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Abstract 

Background:  Babesia spp. are apicomplexan parasites which infect a wide range of mammalian hosts. Historically, 
most Babesia species were described based on the assumed host specificity and morphological features of the 
intraerythrocytic stages. New DNA-based approaches challenge the traditional species concept and host specificity 
in Babesia. Using such tools, the presence of Babesia DNA was reported in non-specific mammalian hosts, including B. 
canis in feces and tissues of insectivorous bats, opening questions on alternative transmission routes. The aim of the 
present study was to evaluate if B. canis DNA can be detected in tissues of laboratory rodents following oral inocula-
tion with infected ticks.

Methods:  Seventy-five questing adult Dermacentor reticulatus ticks were longitudinally cut in two halves and pooled. 
Each pool consisted of halves of 5 ticks, resulting in two analogous sets. One pool set (n = 15) served for DNA extrac-
tion, while the other set (n = 15) was used for oral inoculation of experimental animals (Mus musculus, line CD-1 and 
Meriones unguiculatus). Blood was collected three times during the experiment (before the inoculation, at 14 days 
post-inoculation and at 30 days post-inoculation). All animals were euthanized 30 days post-inoculation. At necropsy, 
half of the heart, lung, liver, spleen and kidneys were collected from each animal. The presence of Babesia DNA target-
ing the 18S rRNA gene was evaluated from blood and tissues samples. For histopathology, the other halves of the 
tissues were used. Stained blood smears were used for the light microscopy detection of Babesia.

Results:  From the 15 pools of D. reticulatus used for the oral inoculation, six were PCR-positive for B. canis. DNA of B. 
canis was detected in blood and tissues of 33.3% of the animals (4 out of 12) inoculated with a B. canis-positive pool. 
No Babesia DNA was detected in the other 18 animals which received B. canis-negative tick pools. No Babesia was 
detected during the histological examination and all blood smears were microscopically negative.

Conclusions:  Our findings demonstrate that B. canis DNA can be detected in tissues of mammalian hosts following 
ingestion of infected ticks and opens the question of alternative transmission routes for piroplasms.
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Background
Babesia spp. are apicomplexan parasites which infect a 
wide range of mammalian hosts and often cause impor-
tant clinical disease in domestic animals, and occasionally 
in wildlife and humans [1–4]. All Babesia spp. for which 
the life-cycle is known are transmitted by ticks during 
blood-feeding [5, 6].
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Historically, Babesia species were described based 
on the assumed host specificity and morphology of the 
intraerythrocytic stages [7, 8]. Nevertheless, new molecu-
lar approaches do challenge the traditional species con-
cept and host specificity of Babesia spp. [9]. Using such 
tools, the presence of Babesia DNA was reported in 
mammalian hosts that were not previously known to be 
susceptible to the infection [8]. Piroplasms ‘specific’ to 
horses (B. caballi and Theileria equi) were found in the 
blood of dogs from Croatia and Romania [10, 11]. Babe-
sia canis and Babesia vulpes (reported as T. annae and 
Babesia microti-like piroplasm), considered to be canid-
specific piroplasms (reported in wolves, red foxes, golden 
jackals) were identified in cats from Portugal [12, 13].

Dermacentor reticulatus, the only known vector of 
B. canis [14–16] is a relatively generalist tick. Although 
the immature stages of D. reticulatus feed principally on 
rodents, B. canis has never been reported in this group 
of hosts. Recent studies reported B. canis DNA in the 
feces, heart tissues, and engorged ticks (Ixodes simplex, 
I. vespertilionis) of European bats [17–19]. These find-
ings might suggest alternative routes of transmission, 
such as oral ingestion of infected D. reticulatus ticks [17]. 
Such routes are well known for other tick-borne haemo-
protozoans, such as Hepatozoon canis or H. america-
num which are transmitted to dogs following ingestion 
of infected Rhipicephalus [20], Haemaphysalis [21] and 
Amblyomma [22–24] ticks. Apicomplexans of the genus 
Hemolivia are also known to be transmitted via tick 
ingestion to their vertebrate hosts [25–28]. These routes 
of transmission seem to represent evolutionary adapta-
tions related to the feeding habits of the vertebrate hosts 
[29]. Carnivores are likely ingesting ticks when they feed 
on their prey [30, 31], while tortoises ingest ticks when 
feeding on vegetation [25]. Hence, such a route could be 
also the case for the repeated findings of B. canis DNA in 

bats. In this context, the aim of our study was to evaluate 
if oral ingestion of ticks infected with B. canis results into 
presence of detectable DNA in tissues of otherwise unex-
pected hosts.

Methods
Ticks
In May 2018, a total of 109 ticks were collected from 
Lazuri (47° 53′ 15″ N, 22° 53′ 30″ E), Satu-Mare County, 
Romania, by flagging. The ticks were kept in an aerated 
large plastic tube, in which a small piece of wet cotton 
was placed to maintain humidity until further processing. 
Morphological identification was performed individu-
ally for each tick using morphological keys [32]. Only the 
ticks identified as adult Dermacentor reticulatus (n = 75; 
40 females and 35 males) were further used for the exper-
imental trials. The 75 D. reticulatus ticks were divided in 
15 pools, each containing 5 ticks of the same sex (8 pools 
of females and 7 pools of males). Each tick was longitudi-
nally cut in half, while still alive. One pool set (15 pools) 
was used for DNA extraction, while the other set of pools 
(15 pools) was used for oral inoculation of experimental 
animals (Fig. 1).

Experimental animals and study design
The total number of animals used in this study was 32 
(16 adult mice, Mus musculus line CD-1 and 16 adult 
Meriones unguiculatus). They were housed individually 
in commercial plastic cages. The animals were main-
tained in standard conditions. Each tick pool was tritu-
rated together with a drop of physiological saline. From 
the obtained suspension, half the volume was inoculated 
orally to a mouse (n = 15) and the other half to a gerbil 
(n = 15), using a plastic single-use pipette. Addition-
ally, one mouse and one gerbil were used as uninfected 

Fig. 1  Schematic representation of experimental protocol
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negative controls and inoculated only with physiological 
saline.

From both mice and gerbils blood was collected at 
three time points (30 μl was collected from each animal 
at each collection time): (i) before the inoculation of tick 
triturate in order to exclude the presence of piroplasms 
(molecular assay described below); (ii) at 14 days post-
inoculation (pi); and (iii) at 30 days pi. At the first two 
collections, the blood was collected from both, mice and 
gerbils, by lateral tail vein puncture after light sedation 
with isoflurane. At the third collection blood was col-
lected from the retro-orbital sinus, also under light iso-
flurane sedation. Each blood sample was mixed with PBS 
buffer (170 μl) and kept at 4 °C until DNA extraction. A 
small drop of blood from each sample at each sampling 
time was used for smears.

After the oral inoculation, each animal was clinically 
evaluated daily for a period of 30 days. At 30 days pi, the 
animals were euthanized by prolonged narcosis with iso-
flurane. The necropsy was performed, and from each ani-
mal half of the heart and spleen, a lobe of lung and liver, 
and one kidney were collected for DNA isolation; the 
other parts of these organs were fixed in 10% formalin for 
histopathological examination.

Molecular assays
Genomic DNA from ticks and tissues was isolated using 
a commercial kit (Isolate II Genomic DNA Kit; Bioline, 
London, UK) according to the manufacturer’s instruc-
tions. Nested PCR amplifications targeting the 18S 
rDNA gene (561 bp) were performed using two sets of 
primer pairs [33, 34]. The amplification profile used was 
described previously [35]. DNA isolated from the blood 
of a dog from Romania which was naturally infected with 
B. canis was used as a positive control. The sample was 
confirmed to be positive for Babesia spp. using the same 
protocols [33, 34] followed by sequencing. A DNA-free 
water was used as a negative control. PCR products were 
visualized by electrophoresis in a 1.5% agarose gel stained 
with RedSafe™ 20,000× nucleic acid staining solution 
(Chembio, St Albans, UK). Their molecular weight was 
assessed by comparison with a molecular marker (Hyper-
ladder IV; Bioline). PCR-positive amplicons were purified 
using Isolate II PCR and Gel Kit (Bioline) and sequenced 
(Macrogen Europe, Amsterdam, Netherlands). The 
sequences were compared to those available in GenBank 
using the Basic Local Alignment Search Tool (BLAST) 
analysis (BLASTn algorithm).

Haematological and histological examination
Two smears made from blood collected at 14 and 30 days 
pi from each experimental animal were Giemsa-stained 
and examined. At least 100 fields were examined under 

immersion oil objective (100× magnification) before 
the sample was considered free of piroplasms. All B. 
canis PCR-positive tissues were used for histopathologi-
cal examination. The samples were routinely processed, 
embedded in paraffin wax, cut into 3–4 µm sections, 
and stained with haematoxylin and eosin (H&E). For 
each positive sample, two slides were examined using 
an Olympus BX51 microscope. The photomicrographs 
were taken using an Olympus SP 350 digital camera and 
Olympus stream image-analysis software (Olympus Cor-
poration, Tokyo, Japan).

Results
The health condition of the animals did not change for 
the entire period of the study.

Molecular analyses
From the total number of 15 pools of D. reticulatus used 
for the oral inoculation of mice and gerbils, six were 
found positive for B. canis DNA (Table 1). In experimen-
tal animals, B. canis DNA was identified in blood and tis-
sues of four animals (Table  1). Babesia canis DNA was 
not detected in tissues of animals which received non-
infected tick pool suspension. Control animals were also 
PCR-negative. All the smears collected from the experi-
mental animals were microscopically negative for the 
presence of Babesia spp.

Babesia canis DNA was present in the blood collected 
at 14 days pi in two gerbils (P5 and P10) but at the end 
of the experiment (30 days pi) only the blood of one of 
these gerbils (P5) remained positive. In one gerbil (P13), 
the blood tested positive only at 30 days pi. At the tissue 
level, only the liver of one gerbil (P10) and the kidney of 
one mouse (P10) were PCR-positive for B. canis. All the 
smears collected from the experimental animals were 
microscopically negative for the presence of Babesia spp.

The sequences analysis revealed the presence of one 
genetic variant in all the 6 infected tick pools (Gen-
Bank: MK836022). The BLAST analysis of the positive 
sequences showed a similarity of 100% with several B. 
canis isolates from dog blood (e.g. GenBank: MK571831.1 
and MK571830.1), ticks (e.g. GenBank: MK070118.1) 
and a golden jackal (e.g. GenBank: KX712122.1). The 
sequences of B. canis found in the blood and tissues of 
infected animals were all identical with the sequences 
found in the respective positive tick pool, but not identi-
cal with the positive control used.

Histopathological examination
The hepatic parenchyma of the gerbil P5 showed diffuse 
congestion and randomly distributed foci of coagula-
tive necrosis associated with small numbers of neutro-
phils and macrophages (Fig.  2). The portal areas were 
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multifocally infiltrated with mononuclear cells domi-
nated by lymphocytes, macrophages and few neutrophils. 
Both portal tracts and sinusoids showed individual and 
small groups of macrophages containing a finely granular 
yellow-brown pigment (hemosiderin) (Fig. 3).

The renal parenchyma of the mouse P10 presented 
moderate renal congestion, particularly in the cortex; 
the interstitium was multifocally infiltrated by small 
numbers of mature lymphocytes, neutrophils and mac-
rophages (Fig.  4). The renal proximal convoluted tubes 
were affected by vacuolar (hydropic) degeneration and 
coagulative necrosis: haemoglobin casts were occasion-
ally found within the renal tubules (Fig.  5a, b). Mild 

glomerular hypercellularity was also observed in the pos-
itive cases.

Discussion
This study presents experimental evidence for the pres-
ence of B. canis DNA in tissues of animals following the 
oral inoculation of B. canis-positive ticks. Although our 
study demonstrated that Babesia DNA can be found in 
tissues of animals after ingestion of infected ticks, this 
is not a proof of infection. The presence of the DNA 
does not imply the survival of the babesiae. To demon-
strate this and the infection following oral inoculation of 
infected ticks, more detailed studies are probably needed, 

Fig. 2  Histological section of the liver of a gerbil positive for B. canis 
DNA. The microphotograph is showing focal hepatic necrosis with 
neutrophils and macrophage infiltration (arrows). H&E staining. 
Scale-bar: 20 µm

Fig. 3  Liver of a gerbil positive for B. canis DNA. The image represents 
the portal tracts and sinusoids which presents individual and small 
groups of macrophages containing a fine granular yellow-brown 
pigment (hemosiderin) (arrows). H&E staining. Scale-bar: 20 µm

Table 1  Presence of Babesia sp. DNA in tick pools, blood and tissues

Abbreviations: B1, blood collected at 14 days pi; B2, blood collected at 30 days pi; H, heart; L, liver; S, spleen; K, kidney

Host Sample Pool

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

PCR tick + − + − + − + − − + − − + − −
Mouse B1 − − − − − − − − − − − − − − −

B2 − − − − − − − − − − − − − − −
H − − − − − − − − − − − − − − −
L − − − − − − − − − − − − − − −
S − − − − − − − − − − − − − − −
K − − − − − − − − − + − − − − −

Gerbil B1 − − − − + − − − − + − − − − −
B2 − − − − + − − − − − − − + − −
H − − − − − − − − − − − − − − −
L − − − − − − − − − + − − − − −
S − − − − − − − − − − − − − − −
K − − − − − − − − − − − − − − −
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including the use of experimentally infected ticks. How-
ever, our study offers a possible explanation for the pres-
ence of B. canis DNA in the tissues of non-canid hosts, 
including the multiple reports in bats. As the use of bats 
for experimental studies is virtually impossible due to 
strict regulations, ethical issues, logistics and costs, we 
have designed our experiment using rodent models.

With more than 1200 species worldwide, bats’ diet is 
very diverse and depends on the geographical distribu-
tion of the bat species. All bats in Europe are insectivo-
rous (except the Egyptian fruit bat) and belong to both 
orders, Yangochiroptera and Yinpterochiroptera [36]. 
Their diet may span many species, including flies, mos-
quitos, beetles, moths, crickets, grasshoppers, bees 

[37–40], but there are no reports of feeding on ticks. 
Interestingly, there are few recent reports of the presence 
of DNA of various piroplasmids and other hemopara-
sites of non-chiropteran hosts in samples collected from 
bats. Hornok et al. [17] reported the presence of B. canis 
DNA in feces of Nyctalus noctula, Myotis alcathoe, Myo-
tis daubentonii, and Pipistrellus pygmaeus collected in 
Hungary. Corduneanu et al. [18] found DNA of B. canis, 
B. gibsoni and Hepatozoon canis in tissues of N. noct-
ula and P. pipistrellus collected in the Czech Republic, 
Hungary and Romania. Additionally, Hornok et  al. [19] 
reported the presence of several piroplasmid species in 
engorged bat-associated ticks (larvae of I. vespertilionis, 
and larvae, nymphs and females of I. simplex) collected 
from M. daubentonii, M. dasycneme, Eptesicus serotinus, 
Miniopterus schreibersii and Rhinolophus hipposideros in 
Hungary and Romania. All these reports are based on the 
detection of partial 18S rDNA, which was considered as 
inconclusive by Uilenberg et  al. [8], who recommended 
experimental transmission studies as more conclusive. 
As the known vectors of all these haemoparasites are 
ticks which do not feed on bats, the origin of this DNA 
remains uncertain, and raised the idea of the possibility 
of oral transmission.

Ingestion of ticks can occur either during grooming or 
predation of infested hosts in carnivores [31, 41] or acci-
dentally from the vegetation in herbivores [25]. For some 
tick-borne apicomplexan parasites, the oral transmission 
with infected ticks is the main route of infection, as is 
the case of Hepatozoon spp. in carnivores [30] or Hemo-
livia spp. in tortoises [25]. However, in these cases, it is 
unclear how the infective stages disseminate from the 
intestine to the target tissues in the body (i.e. direct pen-
etration of the gut or invasion of various hosts’ cells fol-
lowed by blood migration) [24]. However, as yet, no tick 
DNA has been detected in bat feces [17], but no extensive 
studies have been completed.

Oral transmission of Babesia microti was demonstrated 
by Malagon & Tapia [42]. They infected mice by inges-
tion of blood and by cannibalism. The infection rate of 
mice which were orally inoculated with blood was 3.7% 
(5/135) and by cannibalism was 15.1% (12/79). The pres-
ence of parasites was detected on blood smears at the 
beginning of the experiment, at 7 days pi, followed by 
collection of blood at 7-day intervals until 1 month [42]. 
In our study, the rate of DNA presence after oral inges-
tion with triturated ticks was 16.66% (1/6) in mice, and 
50% (3/6) in gerbils.

Gerbils are good experimental models for babesio-
sis caused by B. divergens, as they develop an acute and 
fatal form of the disease after intraperitoneal inoculation. 
Most of the clinical signs appear after 3 days pi with the 
animals dying after 5 days pi [43, 44]. The hepatic tissue 

Fig. 4  Kidney of a mouse positive for B. canis DNA. Microscopically, 
the perivascular areas and the tubule interstitium are mildly infiltrated 
with lymphocytes, neutrophils and macrophages (arrows). H&E 
staining. Scale-bar: 20 µm

Fig. 5  a, b Histological section of the kidney of a mouse positive 
for B. canis DNA. The microphotograph is showing area of hydropic 
degeneration and coagulative necrosis; the presence of haemoglobin 
casts can be also observed (arrows). H&E staining. Scale-bar: 20 µm
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of gerbils infected with B. divergens presented dilated 
sinusoids with macrophages, inflammation of the stroma 
and hyperplasia of the Kupffer cells and the spleen pre-
sented disorganization of the architecture [43–45]. 
Experimental and spontaneous infections of dogs with B. 
canis and B. gibsoni showed diffuse periportal and cen-
trilobular hepatitis, with the presence of hemosiderin in 
Kupffer cells [46–48]. In dogs infected with B. canis his-
topathological changes included hepatocyte vacuolation, 
dilatation of hepatic sinusoids and degenerative changes, 
particularly in the proximal tubes of kidneys [46]. In 
dogs naturally infected with B. canis vacuolar-hydropic 
degeneration, especially at the level of proximal convo-
lute tubes and also necrosis of renal tubular epithelial 
cells was noticed [47]. In dogs infected with B. gibsoni, 
the kidneys presented an increased number of cells in the 
glomeruli area [48]. All these findings are consistent with 
our findings, but no other evidence of infection (i.e. no 
Babesia stages) was recorded.

Conclusions
Although the presence of DNA of B. canis in the tissues 
of rodents experimentally inoculated via oral ingestion 
with infected ticks is not a conclusive proof of the infec-
tion or the viability of the piroplasms, it still demon-
strates the persistence of parasite DNA and raises further 
questions regarding alternative routes of transmission or 
controversial PCR diagnostic results.

Abbreviation
pi: post-infection.
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