0 0
0 0 0 1 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

[Ak]2,1 = k1, [Ak]1,2 = k2, [Ak]4,3 = k3,

[Ak]3,4 = k4, [Ak]5,4 = k5, [Ak]7,6 = k6,

[Ak]9,8 = k7, [Ak]9,10 = k8, [Ak]11,8 = k9.

(26)

We used the following parameter values that were
taken from the Appendix of [87].

k1 = k2 = k3 = k4 = 107, k5 = 1.7,

k6 = 0.025, k7 = 0.1, k8 = 0.05, k9 = 0.5,
(27)

where the units of measure are [M-1] for k1, ..., k4, and
[min-1] for k5, ..., k9. The dynamically equivalent dense
realization of the network is shown in Figure 1b, where
the 8 core and 4 non-core reactions are indicated sepa-
rately. The three different sparse structures are shown
in the subplots of Figure 2. The first subplot is identical
to the original structure shown in Figure 1a. This means

Figure 2 Sparse realization structures for the positive feedback motif. Three different dynamically equivalent structures can be given for
the positive feedback motif with the minimal number of reactions. The core and non-core reactions are indicated in the same way as in Figure
1.b.
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that the mechanism cannot be described exactly with
less than 9 reactions. It turns out from the second and
third subplots that (at least mathematically), the degra-
dation of mRNA is dynamically not a necessary element
of the model. However, the biological plausibility of the
mathematically possible structures and reactions always
has to be carefully examined.
As it is expected, the possible structures of sparse/dense

realizations and the corresponding core and non-core
reactions can change with the modification of parameter
values. This is illustrated in Figure 3a, where the following
randomly generated parameter values were used:

k1 = 18.9, k2 = 7.1, k3 = 15.4,

k4 = 12.7, k5 = 10.6, k6 = 3.5,

k7 = 11.3, k8 = 9.1, k9 = 4.0.

(28)

It is visible that the structure of the dense realization
is the same as in Figure 1b but the core reactions are
different from the ones shown there. Here the degrada-
tion of mRNA is described by a core reaction but inter-
estingly, the reaction corresponding to translation is not
a core one. Naturally, this implies that the possible
sparse realization structures with the second parametri-
zation are different from the ones shown in Figure 2.
Note that here the only goal was to illustrate the possi-
ble change of core and non-core reactions, and therefore

the biological relevance of the parameter values in eq.
(28) is not assumed in this case.
In the next step, let us assume that another complex,

namely X2 + X4 is allowed in the model (again not neces-
sarily assuming biological meaningfulness in this particu-
lar case). With the addition of this new complex, the
stoichiometric matrix of the system can be written as

Y ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0
1 0 0 0 1
1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 0 1 0 1
0 0 1 0 0
0 0 0 1 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (29)

The dense CRN realization of the dynamics (20)-(24)
with the updated Y’ matrix given in eq. (29) using the
original parameters described in (27) is shown in Figure
3b, where the core and non-core reactions are again
indicated. It is apparent that now there are only 5 core
reactions, and none of the remaining 12 reactions are

Figure 3 The effect of modifying the complex set and the parameters. (a) The core and non-core reactions of the dense realization of the
positive feedback motif are shown in this subfigure with a randomly selected parametrization that is different from the one given in [87]. (b)
The core and non-core reactions of the dense realization of the positive feedback motif can be seen in this subfigure when an additional
complex X2 + X4 is involved into the model.
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essential to represent the dynamics (20)-(24). This
means that the introduction of a new complex increased
the flexibility of the network (i.e. mathematically, the
majority of the reactions can be substituted by other
ones and the network still maintains its original
dynamics). Of course, not any combination of the non-
core reactions can be omitted from the network,
because the sparse realizations show that at least 9 reac-
tions are needed to keep dynamical equivalence. It can
be computed easily that the theoretical maximum num-
ber of sparse realizations with different structures is(

12
17 − 9

)
= 495 . However, as the numerical experi-

ments show, majority of these structures do not give a
practically feasible dynamically equivalent realization.
The above results clearly show that certain mechan-

isms may remain undetectable (or they are falsely
detected) even if we have complete species concentra-
tion measurements and full information about possible
complex formation, that are not very realistic assump-
tions. Moreover, the sparsest dynamically equivalent
structure of mass-action models is not unique, therefore
sparsity enforcing approaches for determining ‘true’
reaction structures are not enough in themselves with-
out the necessary amount of prior information given in
the form of additional constraints. The practical situa-
tion is most often even worse than that, since the mea-
surements are typically incomplete, noisy and
sometimes dynamically not rich enough, that may intro-
duce further obstacles to the structure/parameter esti-
mation process [66,89].

Example 2: a biochemical switch in yeast cells
The following example is taken from [90] and it
describes a ‘switching device’ in yeast cycle regulation.
The detailed system description can be found in [90]
and in the accompanying supporting information docu-
ment. The order of state variables, corresponding to
concentrations, is the same as in the original article, and
is shown below:
x1: [Sic1], x2: [Sic1P], x3: [Clb], x4: [Clb·Sic1], x5:

[Clb·Sic1P], x6: [Cdc14], x7: [Sic1P·Cdc14], x8:
[Clb·Sic1P·Cdc14], x9: [Clb·Sic1·Clb]. The original struc-
ture with 18 reactions is shown in Figure 4a. The Y
matrix of the network is given by

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (30)

Figure 4 Model of a biochemical switch in yeast cells. (a) The subfigure shows the original structure of a CRN describing a biochemical
switch published in [90]. The numbering of species and rate coefficients is identical to the description in the original paper. (b) The dense
realization of the network is depicted in this subfigure and contains 28 reactions, out of which only 12 belong to the set of core reactions.
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The non-zero off-diagonal elements of Ak are (the
diagonal ones can be computed using the column con-
servation property):

[Ak]2,1 = k3, [Ak]2,3 = k2, [Ak]3,2 = k1,

[Ak]4,5 = k5, [Ak]5,4 = k4, [Ak]6,5 = k6,

[Ak]6,8 = k9, [Ak]7,8 = k8, [Ak]8,7 = k7,

[Ak]9,10 = k11, [Ak]10,9 = k10, [Ak]11,10 = k12,

[Ak]12,13 = k14, [Ak]13,12 = k13, [Ak]14,13 = k15,

[Ak]15,16 = k17, [Ak]16,15 = k16, [Ak]17,16 = k18.

(31)

Since there are no parameter values published in [90],
we used the following randomly selected rate coeffi-
cients:

k = [4.1 3.2 6.7 7.3 3.8 2.4 4.5 5.1 6.2

7.7 8.6 9.5 2.4 4.9 5.8 10.2 6.3 8.5]T .
(32)

The structure of the dense realization indicating the
12 core and 16 non-core reactions can be seen in Figure
4b.
It can be shown using the computational methods

described in the ‘Methods’ section that the only possible
sparse realization structure is identical to that of the ori-
ginal network. Therefore in this special case, there is
only one possible reaction structure containing the
minimal number of reactions. A straightforward
approach to ensure the structural uniqueness of the
whole network is to exclude all reactions that are not
meaningful from the examined application’s point of
view or that are contradictory to modeling assumptions.
For the current example, the removal of an unexpect-
edly low number of reactions is enough to obtain a
unique structure. It can be shown by computing the
corresponding constrained dense and sparse realizations,
that excluding the reactions X5 ® X3 + X5, X4 ® X3 +
X4, X2 + X3 ® X3 + X5, and X3 + X1 ® X3 + X4 is
enough to make the reaction structure unique that is
identical to the original structure shown in Figure 4. In
other words, the exclusion of 4 well-selected reactions
leads to the removal of an additional 6 reactions leaving
only 18.

Example 3: a repressilator structure with 5 nodes and
auto-activation
Consider the repressilator model shown in Figure 5 with
5 nodes where also auto-activation is assumed. Similarly
to [91], we make the following assumptions: cooperative
regulator binding, genes are present in constant
amounts, transcription and translation are modeled by
single-step kinetics, and finally, proteins are degraded by
first order reactions. We note that complex dynamic
phenomena such as multiple steady states or oscillations

have been shown with a wide range of parameters in
similar systems, especially in the case when the number
of genes is odd [91]. We also assume that there is some
protein production (leakage) when both the activator
and the repressor are bound to the genes (although this
assumption does not affect the main results of the forth-
coming analysis). It is clearly shown in [92] that kinetic
models with simple mass-action kinetics very effectively
describe complex dynamics in genetic regulatory net-
works, therefore we follow the same modeling metho-
dology. Using the assumptions listed above, the CRN
describing the system is the following:

Gi + Pi

ki,1

�
ki,2

GA
i (auto-activation 1) (33)

GA
i

ki,3→ GA
i + Pi (protein production 1) (34)

Gi + Pj

ki,4

�
ki,5

GR
i (repression 1) (35)

GR
i + Pi

ki,6

�
ki,7

GAR
i (auto-activation 2) (36)

GA
i + Pj

ki,8

�
ki,9

GAR
i (repression 2) (37)

GAR
i

ki,10→ GAR
i + Pi (protein production 2) (38)

Figure 5 A standard repressilator structure. A repressilator
structure with 5 nodes and auto-activation is shown in the figure.
The mass-action type CRN model of this structure contains 51
distinct complexes and 55 reactions.
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Pi
ki,11→ 0 (protein degradation) (39)

for the index pairs (i, j) Î {(1, 5), (2, 1), (3, 2), (4, 3),
(5, 4)}. In eqs. (33)-(39), Gi and Pi represent the ith gene
and protein, respectively. For the genes, superscripts A
and R refer to activated and repressed states, respec-
tively. Let us denote with ri,k the reaction with rate coef-
ficient ki,k in eqs. (33)-(39).
Two cases with different sets of randomly selected rate

coefficients were studied, and the structures of the
obtained results were the same. The numerical details
can be found on the 3rd sheet of Additional File 1:
CRN_data.xls. The total number of reactions for the
repressilator model is 55 that is equal to the number of
reactions in the sparse realization. The dense realization
contains 70 reactions which means that there are a max-
imum of 15 more mathematically possible reactions
while maintaining exactly the same dynamics as the ori-
ginal biological model. These additional reactions are
the following:

GAR
i → GR

i , Pi + GR
i → GR

i ,

Pi + GR
i → Pi + GAR

i , for i = 1, . . . , 5.
(40)

The number of core reactions in the model are 45.
The set of non-core reactions (that, in principle can be
substituted by other reactions) is given by

GAR
i � GR

i + Pi, i = 1, . . . , 5. (41)

In particular, it is easy to show (see also Additional
File 1: CRN_data.xls) that reactions GAR

i → GR
i + Pi and

GAR
i → GR

i are always indistinguishable. Similarly, the

reaction GR
i + Pi → GAR

i can be substituted with the

combination of reactions GR
i + Pi → GR

i and

GR
i + Pi → GAR

i + Pi . It can be seen from these results
that in order to have a model with unique structure, it
is very important to a priori exclude all reactions that
are not meaningful for the particular application.

Example 4: sparse linear gene regulation network models
For structural identification, gene regulation networks
are often modeled as linear time-invariant systems
[84,93] of the form

ẋ = Ax + Bu, (42)

where A Î ℝn×n contains the connectivity information
of the network. Ai,j >0 indicates activation from node j
to node i, while Ai,j <0 means repression, diagonal ele-
ments of A represent auto-activation or auto-repression
depending on their sign. x Î ℝn is the fully or partially
measurable state of the system describing the time evo-
lution of concentrations, and the input part Bu repre-
sents experimental perturbation (e.g. activation) of the
genes. It is also a common assumption that the network
is ‘sparse’ which means that there are only a limited
number of activation or repression links between the
nodes (i.e. the matrix A is ‘sparse’, too). But assuming
sparsity can be a serious obstacle to identifiability as it
will be shown.
First, consider the ‘true’ genetic network structure that

was simulated and inferred in [93] and that is redrawn
in Figure 6a. From the figure, we can reconstruct the
structure of the corresponding A matrix as follows (the
exact parameter values are not described in the paper,

Figure 6 A sparse gene regulation network and their structural identifiability properties. (a) This subfigure is the reproduction of one of
the sparse gene regulation networks used for structural identification in [93]. The network has 11 activation (solid edges), 6 suppression (dashed
edges), and 3 autoregulation links (at nodes 1, 3 and 6) with undefined sign. (b) The subfigure shows that the vast majority of the randomly
generated models in the case when N = 2 and K = 2 are structurally unidentifiable, because not all nodes of the network are reachable from the
perturbed one. (c) As the network becomes less sparse (N = 10, K = 3), the structural identifiability properties are quickly improving. In this case,
more than 80% of the randomly generated models are structurally identifiable.

Szederkényi et al. BMC Systems Biology 2011, 5:177
http://www.biomedcentral.com/1752-0509/5/177

Page 11 of 15



but the investigated structural properties do not depend
on the individual parameter values)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 0 0 0 0 0 0 + 0
0 0 0 0 0 0 0 + + 0
0 0 ∗ 0 0 − 0 0 0 0
0 0 0 0 0 0 + 0 0 +
0 0 0 + 0 0 0 − 0 0
0 0 0 0 0 ∗ 0 0 + 0
0 0 + + 0 0 0 0 0 0
0 0 0 0 − 0 − 0 0 0
0 0 0 0 0 − + 0 0 0
0 0 0 0 0 0 + − 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (43)

where ‘+’, ‘-’ and ‘*’ represent positive, negative and
nonzero (but otherwise undefined) parameter values,
respectively. If there are no prior assumptions about
the structure of the interconnection matrix or about
the relations between certain parameters, we can easily
test the structural non-identifiability of the model by
checking whether all nodes are reachable from the per-
turbed node on a directed path in the interconnection
graph or not [33]. The reachability of nodes can be
tested by several methods, e.g. a depth- or breadth-
first-search (DFS or BFS) of the corresponding directed
graphs that are fast polynomial-time algorithms [94].
To give a very simple example, it is clear from Figure
6a, that if nodes 1 or 2 were excited by an input signal,
then the connections between the other nodes (3-10)
would be undetectable by any method, however sophis-
ticated it is. To examine whether situations like this
one are common, we generated 10000 random state
space models using the same method, and assuming
zero initial conditions as in [93]. The connectivity of
the corresponding directed graphs was tested using
DFS. For 10 nodes and 2 nonzero elements in each
row of A (i.e. N = 10, K = 2), we obtained that 73.38%
of the generated models are structurally non-identifi-
able. The histogram showing the number of reachable
states is shown in Figure 6b. The situation is dramati-
cally improving if K is increased to 3 as shown in Fig-
ure 6c. In this case, around 17% of the models are
structurally non-identifiable. When we have 20 nodes
and 5 nonzero elements in each row of A (the second
case investigated in [93]), then only 1.6% of the gener-
ated models are structurally non-identifiable. The
results show that ‘sparsity’ has a clearly negative effect
on structural identifiability because of limited informa-
tion transmission between nodes. And finally, we did
not speak at all about practical identifiability which is
known to be a challenging issue even if the required
structural properties are fulfilled [66].

Relation between high level networks and CRN structure
As shown in Example 3, the various possible dynami-
cally equivalent CRN structures do not correspond to a
different GRN structure, if all species concentration
measurements are available and the mapping described
in [92] is used for transforming the models into each
other. Hence, exact matching of the dynamics of differ-
ent GRN structures may generally be a too severe
restriction. To extend this line of research, the relaxa-
tion of dynamical equivalence to ‘close dynamical simi-
larity’ seems to be more meaningful but the
corresponding definitions and computational methods
are much more complex than in the case of dynamical
equivalence. One promising recent approach to assess
dynamical similarity of CRNs (that also adds more
degrees of freedom to the computations) is the concept
of ‘linear conjugacy’ [74]. However, it might happen that
dynamically completely equivalent GRN structures will
be shown in the future.

Conclusions
It has been shown in this paper using illustrative exam-
ples that biological network structures modeled by
CRNs often cannot be uniquely determined even if the
structure of the corresponding mathematical model is
assumed to be known and all dynamical variables are
measurable. The structural uniqueness and identifiability
of the models often require additional constraints.
The main new contributions of the paper are the fol-

lowing. Firstly, core reactions present in any dynamically
equivalent CRN realizations with a given complex set
have been defined and a simple procedure with polyno-
mial time-complexity has been given for determining
them. Clearly, the core reactions are mandatory ele-
ments of every dynamically equivalent CRN realization
assuming a fixed complex set. Secondly, a polynomial-
time method based on linear programming for comput-
ing dense realizations has been outlined that is more
scalable and therefore presents a clear improvement
over the previously used MILP-based method. As an
additional minor extension of previous results, con-
strained realizations of CRNs have been defined, and a
computational method has been proposed to check the
uniqueness of constrained realizations.
The presented concepts and algorithms were illu-

strated on previously published models describing biolo-
gical processes. It was shown that the set of core
reactions may change with the modification of the com-
plex set. The examples also show that the frequently
applied sparsity assumption alone is not enough for
structural uniqueness of CRNs. Moreover, in the case of
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simple linear genetic network models, too sparse struc-
tures can degrade identifiability properties. The results
further support the fact that as much prior information
as possible should be incorporated in structural and
parametric inference problems.

A Appendix
Proof of P1. Let us denote the ith column of any matrix
W by W ·,i. The proof is based on the following well
known fact of linear algebra. Consider an inhomoge-
neous set of linear equations:

Ax = b (44)

If x = p is any particular solution of (44) then the
entire solution set for (44) can be characterized as

{ p + v|v is any solution of Ax = 0} (45)

The matrix equation Y · Ak = M (see eqs. (3) and (8))
obviously defines m sets of linear equations of the form

Y · [Ak]·,i = M·,i, i = 1, . . . , m (46)

Let us choose any i indexing the sets of equations in
(46). For simplicity, let p = [Ak]·,i, b = M · ,i. Let us
assume that there are z elements of the constraint set
(9) where jk = i for k = 1, ..., s. (If z is 0, then we get the
earlier result proved in [71].) These constraints can be
expressed by further linear equations of the form:

[Ak]h,i = 0, h = 1, . . . , z (47)

The equation sets (46) and (47) can be written into a
single set of equations as

Ȳ · p = b̄ (48)

where Ȳ ∈ �
(n+z)×m and b̄ ∈ �

n+z . Let us assume now
that p is a dense solution for (48), i.e. it contains the
maximal possible number of nonzero elements. If p has
no zero elements, then the result to be proved is trivially
satisfied. Therefore, without the loss of generality we
can assume that the first l < m elements of p are non-
zero, while the rest are zero, i.e. pj ≠ 0 for j = 1, ..., l,
and pj = 0 for j = l + 1, ..., m. This can always be
achieved by the appropriate reordering of the elements
of p. Assume now that p’ Î ℝm is also a solution for
(48), but p′

c �= 0 for some c Î ℤ, l + 1 ≤ c ≤ m. Then p’

= p + v, where Ȳ · v = 0 , and vc ≠ 0. In this case, p″ = p
+ l · v is also a solution for (48) for any l Î ℝ and l
can always be chosen so that p′′

j �= 0 for j = 1, ..., l, and
there is at least one index l + 1 ≤ c ≤ m for which
p′′

c �= 0 . However, this contradicts to the assumption
that p is a dense solution for (48).

Proof of P2. This is a straightforward consequence of
P1, since the unweighted directed graphs of all con-
strained dense realizations must be identical.
Proof of P3. If the graph structure of the constrained

realization is unique, then it trivially implies that the
structures of the constrained dense and sparse realiza-
tions are identical, since there exists only one possible
constrained reaction structure. If the structures of the
constrained dense and sparse realizations are identical,
then the number of nonzero reaction rates is the same
in any constrained realizations including the constrained
dense ones. Then it follows from P1 that the con-
strained reaction structure is unique.

Additional material

Additional file 1: Detailed numerical data of the CRNs shown in
Examples 1-3. This file contains the detailed data (i.e. stoichiometric
matrices and reaction rate coefficients) of the dynamically equivalent
reaction networks studied in Examples 1,2 and 3. The individual sheets
correspond to the different examples.
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