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Abstract: Coronavirus disease 2019 (COVID-19) is a global infectious disease caused by the SARS-CoV-2
coronavirus. T cells play an essential role in the body’s fighting against the virus invasion, and the T
cell receptor (TCR) is crucial in T cell-mediated virus recognition and clearance. However, little has
been known about the features of T cell response in convalescent COVID-19 patients. In this study,
using 5′RACE technology and PacBio sequencing, we analyzed the TCR repertoire of COVID-19
patients after recovery for 2 weeks and 6 months compared with the healthy donors. The TCR
clustering and CDR3 annotation were exploited to discover groups of patient-specific TCR clonotypes
with potential SARS-CoV-2 antigen specificities. We first identified CD4+ and CD8+ T cell clones with
certain clonal expansion after infection, and then observed the preferential recombination usage of
V(D) J gene segments in CD4+ and CD8+ T cells of COVID-19 patients with different convalescent
stages. More important, the TRBV6-5-TRBD2-TRBJ2-7 combination with high frequency was shared
between CD4+ T and CD8+ T cells of different COVID-19 patients. Finally, we found the dominant
characteristic motifs of the CDR3 sequence between recovered COVID-19 and healthy control. Our
study provides novel insights on TCR in COVID-19 with different convalescent phases, contributing
to our understanding of the immune response induced by SARS-CoV-2.

Keywords: SARS-CoV-2; COVID-19; T cell receptor; CDR3; immune memory

1. Introduction

Beginning in December 2019, the coronavirus disease 2019 (COVID-19) outbreak has
posed a serious threat to more than 200 countries worldwide and has caused more than
5.2 million deaths (https://covid19.who.int. accessed on 13 December 2021). COVID-19 is
caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which usually
leads to respiratory infections, and severe cases develop into severe pneumonia or even
death [1–3]. The immune response to COVID-19 encompasses both B cell-mediated humoral
responses through antibodies as well T cell activity. Many of the early studies on the
immune response to SARS-CoV-2 have focused on neutralizing antibodies. A growing
body of evidence suggests T cell responses are important for both early viral clearance
as well as conferring protection through memory T cells for extended periods in COVID-
19 patients [4–8]. However, the specific T cell immune response against SARS-CoV-2,
including the underlying mechanisms, remains unclear.
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The cellular immune response is mediated by T cells, which play a role in the direct
killing of virus-infected cells via CD8+ cytotoxic T cells as well as helping to direct the
overall immune response through CD4+ helper T cells. The humoral immune response also
includes CD4+ T cells that assist B cells in differentiating into plasma cells and subsequently
producing antibodies specific to the viral antigen. CD4+ T cells also promote the immune
response of CD8+ T cells and the formation of long-term memory CD8+ T cells to exert
antiviral capabilities effectively [9]. Thus, T cells are an important target for assessing the
degree of SARS-CoV-2 infection and disease progression [10]. The T cell response to SARS-
CoV-2 peaks about one to two weeks after infection and can be detected during the months
of recovery [11]. It has been reported that the activated CD38+HLA-DR+, CD8+ T cells,
and CD38+HLA-DR+ CD4+ T cells that respond to virus infection are transiently increased
in COVID-19 patients [12]. Significant elevation and unusual phenotypes of CD4+ cells,
which exhibit both a proliferative exhausted phenotype and a clonally expanded cytotoxic
phenotype, were also observed in mild and moderate COVID-19 cases. However, these
phenotypes between these two groups of CD4+ T cells of mild and moderate COVID-19
cases exhibit distinct functional signatures, distinct TCR sharing patterns, and may repre-
sent two divergent destinations for naive CD4+ T cells [13]. Moreover, a higher proportion
of SARS-CoV-2 specific CD8+ T cells were detected in mild cases, and these CD8+ T cells
have extensive and strong memory after the recovery period of COVID-19 [14]. On the
contrary, a significant reduction in effector memory CD4+ T cells, which were less expanded
and skewed toward central memory T cells and TH2-like phenotypes, was detected in
COVID-19 patients with severe disease, whereas terminally differentiated CD8+GZMK+

effector cells were clonally expanded both during and after the infection [15]. The CD4+

T memory response was detected in all recovered patients from COVID-19, and 70% of
patients had established CD8+ T memory response to SARS-CoV-2, lasting for more than
2 months [16,17]. Additionally, in COVID-19-recovered individuals receiving the vaccine,
pre-existing SARS-CoV-2 specific memory cells showed both clonal expansion and a pheno-
typic shift towards more differentiated CCR7−CD45RA+ effector cells. Therefore, memory
T cells have always been the focus of attention after SARS-CoV-2 infection.

T cells recognize pathogen-derived peptides presented with the major histocompati-
bility complex (MHC) on the cell surface using hypervariable T cell receptor (TCR). TCR
diversity is widely recognized as a direct measure of immune competence, as it quantifies
the variety of foreign antigens and hence acts upon them. At the early stage of T cell
development, TCR is generated by somatic rearrangement of variable (V), diversity (D),
and joining (J) gene segments, known as V(D)J recombination [18]. Thus, the TCR reper-
toire is a critical factor in viral clearance. After activation by antigen recognition, T cells
undergo clonal expansion, during which activated T cells rapidly proliferate to generate
large numbers with identical TCRs to eliminate virus-infected cells. Most of the TCRs
on circulating T cells are alpha and beta subunit heterodimers, and the specificity for an
antigen is shaped by VDJ recombination [19].

Recently, sequencing technology has been widely used to reveal activation-induced
phenotypic profiles of antigen-reactive T cells [20,21]. Some studies have revealed that
clonality and skewing of TCR repertoires from COVID-19 patients by next-generation
sequencing were associated with severity of diseases, such as early CD4+ and CD8+ T
cell activation and interferon type I and III responses. The emergence of shared T cell
clusters occurs in the rehabilitation of COVID-19 patients by next-generation sequencing
technology [22]. It has also been reported that the patients with moderate COVID-19
have highly clonally expanded CD8+ T cells [23]. Notably, the memory phenotype of T cell
response is positively correlated with the severity of the disease, and there exists the specific
memory CD8+ T cell in convalescent COVID-19 patients by single-cell sequencing [24].
Additionally, preferential usage of V and J gene segments of TCR was also observed in
COVID-19 patients [25]. However, studies on the TCR repertoire of COVID-19 patients with
different convalescent stages are lacking. Further exploration is essential to understand the
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mechanism of T cell response to SARS-CoV-2 and the formation of SARS-CoV-2-specific
memory T cells.

In this study, we used the 5′RACE (Rapid Amplification of cDNA Ends) method
combined with third-generation high-throughput sequencing technology to investigate the
TCRα and TCRβ library sequences on peripheral blood CD4+ and CD8+ T cells of conva-
lescent patients after SARS-CoV-2 infection, and then further analyzed the characteristics
of their TCR repertoire of convalescent patients with different convalescent stages.

2. Materials and Methods
2.1. Donors and Blood Samples

Nine confirmed COVID-19 patients of 2 weeks convalescence and five healthy con-
trols were obtained from Fifth Medical Center of Chinese PLA General Hospital, Beijing,
China. The clinicopathologic characteristics of the study group participants with 2 weeks
convalescence and healthy controls are listed in Table 1. Additionally, twenty confirmed
COVID-19 patients of 6 months convalescence were obtained from the General Hospital of
Central Theater Command of PLA, Wuhan, China. The study protocol was approved by
the Institutional Review Board of Peking University (PUIRB). We complied with all rele-
vant ethical regulations, and informed consent was obtained from all human participants
(No:2020072D). No statistically significant difference in age or sex was observed among the
three groups of patients.

Table 1. Clinicopathologic characteristics of the study population.

HC (n = 5) CP (2 Weeks) (n = 9)

Severity Healthy (n = 5) Moderate (n = 3) Severe (n = 3) Critical (n = 3)
Age (years) 65.4 ± 8.76 58 ± 12.78 67 ± 9.9 73 ± 5.57
Sex
Male 2 1 1 2
Female 3 2 2 1
White blood cells (109/L) 5.83 ± 1.2 4.97 ± 1.35 7.76 ± 4.87 7.2 ± 3.68
Percentage of neutrophil 60.48 ± 6 59.3 ± 11.47 79.3 ± 2.4 90 ± 6.9
Number of neutrophils (109/L) 3.22 ± 0.6 3.1 ± 1.27 6.11 ± 3.68 7.29 ± 3.7
Percentage of lymphocytes 20.5 ± 10.2 32.7 ± 11.46 16.4 ± 0.7 5.97 ± 4.5
Number of lymphocytes (109/L) 1.6 ± 0.92 1.49 ± 0.23 1.26 ± 0.74 0.36 ± 0.04
Percentage of monocytes 6.27 ± 0.84 6.48 ± 0.45 4 ± 3.39 2.85 ± 2.69
Number of monocytes (109/L) 0.28 ± 0.03 0.32 ± 0.08 0.4 ± 0.46 0.24 ± 0.03
CRP (mg/L) 1.91 ± 2.4 2.89 ± 1.1 8.49 ± 10.8 44.89 ± 39
CK (U/L) 25 ± 5.4 39.8 ± 16.46 35.5 ± 14.8 133.7 ± 100
Alkalosis N N Y (2) Y (3)
Complication
ARDS N N Y (2) Y (3)
Secondary infections N N N N
History of smoking N N N N

HC, healthy controls; CP (2 weeks), COVID-19 patients with 2-week convalescence phase; CP (6 months),
COVID-19 patients with 6-month convalescence phase; CRP, C-reactive protein; CK, creatinine kinase; ARDS,
acute respiratory distress syndrome. N, none; Y, yes. The parentheses indicate the number of patients.

2.2. Isolation of PBMCs and T Cell Subpopulations

PBMC were isolated with the Ficoll-Paque density gradient centrifugation protocol.
The CD4+ T and CD8+ T cells were purified from PBMCs with the Easysep® human CD4+

or CD8+ positive selection kits from Stem Cell technologies (San Diego, CA, USA). Purified
cells were eluted and washed with PBS containing 2% (v/v) fetal bovine serum (FBS) and
1 mM/L EDTA.

2.3. TCRα and TCRβ Library Preparation and PCR Amplification

For the sorted CD4+ T and CD8+ T cells, total RNA was extracted using RaPure Total
RNA Micro Kit (Magen, China) according to the manufacturer’s instructions. A universal
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primer binding site, sample barcode, and unique molecular identifier (UMI) sequences
were introduced using the SMARTer® RACE 5′/3′ kit (Takara, Japan) with TCRα and
TCRβ constant segment-specific primers (Forward: CTAATACGACTCACTATAGGGC;
Reverse1: GATTACGCCAAGCTTCACGGCAGGGTCAGGGTTCTGGATAT; Reverse 2:
GATTACGCCAAGCTTCTCGGGTGGGAACACGTTTTTCAGGTCCTC) for cDNA syn-
thesis. cDNA libraries were amplified in two PCR steps, introducing the second sample
barcode and Illumina TruSeq adapter sequences at the second PCR step. The PCR program
for both rounds was: 5 cycles at 94 ◦C for 30 s, 5 cycles at 68 ◦C for 30 s, and 25 cycles
at 72 ◦C for 3 min (first-round PCR) and 40 cycles at 94 ◦C for 30 s, 68 ◦C for 30 s, and
72 ◦C for 2 min (second-round PCR). The PCR products were separated on 1.5% agarose
gel by electrophoresis.

2.4. TCRα and TCRβ Sequencing and Data Preprocessing

We measured the concentration of PCR products with a barcode and mixed the same
amount of PCR products from all COVID-19 patients and healthy controls. The mixed
PCR products were separated with 2% agarose gel, and then the extracted DNA was
sent to Novogene Institute (Beijing, China). The amplicons were sequenced on a PacBio
Sequel system using V3 chemistry (Courtesy of Pacific Biosciences of California Inc., Menlo
Park, CA, USA). The raw data (raw reads) in FASTQ format were first processed using
Python and custom Perl scripts. Clean data (clean reads) were obtained after removing
various reads, including poly-N reads, reads without a 3′ adapter or an insert tag, reads
with 5′ adapter contamination, reads with poly-A, T, G, or C low-quality reads from the
raw data. Moreover, the Q20, Q30, and GC contents of the raw data were calculated. All
sequences shorter than 200 bps, having homopolymers of 6 bps barcodes, containing primer
mismatches, and with a quality score lower than 19, were removed.

2.5. TCR Repertoire Analysis

The processing stage of TCR repertoire analysis started with the mapping of V, D, and
J segments. Filtered reads were subsequently aligned to V, D, J, and C gene segments of
TCR alpha (TRA) and TCR beta (TRB) locus for clonotype assembly of complementarity-
determining region 3 (CDR3) nucleic acid sequences by IMGT/HighV-QUEST web server.
Furthermore, the rarefaction curve of the TCR repertoire was generated using VDJtools
for each subject. We obtained the core tabular format for VDJ tools by the conversion
supported in the program, which contained count, frequency, CDR3 nucleotide sequence,
Vend, D start, D end, and J start. The frequency of various V–J junctions was calculated
and displayed using basic analysis of VDJtools, making circus-style V–J usage plots. Ad-
ditionally, the diversity estimation was utilized to compute a set of diversity statistics as
well as to visualize the repertoire clonality and the comparison of diversity estimates. The
V(D)J patterns of each sample were combined to analyze the dominant rearrangement
pattern in different groups. The CDR3nt and CDR3aa in advantageous V(D)J usage were
merged to further search for the dominant CDR3. All statistical analysis was implemented
with R software (Version 4.1.0, downloaded from http://www.r-project.org, accessed on
10 November 2021).

3. Results
3.1. Clinical Characteristics of COVID-19 Patients with Different Convalescent Stages for TCR
Repertoire Profiling Analysis

To evaluate the blood immune characteristics of COVID-19 patients with different
convalescent stages, thirty-four samples were included in the current study, including
nine COVID-19 patients with two-week convalescent stage, twenty COVID-19 patients
at the six-month-convalescent stage, and five healthy controls (Table 1). Moreover, these
COVID-19 patients were classified into three groups, including moderate, severe, and
critical cases. As shown in Table 1, the analysis of the blood routine test showed the
number of white blood cells, mainly neutrophil, increased in the severe and critical cases of

http://www.r-project.org


Cells 2022, 11, 68 5 of 12

COVID-19 patients at 2 weeks convalescence compared with healthy controls. However,
the percentage and absolute number of lymphocytes and monocytes obviously reduced
in the severe and critical cases compared with healthy controls. In addition, C-reactive
protein (CRP) and creatine kinase (CK) were also elevated in the severe and critical cases,
which had complications, including ARDS but not secondary infection.

We next collected their peripheral blood samples and isolated peripheral blood
mononuclear cells (PBMCs). For each blood sample, we purified CD4+ T cells and CD8+ T
cells with magnetic beads, respectively. From all samples, we isolated RNA and performed
5′RACE coupled with long-read high-throughput sequencing to amplify the complete DNA
sequence of TCRα (TRA) and TCRβ (TRB) chains of antigen-specific T cells (Figure 1). A
total of 32,796 and 15,086 TCRα and β chain sequences were obtained from COVID-19
patients and healthy controls, respectively. Among them, there are 11,324 effective TRA
sequences and 6933 TRB sequences detected in CD4+ T cells. There are 21,472 effective TRA
sequences and 8153 TRB sequences detected in CD8+ T cells (Table 2).

3.2. Significance of T Cell Receptor Bias during the Different Convalescent Phases of COVID-19
Patients Compared with Healthy Controls

To investigate the changes in TCR repertoire after COVID-19 infection, we performed
a comparative analysis of the T cell repertoire between the COVID-19 patients at different
convalescent phases and healthy controls. Profiling of TRA and TRB repertoire showed
that there is more diverse TCR clonality in CD8+ T cells compared with CD4+ T cells. At
the same time, no significant difference was observed in overall frequencies of abundant
TRA and TRB clonotypes in convalescent COVID-19 patients, relative to healthy controls
(Figure 2A–D), possibly because the clonality frequency of TCR was not caused directly
by SARS-CoV-2 infection. Moreover, certain TCRs were shared between the convales-
cent COVID-19 patients and healthy controls, while more TCRs were shared between
the COVID-19 patients at the two-week convalescent stage and six-month convalescent
stage (Figure 2E–H).

T cell receptors are generated by rearrangement of V and J gene segments for the TRA
and by V, D, and J gene segments for the TRB [22]. Here, we explored the usage bias of V,
D, and J gene segments for convalescent COVID-19 patients. First, we found that some V,
D, and J gene segments on the TRA and TRB were significantly more frequent than healthy
controls. Among convalescent COVID-19 patients, for TRA, the most frequently used gene
segments were TRAV12-3 and TRAJ42 in either CD4+ T or CD8+ T cells (Figure 3A), while
the frequencies of TRBV23-1 and TRBJ2-7 were significantly higher for TRB (Figure 3B).

To further explore whether a unique V(D)J recombination pattern is specific for conva-
lescent COVID patients, we next compared the V(D)J paring of TRA and TRB in each indi-
vidual separately. In the CD4+ T cells of COVID-19 patients at the two-week convalescent
stage, 37 unique pairs of VJ rearrangement of TRA were found, such as TRAV8-4/TRAJ54
and TRAV17/TRAJ54 (Figure 3C), and 23 specific pairs of TRB VDJ patterns were also
found in CD4+ T cells (Figure 3D). Similar results were obtained in CD8+ T cells, which
showed there were 16 individual pairs of TRA VJ patterns and 18 specific pairs of TRB
VDJ patterns in CD8+ T cells of convalescent COVID-19 patients (Figure 3E,F). Of note,
these unique gene pairs of TRB, such as TRBV5-4/D2/TRBJ2-5 and TRBV5-4/D1/TRBJ2-2,
appeared at the 2-week convalescent stage and continued to the 6-month convalescent stage
(Figure 3D,F), suggesting the clones with these TRB VDJ patterns might represent memory
T cells phenotype. They may have expanded and participated in the elimination of residual
SARS-CoV-2 in the convalescence stage. More important, we found some unique VDJ
recombination of TRB was shared in both CD4+ T cells and CD8+ T cells of two-week con-
valescent COVID-19 patients, including TRBV6-5/D2/TRBJ2-7 and TRBV2/D1/TRBJ2-1,
suggesting that these T cell clones with the above VDJ recombination were specific for
SARS-CoV-2 antigen (Figure 3D,F). Additionally, these specific pairs of TRA and TRB VDJ
patterns in CD4+ T or CD8+ T cells existed among the three groups, including moderate,



Cells 2022, 11, 68 6 of 12

severe, and critical cases, suggesting that these sequences were not significantly correlated
with disease severity (data not shown).
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Figure 1. Schematic diagram of TCR repertoire analysis in the convalescent COVID-19 patients.
Peripheral blood mononuclear cells were collected from COVID-19 patients with 2-week and 6-month
convalescence phase and healthy controls, and CD4+ T and CD8+ T cells were sorted to perform 5′

RACE-related RT-PCR combined with PacBio sequencing.

Table 2. The total number of TCR α and β chain sequences were obtained.

CD4+ T CD8+ T
Total

HC CP (2 Weeks) CP (6
Months) HC CP (2 Weeks) CP (6

Months)

TRA 3372 7298 654 4125 6670 10,677 32,796
TRB 951 2066 3916 805 1820 5528 15,086

HC, healthy controls; CP (2 weeks), COVID-19 patients with 2-week convalescence phase; CP (6 months),
COVID-19 patients with 6-month convalescence phase; TRA, T cell receptor α chain; TRB, T cell receptor β chain.
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common and specific TRA (E,G) and TRB (F,H) numbers in CD4+ T and CD8+ T cells of convalescence
COVID-19 patients (CP) and healthy controls (HC).
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Figure 3. The V, D, and J gene usage comparison of TCRα (TRA) and TCRβ (TRB) chain in the
convalescent COVID-19 patients. (A) The Circos plots show the difference between CD4+ T cell
TRA-VJ (top) and CD8+ T cell TRA-VJ (bottom) among different COVID-19 patients with 2-week
and 6-month convalescence phase (CP) and healthy controls (HC). (B) Sankey diagram shows the
recombinant pattern of TRB VDJ in the CD4+ T (top) and CD8+ T cell (bottom) among different
convalescence COVID-19 patients (CP) and healthy controls (HC). (C–F) A histogram of V(D)J gene
recombinant pattern of TRA and TRB in CD4+ T and CD8+ T cells of COVID-19 patients (CP) with
2-week and 6-month-convalescence phase compared with healthy controls (HC). (C) TRA in CD4+ T
cells. (D) TRB in CD4+ T cell. (E). TRA in CD8+ T cells. (F) TRB in CD8+ T cell.

3.3. CDR3 Sequence Motifs of Responding Clones

It was previously shown that TCRs that recognize the same antigen usually have
highly similar TCR sequences [26], and the complementarity determining region 3 (CDR3)
motif in the TCR component sequence plays an important role [27]. Moreover, the above
data revealed potential SARS-CoV-2-specific and highly shared TCR recombination in CD4+

T cells and CD8+ T cells of convalescent COVID-19 patients. Therefore, we identified the
dominant CDR3 sequences in each group. Due to the highly diverse nature of CDR3, only
a few consensus sequences were identified, of which two CDR3 sequences of TRA were
shared in CD8+ T cells of two-week convalescent COVID-19 patients (Figure 4A), as well as
four CDR3 sequences of TRA and five CDR3 sequences of TRB that were shared in CD8+ T
cells of six-month convalescent COVID-19 patients (Figure 4B,C). In contrast, no identical
CDR3 sequences were found in all CD4+ T cells of different convalescent COVID-19 patients.
Compared with the published SARS-CoV-2-related TCR clusters, similar CDR3 motifs have
not been reported, suggesting that these might be potential SARS-CoV-2-specific CDR3
motifs. Taken together, our results indicate that the convalescent COVID-19 patients had
undergone distinct T cell responses during SARS-CoV-2 viral infection.
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COVID-19 patients with 6-month convalescence phase. (C) The dominant CDR3 motif of TRB in
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4. Discussion

To date, the T cell immune regulation mechanism of COVID-19 is still unclear. In this
study, we used 5′ RACE combined with the third-generation high-throughput sequencing
technology to confirm (a) the changes in TCR clones during the different convalescent
phases of COVID-19 and the priority use of V and J gene fragments in COVID-19 patients
compared with healthy controls; (b) there is persistent TCR dominant V(D)J recombination
during the convalescent phase of COVID-19 from 2 weeks to 6 months; (c) the unique
CDR3 motif specific for SARS-CoV-2 in CD8+ T cells at the convalescent phase in COVID-19
patients. This finding is in line with other recent studies, where preferential usage of V
and J gene segments in convalescent COVID-19 patients was found to be specific to SARS-
CoV-2 antigens, suggesting a T cell-mediated immune response to achieve virus clearance.
More important, we identified the dynamics of both CD4+ T and CD8+ T cell responses at
different convalescent phases, showing the potential immune memory phenotype, which
helps us understand the immune response induced by SARS-CoV-2 infection.

In recent years, TCR repertoire in various diseases was characterized using TCR-seq.
Multiplex PCR-, target enrichment-, and 5′ RACE (RNA only)-based approaches are the
most widely used TCR-seq strategies. When using multiplex PCR, preferential amplification
of highly abundant gene products can occur, contributing to inaccuracies in reported
clone frequencies. Additionally, intronic sequences and incomplete VDJ recombination
products may contribute to data noise when using gDNA samples. Target enrichment
strategies reduce the extent of amplification bias seen in standard multiplex PCR but are
more labor/time-intensive and do not resolve the issues associated with gDNA input [28].
However, the 5′ RACE approach avoids the PCR bias seen in the above two methods. It
achieves equally efficient amplification of all TCR transcripts regardless of abundance when
combined with sequencing platforms capable of long reads, such as the illumine Miseq,
as fragment size can exceed 600 bp [29]. Currently, single-cell TCR-seq in tandem with
single-cell flow cytometry sorting is an approach for precisely identifying SARS-CoV-2-
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specific T cells, while it can be limited by their depth and their ability to capture minor
clones. Therefore, in our study, we applied 5′ RACE technology combined with PacBio
Sequel system capable of long reads (10,000 bp) as third-generation sequencing technology
to obtain a wealth of TCR sequences, which effectively avoided the sequence tendency
caused by traditional multiple PCR and retained the accuracy of sequencing to the greatest
extent. Therefore, the method we adopted more truly and comprehensively demonstrated
the characteristics of TCR.

The TCR is composed of TCRα and TCRβ chains, which containing VJ and VDJ gene
segments, separately [30]. The results of single-cell sequencing by Wang et al. have reported
that the highest frequency of TCR sequence recombination during the convalescent phase
of COVID-19 is TRAV12-2-J27-TRBV7-9-J2-3 [25]. Alina et al. had found that TRAV12-1
and TRBV7-9 were used by 71% and 16% of SARS-CoV-2 YLQ-epitope-specific TCRs,
and TRAV13-2 and TRBV6-5 were used by 15% and 25% of SARS-CoV-2 RLQ-epitope-
specific TCRs, compared with just 3–4% gene usage in control TCRs [4]. Similarly, our
results also show the preferential V(D)J sequences only existing in the convalescent COVID-
19 patients, including TRAV8-4/TRAJ54 and TRAV17/TRAJ54, TRBV5-4/D2/TRBJ2-5,
and TRBV5-4/D1/TRBJ2-2, which were different from public SARS-CoV-2-specific TCRs.
Combinations of TCRα and TCRβ genes were highly sample-specific between different
COVID-19 patients and healthy controls. A larger population cohort is urgently needed to
provide more statistical T cell receptor preference. Interestingly, our results also revealed
that identical VDJ sequences, such as TRBV6-5/D2/TRBJ2-7 and TRBV2/D1/TRBJ2-1, were
shared by CD4+ T cells and CD8+ T cells. Although CD4+ T and CD8+ T cells exhibit their
roles differently, CD8+ T cells recognize and kill virus-infected cells through TCR-mediated
viral antigens [31], while CD4+ T cells have multiple roles in coordinating and mediating
immune responses against viruses [32]. Therefore, our data suggest that cross-reactive
CD4+ T and CD8+ T cells can participate in the joint resistance to SARS-CoV-2 infection via
the production of a virus-specific TCR recombination pattern.

In the process of V(D)J recombination, random nucleotide deletions and insertions
often occur in the CDR3, which is essential for antigen binding [33]. Therefore, this process
produces a large number of recombinant TCRs, and the differences in CDR3 sequences
are usually used to characterize essential indicators of the immune repertoire. We also
identified a few consensus CDR3 sequences shared in CD8+ T but not CD4+ T cells of
convalescent COVID-19 patients. Moreover, no identical CDR3 motifs have not been
reported relative to the published SARS-CoV-2-related TCR clusters. Our results suggest
that these CD8+ T cells with unique SARS-CoV-2-associated CDR3 motifs might play a
crucial role in the immune response to eliminate the SARS-CoV-2 virus efficiently. However,
these unique T cell sequence motifs require prospective validation to be used in COVID-19
patients, and specific T cells reactive to SARS-CoV-2 epitopes also need to be identified in
the future. Therefore, our TCR data might help to fingerprint a shared clonal expression
T cell phenotype that existed within a population of COVID-19 patients and that defined
anti- SARS-CoV-2 immunity in individuals.

Furthermore, T cells with long-lasting memory have been detected in patients recov-
ered from SARS-CoV-2 infection [7], and SARS-CoV-2-specific T cells exhibit a multifunc-
tional memory phenotype during the convalescent phase [34]. In our study, we also found
that some particular TRB VDJ recombination patterns in CD4+ T and CD8+ T cells, such
as TRBV5-4/D2/TRBJ2-5 and TRBV5-4/D1/TRBJ2-2, appear at the 2-week convalescent
stage and continue to the 6-month convalescent stage, supporting that these T cell clones
might have long-term memory characteristics after SARS-CoV-2 infection to participate in
the elimination of residual SARS-CoV-2 in the convalescence stage.

5. Conclusions

Our findings reveal that COVID-19 patients have unique cellular immune characteris-
tics during the different convalescent phases, which contributes to our understanding of
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the immune response induced by SARS-CoV-2 and might be used as a basis for prognostic
evaluation and targeted therapy for COVID-19 patients.
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