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Studying the genetic diversity of parasite is important for understanding their
biogeography and molecular epidemiology, as well as for establishing disease prevention
and control strategies. Clonorchis sinensis is an important foodborne parasite
worldwide. However, despite its epidemiological significance, the genetic diversity of
C. sinensis has not been well studied from human in northeastern China. In this study,
a total of 342 fecal specimens were collected from residents living in five villages in
Heilongjiang Province and analyzed for the presence of C. sinensis by PCR amplification
and sequencing of the internal transcribed spacer 1 (ITS1) and ITS2 regions of nuclear
ribosomal DNA. 21.64% (74/342) of fecal samples were found to be positive for
C. sinensis by PCR. The sequences of the ITS1 region in 34 of the 74 samples
(45.95%) matched that of MK179278, Genetic polymorphisms were observed at six
nucleotide sites. The ITS2 gene sequence of 37 of the 74 samples (50%) matched
that of MK179281. In conclusion, a low degree of genetic diversity between C. sinensis
isolates from China and different geographical regions was found at ITS loci. Despite this
conservation, sequencing of the rDNA region has provided important data that will be
useful for future studies addressing the molecular evolution, biology, medical implications
and ecology of C. sinensis.
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INTRODUCTION

Clonorchis sinensis (C. sinensis) is an important foodborne zoonotic pathogen. Hosts become
infected with C. sinensis by ingesting raw or undercooked freshwater fish containing metacercariae.
Adults then parasitize the peripheral intrahepatic bile ducts. Typically, C. sinensis infections cause
no obvious clinical symptoms or only mild symptoms (Zhang et al., 2008). However, high intensity
or long-term C. sinensis infections can potentially lead to liver damage such as cholelithiases,
cholecystitis and hepatic fibrosis (Choi et al., 2004). Furthermore, C. sinensis is considered a group
I carcinogen-metazoan parasite that can potentially induce cholangiocarcinoma (Bouvard et al.,
2009).
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Clonorchis sinensis is endemic in Asia, particularly in China,
Japan, Korea and Vietnam (Tang et al., 2016). In China,
approximately 15 million people are estimated to be infected,
mainly in southeast and northeast areas such as Guangdong,
Guangxi and Heilongjiang Provinces (Lun et al., 2005). National
sampling surveys showed that the prevalence of clonorchiasis in
China increased by 75% from 1990 to 2003 and that Heilongjiang
Province was an endemic focus (Rim, 2005; Tang et al., 2016).
A study conducted in Heilongjiang Province between 2009
and 2012 found that the mean prevalence of C. sinensis was
25.93% (Han et al., 2013). However, despite its epidemiological
significance, the genetic diversity of C. sinensis has not been
sufficiently studied. Knowledge of genetic variation of C. sinensis
is important for understanding its epidemiology and for disease
control.

Molecular biology methods not only contribute to the
understanding of parasite epidemiology but also allow for
exploration of parasite characteristics, including host specificity,
transmission patterns and genetic diversity (Choi et al., 2010;
Huang et al., 2012). Researchers have investigated the genetic
variation in C. sinensis isolates from Russia, Vietnam, China
and Korea using molecular biology methods (Chelomina
et al., 2014). Although C. sinensis is represented by a single
species with a low divergence, karyotypic variation between
C. sinensis isolates from China, Korea and eastern Russia suggests
that this taxon might contain sibling species (Wang et al.,
2017). To date, there have been no comprehensive studies
exploring population genetic variation among large numbers of
C. sinensis isolates from disparate geographic locations using
complete or partial mitochondrial and/or nuclear genomic data
sets.

Nuclear ribosomal DNA (rDNA) is widely used for molecular
investigations and genetic analyses (Park, 2007). Ribosomal
genes, including 18S, 5.8S and 28S rRNA, are typically organized
into tandem repeats separated by two internal transcribed spacers
(ITS1 and ITS2) (Prasad et al., 2008; Tatonova et al., 2017). Due
to their high interspecific and low intraspecific variability, the
ITS1 and ITS2 genes have been used extensively for ecological
genetic studies and phylogenetic and evolutionary analyses at
various taxonomic levels for different organisms (Dai et al., 2012;
Buathong et al., 2017). Several studies have also been conducted
on the genetic variability of trematode species such as Schistosoma
japonicum, Fasciola hepatica, and Opisthorchis felineus (Katokhin
et al., 2008; Zhao et al., 2010; Dar et al., 2012). However, limited
information is available on the genetic diversity and molecular
epidemiological surveys based on the ITS gene of C. sinensis from
human in Heilongjiang Province.

In the present study, C. sinensis isolates from human
feces in Heilongjiang Province were identified and genotyped
by PCR amplification of ITS genes. The ITS1 and ITS2
gene sequences obtained here were compared with sequences
previously published in GenBank. The sequence analysis were
assessed by comparing the ITS1 and ITS2 gene sequences
obtained here with those previously published in GenBank. These
genetic data will be crucial for understanding the prevalence
and genetic structure of C. sinensis and for developing disease
treatment and control strategies.

MATERIALS AND METHODS

Ethics Statement
This research study was approved by the Medical Ethics
Review Committee of Harbin Medical University. The objectives,
procedures and potential risks were explained to all participants.
Written informed consent was obtained directly from all adult
participants. If the participants were children, written informed
consent were obtained from the next of kin, carers, or guardians
on the behalf of the minors/children participants.

Specimen Collection
Between June 2014 and March 2015, a total of 342 fecal samples
were collected from residents living five villages along Songhua
river in Heilongjiang Province. Information about five villages
is given in Figure 1. Approximately, 15–20 g of fecal specimens
were randomly collected from each of participants. All fecal
specimens were transported to the laboratory in a cooler with ice
packs within 24 h and stored at 4◦C until they were extracted.

DNA Extraction
The fecal specimens were sieved and centrifuged at 1500 g for
10 minutes at room temperature, and then washed with distilled
water for three times. Genomic DNA was extracted from 200 mg
fecal specimen by a QIAamp DNA Stool Mini Kit (QIAgen,
Hilden, Germany). The procedures and utilized reagents were
utilized according to the manufacturer’s protocol. The eluted
DNA was finally stored at−20◦C in freezers until PCR analysis.

PCR Amplification of the ITS1 and ITS2
Genes
Each of the DNA specimens was detected for the presence of
C. sinensis by amplifying 572 bp of the ITS1 gene and 249 bp
of the ITS2 gene, respectively. The primes for ITS1 are CsITS1F
(5′-CGATTCTAGTTCCGTCATCT-3′) and CsITS1R (5′-CCGC
TCAGAGTACTCAT-3′) (Liu et al., 2007). The primers of the
ITS2 gene are CsITS2F (5′-TATAAACTATCACGACGCCC-3′)
and CsITS2R (5′-TACTGAAGCCTCAACCAAAG-3′) (Yang
et al., 2014).

Amplification of the ITS1 gene was used the following cycling
conditions: a 4 min initial denaturation step at 95◦C; 35 cycles
of 30 s at 94◦C, 1 min at 62◦C, 1 min at 72◦C; and a 10 min
extension at 72◦C. The cycling parameters of amplification of
the ITS2 gene were as follows: a 3 min initial denaturation step
at 95◦C; 35 cycles of 30 s at 95◦C, 30 s at 55◦C, 60 s at 72◦C;
and a 3 min extension at 72◦C. Negative and positive controls
with both primers were included, respectively. TaKaRa Taq DNA
polymerase (TaKaRa Bio Inc., Tokyo, Japan) was used for all the
PCR amplifications. Then the PCR products were separated in
1.5% agarose gel electrophoresis and visualized under UV light
after staining with ethidium bromide.

Nucleotide Sequencing
All the PCR products of expected size were directly sequenced
on an ABI PRISM 3730 XL DNA Analyzer by Sinogeno-max
Biotechnology Co., Ltd. (Beijing, China), using the BigDye
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FIGURE 1 | Sampling locations for Clonorchis sinensis in heilongjiang province, China. Numbers correspond with those in Table 1.

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,
Foster City, CA, United States).

DNA Sequence Analysis
The positive results in electrophoresis were selected for
sequencing. All the nucleotide sequences were aligned with each
other. According to the identity percentage and query coverage
parameter, the reference sequences downloaded from GenBank
database using the Basic Local Alignment Search Tool (BLAST)1

and Clustal X 1.832 to determine isolates of C. sinensis.

Nucleotide Sequence Accession
Numbers
If the isolates obtained in this study with the cutoff values of above
95% in sequence similarity were identical to those published in
GenBank, they were identified to be known isolates and given
the first published name. If not, they were considered to be
novel isolates. Representative nucleotide sequences obtained in
the present study were deposited in the GenBank database under
accession numbers MK179278 to MK179280 (ITS1), MK179281
to MK179283 (ITS2).

Date Analysis
To better present the diversity of all the isolates of C. sinensis
obtained in this study and to assess the genetic relationship of the
novel ones here to the known ones, intraspecific phylogenies were
reconstructed with the neighbor-joining (NJ) and maximum
likelihood (ML) methods in MEGA7.0 program. NJ and ML

1http://blast.ncbi.nlm.nih.gov/Blast.cgi
2http://www.clustal.org/

trees were constructed using 1000 and 100 bootstrap replicates,
respectively. In addition, Bayesian analysis was also used and
proceed as follow: the posterior probabilities are determined by
Markov chain Monte Carlo sampling (MCMC) in MrBayes v3.2
(Ronquist et al., 2012) based on the models from MrModeltest
(Posada and Crandall, 1998; Posada, 2008). There were 275000
generation for ITS1 and 170000 generation for ITS2 run in
MrBayes program. An average standard deviation of <0.01 for
split frequencies is used to suggest a convergence between parallel
runs. Twenty-five percent of the total trees are discarded as burn-
in. Additional, the network was also generated with SplitsTree
(SplitsTree 4.0 program) using the Neighbor Network method
to display the samples (Morrison, 2005; Huson and Bryant,
2006).

The ITS1 sequences of Metorchis bilis (KY356536),
M.xanthosomus (KY356540), M.orientalis (KX832894),
M.orientalis (KX857496), Opisthorchis felineus (EU038139),
O. felineus (KR995729), and O. felineus (KT020830) were used as
the outgroup. The ITS2 sequences of M.bilis (KT740982),
M.orientalis (KX857496), M.xanthosomus (KT740977),
O. noverca (KJ767634), O. lobatus (HQ328545) and O. para-
geminus (KX258657) were chosen as the outgroup to root
the trees. The appropriate nucleotide substitution model for
each gene is determined using MrModeltest MrModeltest v2.3
(Nylander, 2008). The Kimura-2-parameter “K2” model is the
best model for both ITS1 and ITS2 sequence data.

SPSS (version 10.0 software for windows; Chicago, IL,
United States) was used for analyzing the date. The chi-square test
was used to evaluate the assessment between qualitative variable
to check for statistical differences. P < 0.05 was regarded as
statistically significant.
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RESULTS

Prevalence of C. sinensis
In the present study, a total of 342 human fecal specimens were
examined for C. sinensis by PCR amplification of the ITS1 and
ITS2 genes. C. sinensis was found in all five villages examined,
with infection rates ranging from 12.31 to 33.33% (Table 1 and
Figure 1). Specimens that were found to be positive for C. sinensis
by PCR were confirmed by sequencing, and an overall infection
rate of 21.64% was found (74/342).

Genetic Characterization of the
C. sinensis ITS1 and ITS2 Gene
The ITS1 gene sequence of 34 of the 74 samples (45.95%)
matched that of MK179278, followed by MK179280 (25.68%,
19/74), MK179279 (24.32%, 18/74), and MF319641, HQ874526,
JQ048598 (one each, 1.35%, 1/74) (Table 2). The genetic
polymorphisms of one to two base variations were observed at
six nucleotide sites (Table 3).

The ITS2 gene sequence of 37 of the 74 samples (50%)
matched that of MK179281, followed by MK179283 (25.68%,
19/74) and MK179282 (24.32%, 18/74), respectively. There were
no genetic polymorphisms observed.

Phylogenetic Relationships of C. sinensis
The phylogenetic analysis was carried out based on the
ITS gene sequences of the isolates of C. sinensis and some
isolates published previously, inferred by neighbor-joining (NJ),
maximum likelihood (ML) and Bayesian (Bayes) analyses, with
M. bilis, M. xanthosomus, M. orientalis, O. lobatus, O. felineus,
O. noverca, and O. parageminus as outgroup.

TABLE 1 | Regional distribution of C. sinensis infection in five localities from
Heilongjiang Province based on ITS gene.

Locality No. of No. of Percentage

number Geographic origin positive examined (%)

1 Harbin Northeast 28 97 28.87

2 Suihua West 10 51 19.61

3 Daqing 19 57 33.33∗

4 Suihua Northeast 8 65 12.31

5 Harbin West 9 72 12.50

Total 74 342 21.64

∗P < 0.05, significantly different from these five locality.

TABLE 2 | ITS1 sequences of C. sinensis from Heilongjiang Province in this study.

Gene GenBank accession number n Percentage (%)

ITS1 MK179278 34 45.95

MK179280 19 25.68

MK179279 18 24.32

HQ874526 1 1.35

JQ048598 1 1.35

MF319641 1 1.35

Total 74

FIGURE 2 | Phylogenetic relationships between the C. sinensis isolates based
on the partial ITS1 rDNA sequences. Nodal support of >50% is shown for
maximum likelihood/neighbor-joining/Bayesian Inference analyses (as
indicated). Opisthorchis felineus and Metorchis bilis et al. were used for
comparison. Each sequence is identified by its accession number and host
origin. Genotypes with black triangle are genotypes identified in this study,
respectively.
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FIGURE 3 | Phylogenetic relationships between the C. sinensis isolates based
on the partial ITS2 rDNA sequences. Nodal support of >50% is shown for
maximum likelihood/neighbor-joining/Bayesian Inference analyses (as
indicated). Opisthorchis noverca and Opisthorchis lobatus et al. were used for
comparison. Each sequence is identified by its accession number and host
origin. Genotypes with black triangle are genotypes identified in this study,
respectively.

TABLE 3 | Nucleotide variation at six polymorphic sites in ITS1 gene region of
C. sinensis isolates from human in this study.

GenBank accession

number (n) Nucleotide at position (ITS1)

114 507 518 525 531 590

MF319655 Y G – C G G

MK179278(34) – G – C G G

MK179280(19) – G – C G G

MK179279(18) – G – C G G

HQ874526(1) – G – A T C

JQ048598(1) C C G C G G

MF319641(1) Y C T C G G

The topologies of NJ, ML and Bayesian (Figures 2, 3) trees
were very similar and only small differences in bootstrap support
values were obtained among those. These trees demonstrated
unresolved topology with low bootstrap support for most
branches. None of those corresponded to the geographical
localities based on ITS1 gene; nevertheless, only a few clusters
were statistically supported according to the geographical
distance based on ITS2 gene. Additional, the Neighbor Network
was also used to display the samples (Supplementary Figures S1,
S2). Instead of conventional single phylogenetic tree, Splits Tree
makes a phylogenetic network with reticulations. It also showed
that C. sinensis isolates clustered together with the exclusion of
other liver fluke representatives.

DISCUSSION

Genetic data are crucial for understanding the biological history
of parasitic diseases and developing treatment and control
strategies (Gasser and Newton, 2000). In addition, genetic
variation is common in parasite populations and is a valuable
resource for studying the population biology, epidemiology,
and genetic structure of parasites (Liu et al., 2012). Although
intraspecific and interspecific variations between C. sinensis from
different geographic regions have recently been studied using
nuclear rDNA and mitochondrial DNA sequences (Park, 2007;
Sun et al., 2013), there is a paucity of information on the
genetic variation among C. sinensis populations from disparate
geographic locations, where C. sinensis infection remains a
significant health problem (Han et al., 2016).

In the present study, ITS genes were targeted to detect genetic
variations in C. sinensis isolates from human fecal samples
collected in five villages in Heilongjiang Province, China. We
found that the C. sinensis infection rate was 21.64%. In contrast,
the prevalence of C. sinensis infection in Korea was from 1.6 to
9.0% during 1993 – 2006 (Kim et al., 2010). Infection rates are
related to many factors, including the sensitivity and specificity
of the detection method, infection intensity, overall sample size,
climate and experimental design (Tang et al., 2016). The high
infection rate in the present study may have been due to the
age group, sex, or other demographic factors of the individuals
assessed (Han et al., 2013; Lai et al., 2017). For example,
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males prefer to eat more fish and have more frequent social
activities and eating opportunities at restaurants compared with
females (Lun et al., 2005). This results in a higher infection
rate among males than females. Prevalence rates also increased
with age, reaching a plateau among adolescents and young
adults and decreasing in elderly people (Han et al., 2013). As
an C.sinensis endemic area, Heilongjiang Province has numerous
rivers, including the Songhua River, which is an important site for
carp, grass carp, and catfish and for the freshwater fish industry
(Han et al., 2013). The consumption of raw or undercooked
freshwater fish and/or shrimp has been prevalent in this area for
a long time, and it is difficult to change eating habits in the short
time (Qian et al., 2016). Thus, further prevention and control
strategies should be strengthened in these villages, especially the
promotion of public health among local residents (Guoqing et al.,
2001).

In the present study, 74 C. sinensis samples were distributed
among six genotypes based on their ribosomal ITS1 region
sequences. Additionally, six variations in the ITS1 gene region
were observed in this study. Nucleotide diversity within ITS1
region was unequally distributed and mainly located at the ends
of the sequence. Similarly, another study of genetic variation
within C. sinensis in Korea and China also demonstrated a high
degree of similarity in the ITS rDNA sequences (Lee and Huh,
2004). In trematodes, including C. sinensis, intraspecific variation
in the ITS sequences is minimal (Liu et al., 2007; Xiao et al., 2013).
This low genetic diversity may be due to high levels of gene flow
between parasite populations, which counteracts local adaptation
(Sun et al., 2013). However, the small number of polymorphisms
in the ITS sequence (one locus) does not necessarily mean
that there was no genetic differentiation. Analysis of the rDNA
region has provided new data that will be useful for future
studies addressing the molecular evolution, biology, and ecology
of C. sinensis (Tatonova et al., 2017). Indeed, due to selective
pressures from the human host, many parasites, such as Giardia
species, have low levels of genetic variation. The features of the
ITS region might reflect an adaptation strategy of C. sinensis
to environmental conditions and different hosts. No variations
in length or nucleotide composition were detected in the ITS2
region of three genotypes in this study. The lack of intraspecific
variability in the ITS2 region was also confirmed by a genetic
diversity study conducted in eastern Russian (Tatonova et al.,
2012). Therefore, ITS2 might be a suitable and sensitive marker
for species-level analysis (Tatonova et al., 2017).

Phylogenetic analysis was used to assess the genetic
relationships of C. sinensis. The phylogenetic tree of
intraspecific and interspecific relationships based on the
ITS1 and ITS2 sequences showed low divergence among
all tested isolates. Phylogenetic trees constructed using
the NJ, ML and Bayesian analyze and Neighbor Network
showed that all C. sinensis isolates clustered together
with the exclusion of other liver fluke representatives.
Nonetheless, the clustering within C. sinensis was not well
supported in the analyses. Such information can be useful
to improve our understanding of the molecular mechanisms
of species adaptation and evolution and parasite infection
strategies (Chelomina et al., 2014). ITS rDNA spacers

usually diverge among species but are homogeneous within
species due to concerted evolution (Bower et al., 2008).
Nevertheless, we believe that these genetic data could
have important epidemiological, evolutionary and medical
implications.

Based on the analysis of ITS region form GenBank sequences,
this was the first genetic analysis based on ITS1 and ITS2
sequences of C. sinensis from human in different regions of
Heilongjiang Province (Supporting Information Supplementary
Tables S1–S4). The results could provide an important reference
for future studies on C. sinensis, including species identification
studies and assessments of molecular variations between
disparate geographical locations. Most importantly, our research
will be valuable for the further classification and identification
of C. sinensis for the purposes of developing suitable disease
prevention and control strategies.

There were some limitations to this study. Firstly, the
number of fecal samples collected for this study was relatively
small, and our findings were potentially related to the limited
number of specimens. Although collection of fecal samples from
humans can be difficult, more extensive investigations with a
larger number of animal and human specimens are required in
the future. Secondly, future studies analyzing other molecular
markers are necessary to provide additional information on the
population genetic structure of this parasite.

CONCLUSION

In conclusion, this study provided molecular evidence of
C. sinensis in northeast China. A low degree of genetic
diversity between C. sinensis isolates from China and different
geographical regions was found at ITS loci. The rDNA region data
has provided important information that will be useful for future
studies addressing the molecular evolution, biology, medical
implications, and ecology of C. sinensis. In the future, analysis
of additional samples and molecular markers is necessary to
provide further information on the population genetic structure
of C. sinensis, enhancing our ability to prevention and control
strategies of C. sinensis.
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FIGURE S1 | The phylogenetic split network of the Clonorchis sinensis isolates
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FIGURE S2 | The phylogenetic split network of the Clonorchis sinensis isolates
based on the partial ITS2 rDNA sequences. Genotypes with black triangle are
genotypes identified in this study, respectively.

TABLE S1 | ITS1 sequences of C. sinensis worldwide.

TABLE S2 | ITS1 sequences of C. sinensis by geographical location in China.

TABLE S3 | ITS2 sequences of C. sinensis worldwide.

TABLE S4 | ITS2 sequences of C. sinensis by geographical location in China.
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