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Abstract

Gene therapy is an emerging alternative to conventional anti-HIV-1 drugs, and can potentially control the virus while
alleviating major limitations of current approaches. Yet, HIV-1’s ability to rapidly acquire mutations and escape therapy
presents a critical challenge to any novel treatment paradigm. Viral escape is thus a key consideration in the design of any
gene-based technique. We develop a computational model of HIV’s evolutionary dynamics in vivo in the presence of a
genetic therapy to explore the impact of therapy parameters and strategies on the development of resistance. Our model is
generic and captures the properties of a broad class of gene-based agents that inhibit early stages of the viral life cycle. We
highlight the differences in viral resistance dynamics between gene and standard antiretroviral therapies, and identify key
factors that impact long-term viral suppression. In particular, we underscore the importance of mutationally-induced viral
fitness losses in cells that are not genetically modified, as these can severely constrain the replication of resistant virus. We
also propose and investigate a novel treatment strategy that leverages upon gene therapy’s unique capacity to deliver
different genes to distinct cell populations, and we find that such a strategy can dramatically improve efficacy when used
judiciously within a certain parametric regime. Finally, we revisit a previously-suggested idea of improving clinical outcomes
by boosting the proliferation of the genetically-modified cells, but we find that such an approach has mixed effects on
resistance dynamics. Our results provide insights into the short- and long-term effects of gene therapy and the role of its key
properties in the evolution of resistance, which can serve as guidelines for the choice and optimization of effective
therapeutic agents.

Citation: Aviran S, Shah PS, Schaffer DV, Arkin AP (2010) Computational Models of HIV-1 Resistance to Gene Therapy Elucidate Therapy Design Principles. PLoS
Comput Biol 6(8): e1000883. doi:10.1371/journal.pcbi.1000883

Editor: Sergei L. Kosakovsky Pond, University of California San Diego, United States of America

Received May 5, 2010; Accepted July 13, 2010; Published August 12, 2010

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public
domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: This work was supported by National Institutes of Health (NIH) Grant R01 GM073058 and by National Science Foundation (NSF) Grant 0540879. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: aparkin@lbl.gov

Introduction

With no HIV-1 vaccine or cure in sight, treating and controlling

the virus continues to be a major global health concern [1,2]. The

advent of highly active antiretroviral therapy (HAART) has

remarkably prolonged patients’ survival, but has failed to eradicate

the virus or to control the epidemic. In particular, HAART is a

lifelong treatment, and as such presents major obstacles, including

cumulative toxicities, severe side effects, a strict and complicated

regimen, and problematic economics. Its major problem, however,

is HIV-1’s ability to escape it by developing drug-resistant

mutants, which is further worsened by poor patient compliance

[3]. Currently, the pace of development for new therapies lags

behind HIV’s rapid evolution of drug resistance, and alternative

approaches are sought to either complement or replace HAART.

Gene therapy is an emerging and promising approach to

treating HIV-1 infection, whereby engineered genes are delivered

ex vivo, and potentially ultimately in vivo, into a patient’s cells. They

then act within these cells to disrupt the viral life cycle. Gene

therapy offers the potential to attain sustained viral suppression

and a restored immune system, with the added advantage of a

simplified regimen, very few medical interventions, and reduced

toxicities. To date, a plethora of potent gene-based inhibitors have

been developed in the lab and some have undergone early-phase

clinical trials (reviewed in [4]). While the trials demonstrated safety

and feasibility, the infused gene-modified cells did not accumulate

with time and consequently could not exert meaningful clinical

effects [5,6,7]. Achieving therapeutic proportions of gene-modified

cells in vivo is thus a necessary preliminary step for gene therapy’s

success. Ultimately, however, this approach must prove efficacious

in the presence of viral resistance in order to qualify as a feasible

therapeutic option. Indeed, as with HAART, viral escape is

presently a major concern in the design of any gene-based

technique [8,9,10,11], and combinatorial gene cassettes are

commonly developed as a means of limiting escape [12,13,14].

While the qualitative relations between key design parameters and

viral escape are generally understood, a more rigorous quantitative

investigation is essential to better understand the parameters’ long-

term effects under clinically-relevant conditions. The focus of this

work is on a computational modeling approach to illustrate the

contribution of therapy parameters and strategies to delaying the

emergence of resistant virus in a patient.

Modeling HIV dynamics is by now a well-accepted tool for

elucidating mechanisms of interest and for understanding viral

evolution [15,16,17,18]. A great deal of work has been published

with regards to HAART, and has had much success largely due to
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its clinical validation against patient data. For novel treatments like

gene therapy, however, substantial clinical data is not yet

available. One must then resort to theoretical investigation as a

much-needed step in therapy design. However, very few models

have explored viral dynamics under gene therapy, and these have

focused primarily on the response of virus that is sensitive or not

resistant to the therapy [19,20,21]. Interestingly, this work

revealed major deviations from HAART-like dynamics, thus

underscoring a need for a dedicated model of viral resistance

under gene therapy conditions.

Leonard et al. [22] developed a stochastic in vitro model that

elucidates HIV’s escape from RNA interference (RNAi) gene

therapy. While powerful for studying escape in vitro [23], the model

has several features that limit its relevance to in vivo scenarios. First,

it focuses on RNAi therapies that degrade viral transcripts, an

intervention that occurs after a cell has been infected and may thus

not facilitate sufficient outgrowth of the gene-modified cells in vivo,

as was later suggested in [21]. Conferring the modified cells with

substantial outgrowth capacity is essential in any practical setting

due to severe limitations on the fraction of cells that can be

genetically modified [24,25]. Other properties that diverge from in

vivo conditions include simulations that often predict complete viral

eradication [19,21], and small population sizes that might under-

represent minority viral strains [26,27]. Since sustained viral

replication and pre-existing mutants both play a crucial role in

fueling resistance, they should be included in an in vivo model.

Recently, von Laer et al.’s study [21] suggested that genes which

inhibit early stages in the viral life cycle (by preventing cell

binding, membrane fusion, reverse transcription, or integration)

have the capacity to propel major cell expansion and therapeutic

benefit. A variety of suitable gene-based techniques can be used,

including RNAi- [28,29], ribozyme- [13], zinc-finger nuclease-

[30], and antibody-mediated [31] disruption of the CCR5 co-

receptor, expression of fusion-inhibitory and binding-inhibitory

peptides and of single-chain antibodies [32], and interference with

capsid uncoating [33].

In this study, we developed a hybrid stochastic-deterministic

approach for describing the evolution of HIV’s resistance to early-

stage gene-based inhibitors in vivo. We extended prior modeling

work [19,21] to incorporate a diverse viral population entailing

varying degrees of sensitivity to therapy, and to account for the

random effects that dominate early phases of resistance develop-

ment. Our aim is to provide a general model that captures the

commonalities of a broad range of technologies and that can be

further adapted to faithfully describe any specific treatment. We

apply the model to elucidate the general principles that govern

resistance evolution and present extensive simulation results that

quantify the tradeoffs between controllable therapy parameters.

We show that the fundamentally different dynamics under gene

therapy suggest different design guidelines from HAART’s.

Specifically, unlike HAART, in which drugs provide nearly-

homogeneous protection to most cells, protected (gene-modified)

and unprotected (untreated) cells co-exist under gene therapy. We

find that this property can be harnessed to impede escape,

provided that the mutations are associated with non-negligible

fitness losses in non-modified cells.

We also investigate a novel delivery strategy to combat

resistance, whereby different genes that target different viral

functionalities are delivered into separate cell populations. Model

simulations indicate that under some conditions, this idea, which is

uniquely applicable to gene therapy and has not been analyzed

previously, can dramatically prolong viral suppression and

decrease the likelihood of escape. Finally, we study the

development of resistance when the gene-modified cells have a

proliferative advantage over untreated cells. Simulations demon-

strate mixed implications on viral escape, namely, that it is less

frequent but that when it does occur, it occurs more rapidly. The

presented work provides a basic and general understanding of the

key characteristics of gene therapy and their role in the evolution

of resistance. Model predictions thus offer guidelines to optimizing

therapy for long-term suppression of HIV-1 in patients.

Results

Motivating Data
Gene therapy is still a nascent technology; however, there have

been a number of studies that serve to motivate our model. Here,

we briefly outline the methodology and findings of several studies

and discuss how our modeling work was inspired by them.

The first study is a phase I trial in which CD4+ T cells were

harvested from five HIV-positive patients, transduced ex vivo with a

lentiviral vector expressing an antisense RNA targeting HIV,

amplified, and then infused back to the patients [5]. The patients

were followed for several years, throughout which their immuno-

logical function and the persistence of the gene-modified cells were

assessed. This trial not only demonstrated long-term survival of

these cells in vivo, but also showed sustained and statistically

significant reductions in the viral load in several patients.

However, the modified cells declined in number following the

infusion, and persisted at frequencies lower than 1% for most of

the trial duration. These findings suggest that the cells are

imposing some sort of selective pressure on the virus, although

their mechanism of action is currently unclear as gene modifica-

tion frequencies were too low to account for the observed changes.

As we mentioned earlier, current transduction efficiencies are

low, implying that the modified cells must accumulate in vivo to

reach therapeutic numbers. Such trend has not yet been observed

in early-phase anti-HIV trials [24], indicating that the selective

advantage of these cells in vivo is not sufficiently high. This may be

because the engineered genes or their products lose their activity in

vivo, and/or because the cells’ proliferative capacity was impaired

during their ex vivo manipulation. Current attempts to tackle these

Author Summary

A primary obstacle to the success of any anti-HIV
treatment is HIV’s ability to rapidly resist it by generating
new viral strains whose vulnerability to the treatment is
reduced. Gene therapies represent a novel class of
treatments for HIV infection that may supplement or
replace present therapies, as they alleviate some of their
major shortcomings. The design of gene therapeutic
agents that effectively reduce viral resistance can be aided
by a quantitative elucidation of the processes by which
resistance is acquired following therapy initiation. We
developed a computational model that describes a
patient’s response to therapy and used it to quantify the
influence of therapy parameters and strategies on the
development of viral resistance. We find that gene therapy
induces different clinical conditions and a much slower
viral response than present therapies. These dictate
different design principles such as a greater significance
to the virus’ competence in the absence of therapy. We
also show that one can effectively delay emergence of
resistance by delivering distinct therapeutic genes into
separate cell populations. Our results highlight the
differences between traditional and gene therapies and
provide a basic understanding of how key controllable
parameters and strategies affect resistance development.

Model of HIV-1 Resistance to Gene Therapy
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issues focus on increasing the vector-copy numbers per cell, and on

intensive development of culture systems that better enrich and

maintain T cell subsets which display extensive replicative capacity

(reviewed in [34,35]). Encouraging results from two recent studies

are also worth noting. In one study, cells modified with zinc-finger

nucleases expanded to therapeutic levels and induced substantial

clinical effects in a mouse model of HIV infection, thus

demonstrating their efficacy and selective advantage [30]. A

clinical trial to test this approach in humans is currently underway.

In a second study, the long-term (i.e., two years) expression of

therapeutic genes in human blood cells in vivo was confirmed [36].

Clearly, the enabling technology is yet to mature, but once these

barriers are overcome and gene therapy enters the clinic, viral

resistance is to become the major concern. This is the starting

point to our study, and one of our goals is to understand the

implications of a potent gene therapy on viral evolution and what

may be done to prolong its therapeutic effects in the presence of a

rapidly mutating virus.

Another noteworthy phase I trial is a very recent one, in which

CD34+ hematopoietic progenitor cells of four patients were

transduced with a lentiviral vector expressing a combination of

three unique gene therapies [36]. While combination therapy

similar to HAART has been promoted in the gene therapy field as

a method for combating viral escape, this is the first trial to put this

idea into practice. In this trial, all three therapies were expressed

from the same vector, a technique that provides the highest levels

of protection in each cell, but also requires significant optimization

and is subject to constraints. Given that more combination

therapies will likely be developed, we asked how effective such

combinations are in maintaining long-term viral suppression.

Furthermore, gene therapy opens up a unique opportunity to split

such combinations across cells, such that some cells express one

therapy and others express another therapy. Such approach may

offer an appealing and less technically demanding alternative to

current combinatorial approaches. Here, we aim to explore its

potential to provide significant improvements in preventing

escape.

Model Overview
The model consists of two types of susceptible CD4+ T cells:

transduced cells that are infused to the patient (protected (P) cells),

and naturally occurring cells that were not manipulated

(unprotected (U) cells). The overall CD4+ T cell pool is

maintained by homeostatic proliferation, which saturates accord-

ing to Michaelis-Menten kinetics (Figure 1A) [37]. Both cell types

are regulated by the homeostatic mechanism in the same manner,

and contribute equally to saturation, thus equally competing for

presence in the pool. The renewal of susceptible cells is assumed to

rely mainly on self-proliferation, with additional minor contribu-

tion from the bone marrow, modeled as a constant export of

mature cells from the thymus. In this work, we focus on delivery of

T cells, as opposed to stem cells, and hence the bone marrow

Figure 1. Schematic illustration of infection dynamics under
gene therapy and of the development of resistance to it. (A)
Diagram of the baseline model, which considers only a single sensitive
viral strain. Two types of T cells are considered: gene-modified cells
which are protected from infection (shown in red) and non-modified
cells that are susceptible to it (shown in blue). The proliferation rate of
both cell populations is determined by a saturating function, g(UzP),
which takes a Michaelis-Menten form. Therapy effects are conveyed via
an infectivity inhibition factor (e) for gene-modified cells. (B) An example

of a possible evolutionary path towards the emergence of a highly
resistant strain. A genetic barrier n~3 corresponds to a set of three
resistance-conferring sites (hashes), where any combination of these
sites can be mutated (stars). At each integration step of the simulation,
a strain may only accrue a single mutation in one of the non-mutated
sites. The degree of resistance is determined by the number of
mutations (m), and is manifested as improved infection of P cells (i.e.,
higher infection rates due to an increase in e). Mutations are also
associated with a loss in fitness that negatively affects the ability of
these mutants to infect U cells, and that also depends on the number of
mutations.
doi:10.1371/journal.pcbi.1000883.g001

Model of HIV-1 Resistance to Gene Therapy
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engenders only U cells. HIV infection dynamics follow standard

HIV models [16,17,38], with the therapy effects manifested as an

inhibition of viral infectivity of the P cells.

The model considers a viral population consisting of a sensitive

wild-type (WT) strain as well as other strains to which WT may

evolve through a series of mutations. There are n genomic sites

that confer resistance to therapy, and each mutant strain can have

any combination of them mutated away from their WT form.

Resistance is assumed to gradually intensify with increasing

numbers of mutated sites, and it manifests as an improved ability

to infect P cells, but is at the same time associated with a fitness

cost when infecting U cells (Figure 1B). The model captures all

interactions via ordinary differential equations (ODE), but uses a

stochastic routine to treat populations at low densities, such as

those of newly-emerging species (see the Methods section for

details).

Viral Dynamics in the Absence of Resistance
We start by exploring a restricted baseline model, similar to the

model of Lund et al. [19], in which resistant strains are absent. We

use it to demonstrate the inherent differences between gene

therapy and HAART and to quantify the effects of different

parameters on the achievable viral suppression levels.

Figure 2A shows in vivo dynamics following a P cell infusion, as

simulated with default parameter values (see the Methods section).

The P cells are shown to expand, thereby impeding the supply of

U cells and thwarting viral replication. The establishment of a P

cell reservoir brings the virus to a new reduced set point. The P

cells’ expansion is driven by a selective advantage they possess over

U cells, which derives from a reduced susceptibility to infection.

The expansion thus slows down as the viral load declines.

In comparison to post-HAART behavior [39,40], three

substantial differences are clear: the heterogeneity of the target-

cell population, the slow nature of the response, and the limited

reduction in viral load. In particular, HAART blocks viral

replication on nearly the entire target-cell population, resulting

in a rapid viral decline. This is in contrast to our model, where the

U cells experience only a slight decline, and continue to facilitate

viral replication, albeit at lower volumes due to their reduced

turnover rates. In addition, HAART takes effect promptly and

comprehensively, whereas gene therapy induces a gradual

depletion of the U-cell supply, fueled by the inherently slow

process of P cell accumulation. To summarize, the two approaches

Figure 2. Infection dynamics under gene therapy and the
dependence of the viral suppression gain on the inhibition
factor and on the thymus contribution. (A) Dynamics in the
absence of viral resistance. Simulations were performed with default

parameter values (see the Methods section). (B) The suppression gain
(G) is the ratio between the viral loads in the pre-therapy and post-
therapy steady states of the baseline model (see the Methods section
for an explicit expression). It depends linearly on the inhibition factor e
(x-axis) and is depicted on a logarithmic scale. The inset (depicted on a
linear scale) demonstrates that decreasing the inhibition factor below a
few percent has negligible contribution to viral suppression. The pre-
therapy steady state becomes the stable solution when e is
approximately 0.98 (not shown). All parameters were set to their
default values (see the Methods section). (C) The thymus’ relative
contribution (x-axis) is the fraction of the total T-cell mortality that is
replaced by the export of mature cells from the thymus, as opposed to
by self-proliferation of the T-cell pool. The suppression gain is inversely
proportional to it and diminishes quickly. HAART-like gains may be
achievable only for diminutive relative contributions. When the
contribution is sufficiently large, no viral reduction is obtained, and
the pre-therapy steady state becomes the stable solution (not shown).
In order to keep the pre-therapy conditions fixed for all points, the
proliferation rates and parameters were adjusted to compensate for a
varying thymus input. Other parameters were set to their default values
(see the Methods section).
doi:10.1371/journal.pcbi.1000883.g002
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exhibit different mechanisms of action: brute-force disruption of

viral activity by blocking access to existing resources (HAART)

versus draining the supply of those resources in favor of more

robust ones (gene therapy). Since gene therapy profoundly re-

structures the blood system to render it less susceptible to HIV, it is

slow to exert its effects. Yet, only innate changes of this kind can

facilitate sustained virus control with limited medical intervention.

HAART, on the other hand, is quick to act, but once interrupted,

results in immediate viral rebound and thus necessitates a strict

lifelong adherence to an elaborate drug regimen.

Therapy efficacy. We developed metrics and analysis to

quantify the therapy’s potency in suppressing the virus. Within this

work, we assumed that infectivity is inhibited by a factor of

0vev1. We further assumed that virion production in infected P

cells is completely eliminated, which can be realized by inserting

additional antiviral genes that target late stages of the infection

[4,41,42,43]. Importantly, both infectivity inhibition and progeny

suppression contribute similarly to disrupting viral replication [39];

however, the former is essential to the expansion of P cells,

whereas the latter does not confer them with any selective

advantage. Due to very low dosages of infused cells, progeny

suppression alone would only exert a weak and transient effect

[21]; however, by providing a selective advantage to modified

cells, infectivity inhibition allows the P cells to reach therapeutic

levels and, in combination with progeny suppression, provide the

latter with the opportunity to further disrupt HIV [21]. This can

be thought of as an ‘‘ideal’’ best-case scenario, which elucidates the

ultimate potential of infection inhibition. We also compared the

ideal case to the baseline case, where virion production is

unaffected (Figure 1A), and found that for currently plausible e
values (a few percent or less [10,44]), the differences in dynamics

were negligible. We thus performed steady-state analysis of the

best-case model and found that despite the complex suppression

mechanism, the degree of viral reduction depends only on three

parameters: the inhibition factor e, the thymus-input rate l, and

the infected-cell life span d (see the Methods section for explicit

expression).

We define the suppression gain G to be the ratio between pre-

therapy and post-therapy steady-state viral loads, and the

expression for this metric (see the Methods section) enables

analysis of the system’s dependencies on key parameters.

Interestingly, G depends linearly on e, as illustrated in Figure 2B

(note that G is depicted on a logarithmic scale). It ranges between a

maximum of nearly two logs at e~0 and zero at e very close to 1.

From a therapy design perspective, the important point here is

that there is negligible incremental benefit for highly potent

inhibition, especially when going below the reasonably achievable

levels of a few percent [10,44] (shown in the inset). This finding

echoes previous predictions that were derived from different

models [21]. However, as we shall see later, potent inhibition is

instrumental in controlling viral resistance and hence should not

be overlooked.

In addition, G has an inversely-proportional dependence on l
(Figure 2C). In Figure 2C, l is expressed in terms of the thymus’

relative contribution to overall T cell renewal, a measure that is

proportional to l. One can see that significant gains are achievable

for extremely small thymus contributions, but they quickly

diminish up to a point of no viral reduction, in which case the

post-therapy set point becomes unstable. This indicates that the

bone-marrow contribution can significantly undermine the ability

to achieve considerable viral declines. Although its relative

contribution is known to decay with age and to account for a

small fraction of the T cell renewal in adults, l has not been

accurately quantified to date, and current estimates range from a

tiny fraction to more than one tenth [45,46,47,48]. Quantifying l
thus constitutes an important step in understanding the potential

clinical benefits and limitations of a T-cell based approach. A

possible way to circumvent such limitations is by enhancing the P

cells proliferative capacity [21], and we will examine it later from

the viewpoint of viral resistance.

Emergence and Fixation of Resistant Mutants
The integration of resistance into our model gives rise to an

additional therapy characteristic, namely, a genetic barrier n,

which we define as the number of mutations that the virus must

accumulate in order to completely overcome inhibition by P cells

(Figure 1B). To preserve the simplicity and tractability of the

model, we assumed that a mutant’s phenotype is determined by

the number of accumulated mutations, but not by their actual

identity or location (see the Methods section). In other words,

strains that possess different combinations of m mutations are

phenotypically indistinguishable. Our model limits the mutational

effects to modified infection rates (i.e., varying attenuations of

WT’s infection rate) for two reasons. First, this is the most likely

route to escape [10]. Second, it is the most effective one, since once

the P cells expand and the increased infection rates allow the virus

to infect significant portions of them, only then virion production

can exert meaningful effects. As gene therapy involves two cell

populations, the model accounts for contradicting effects on both

cell types, as follows. On one hand, resistance confers the virus an

improved ability to infect P cells, while on the other hand, the

accumulation of mutations in key regions of the virus targeted by

the therapy can also be associated with a reduction in fitness in the

absence of therapy, that is, in U cells [23,49,50,51,52]. The model

assumes that both effects gradually escalate with each additional

mutation [10,50,52,53,54]. Since our model attempts to broadly

apply to several techniques, it perceives the genetic barrier as a

general property and disregards its specific origins. A large n may

thus correspond to several inhibitors acting concomitantly, or to a

single inhibitor whose interaction with the virus spans a large

domain [10]. A similar interpretation applies to the inhibition

factor e.

We performed stochastic simulations with our model and

aggregated the mutants’ densities according to number of

mutations, such that all strains with m mutations (0ƒmƒn) count

as one species. Figure 3 shows the outcome of a typical simulation

of the stochastic trajectory when n~6. It demonstrates an

accumulation of increasingly fitter mutants at the expense of less

competent pre-existing (e.g., m~1, 2, 3) and early-appearing

mutants (e.g., m~4). Mutants that possess higher numbers of

mutations (e.g., m~5) are increasingly more competent, and

eventually reach levels that give rise to even fitter strains (e.g.,

m~6), which soon outgrow them. In the presence of highly

resistant strains, the P cells lose their advantage and decline (not

shown). Note that the decline of pre-existing mutants with one or

two mutations is a consequence of both the drop in the WT viral

population, which continuously feeds the mutants populations,

and of their susceptibility to therapy. However, the decline is slow,

thereby constituting a major obstacle for gene therapy, as it fuels

progressive mutation accumulation and expedites the emergence

of non-existing resistant strains. In contrast, under HAART, pre-

existing strains swiftly drop to very low levels, and while still

present, their mutation into more resistant strains is severely

confined by their small absolute numbers.

The stochasticity that arises from the random effects that

dominate at small population sizes can be seen for existing mutants

with three mutations and for newly emerging mutants. New

advantageous mutations occur at random and may drift away

Model of HIV-1 Resistance to Gene Therapy
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before reaching critical levels, thereby delaying emergence in

comparison to fully-deterministic trajectories [18]. As delays build

up along the evolutionary process, larger n’s are progressively

associated with increasingly varying fixation times of highly

resistant strains (see Figure S1). As a result of this stochasticity, it

is striking that two ‘‘identical’’ patients (i.e., infected with the

‘‘same’’ virus) can experience remarkably different clinical

outcomes.

As a measure of the treatment’s efficacy, we computed the

fixation time, defined as the time required for the resistant strains

to reach 50% of the viral population. Treatment was considered

successful if fixation had not occurred within four years of its

initiation. Figure 4A–4C provides an overview of the three figures

of merit by which we evaluate a treatment. Each point in the plots

summarizes the results of 500 simulations with default parameter

values (see the Methods section). The blue curves correspond to a

standard application of gene therapy, as discussed above, whereas

the red curves correspond to a more advanced strategy and will be

discussed in a later subsection. At this point, we limit discussion to

the blue curves. Figure 4A shows how the fraction of successful

treatments, called the success rate, varies with the genetic barrier n.

Interestingly, success rates exhibit a threshold-like behavior, which

was found to be typical with many other parameter choices (not

shown). Such an effect becomes important when one considers

combining several gene-based inhibitors within a P cell as a means

of increasing n. If a therapy is near the threshold, the addition of

an inhibitor can make a dramatic difference in its efficacy.

Figure 4B shows average fixation times for all n’s for which

therapy success rates were below 0.9 (see Figure 4A). As expected,

larger n’s result, on average, in prolonged viral suppression.

Figure 4C shows the average of the corresponding viral load

reductions (i.e., the inverses of the suppression gain) obtained at

the fixation time. One can see that the average viral reduction

keeps declining until n~6,7, reflecting the fact that for nv6,

resistance emerged before therapy has reached its steady state in

the absence of resistance. This implies that under our default

parameter choices, even considerable genetic barriers (e.g.,

n~4,5) do not suffice to allow therapy to reach its full suppression

potential before resistance emerges.

Finally, we wish to stress that the inhibition factor e is assumed

to be independent of n and thus was kept fixed throughout

simulations. Specifically, a larger n does not imply a stronger

inhibition, even when obtained through insertion of additional

genes. The dynamics under gradually increasing inhibition can be

readily obtained using similar simulations.

Replication Fitness over a Heterogeneous Target
Environment

The notion of replication fitness has long been used for

understanding HIV’s evolution under HAART [55,56,57,58]. It

is a model-derived measure of a strain’s ability to expand over time

in a given environment, and provides a tool for understanding and

predicting clinical outcomes. This measure, however, was derived

from HAART models and does not apply to gene therapy,

whereby HIV is faced with a mixed cell composition and may

display different replication traits within each cell subpopulation.

We used our model to extend this notion to the case of a

heterogeneous target-cell environment (see the Methods section

Figure 3. Dynamics of resistance evolution in a typical hybrid stochastic-deterministic simulation. Following T cell infusion, a decline in
wild-type (WT) virus and pre-existing mutants is accompanied by the emergence of fitter and highly resistant mutants. Mutant strains are aggregated
according to the number of resistance mutations they carry (m), which determines their resistance phenotype. Carrying more mutations renders a
strain more resistant, with the most resistant strain carrying n = 6 mutations. Stochastic effects are observed at very low densities, where
advantageous mutations experience drifts before accumulating to critical levels which enable their consistent expansion. Populations whose density
decreases below a pre-defined threshold (3|10{9 entities per mL) are considered extinct until they resurface. In this simulation, the total mutant
density reaches WT density at approximately 550 days after infusion, marking the fixation of the resistant strain. Simulation was performed with
default parameter values (see the Methods section).
doi:10.1371/journal.pcbi.1000883.g003
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and Text S1 for derivation). The replication fitness (F) of a strain

M is captured by the following expression:

F~wM
~kk(UzeMP){d ð1Þ

where U and P are the two cell-type densities, ~kk is a generalized

infection rate constant (see the Methods section), d is the infected

cells’ death rate, wM is a replicative fitness cost associated with

mutating, and eM is the infectivity-attenuation factor. The

parameters wM and eM summarize the cost and benefit involved

in viral escape, and are determined by the number of mutations in

strain M, as well as by the therapy’s potency (e) and genetic barrier

(n) (see the Methods section and Figure 1B). The parameters ~kk and

d, in contrast, are unaffected by viral evolution, and so distinct

viral strains feature different wM and eM , which, when weighted

through Eq. (1), yield an overall replication fitness. Importantly, U

and P are time dependent, and so F varies as therapy progresses.

Yet, changes to U are minor in our model, and P transiently

increases until it saturates.

Eq. (1) encapsulates the key determinants of viral resistance and

provides insights into therapeutic design tradeoffs. We illustrate this

point with a simple example. Consider a potent therapy that inhibits

WT’s infectivity with eWT~0:001 (Figure 1A), and suppose that the

U and P cell densities both equal 500 cells/mL. The WT virus’

fitness is then given by (500z0:001|500)~kk{d~500:5~kk{d.

Consider two strategies to weaken the virus: applying a tenfold-

stronger infectivity inhibition (e0~0:0001) or interrupting its normal

function such that it experiences a modest fitness loss of

5% (w0~0:95) but the same inhibition as before (e~0:001).

The corresponding changes to the replication fitness amount

to {(0:001{0:0001)|500~kk~{0:45~kk in the first case, compared

to a more favorable {0:05|500:5~kk&{25~kk in the latter case.

Even starting with eWT~0:01 and applying a 100-fold decrease

(yielding the same e0) attains only a decrease of 5~kk in the first case,

which is somewhat more comparable to the losses from the

moderate 5% replicative cost. Clearly, realistic tradeoffs depend on

the U and P densities as well as on simultaneous changes in all

parameter values, but this example stresses the different impact of w
and e on controlling viral replication. It shows that viral fitness in the

U cell pool plays an important role in restraining replication,

provided that mutations are associated with a replicative cost, and

that powerful protection in P cells has a modest contribution in

comparison. Next, we use simulations to show that modest fitness

Figure 4. Quantitative evaluation of treatment strategies
investigated in this study. Each point summarizes the average
outcome of 500 simulations with default parameter values (see the
Methods section). The blue curves correspond to a standard use of a
single gene therapy (discussed in subsection ‘‘Emergence and Fixation

of Resistant Mutants’’). The red curves correspond to a combination-
therapy strategy whereby the P cells are divided into two sub-
populations, each protected by a distinct set of genes (discussed in
subsection ‘‘Divide and Conquer – an Effective Strategy to Combat
Resistance’’). (A) Effects of increasingly larger genetic barriers n (x-axis)
on the fraction of successful treatments (y-axis), featuring a threshold-
like behavior. A treatment is considered successful if mutant fixation did
not occur within four years after its initiation at day 0. (B) Effects of
increasingly larger genetic barriers n (x-axis) on the average time to
fixation (y-axis), which is the time required for the resistant strains to
reach 50% of the viral population. Data are depicted only in cases
where the success rates are below 0.9, representing at least 50 fixation
events per point. (C) Effects of increasingly larger genetic barriers n (x-
axis) on the average viral reduction at the time of fixation (y-axis),
depicted when success rates are below 0.9. The viral reduction is the
ratio between the viral loads at fixation time and at day 0. Large genetic
barriers are needed in order for the therapy to reach its set point before
resistance emerges. (A,B,C) Viral suppression under the two-therapy
regimen is gradually prolonged throughout the entire barrier range,
and displays a dramatic advantage at n~5 (B). Success rates and viral
reduction are also improved (A,C).
doi:10.1371/journal.pcbi.1000883.g004
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penalties can impede resistance as effectively as major increases in

potency.

Effects of Fitness Cost and Inhibition Potency
To further explore the roles of mutational fitness cost and

inhibition potency in controlling resistance, we simulated the

model over a wide range of parameters. We first varied the

average fitness cost that the virus incurs with each additional

mutation (w), while fixing all other parameters at their default

values. Figure 5A–5B shows success-rate and fixation-time graphs,

spanning a range of fitness costs. As expected, greater fitness

penalties hamper escape and shift the ‘‘success threshold’’ towards

lower n’s. Increased penalties also delay therapy failure (fixation

time), allowing for greater viral reductions (not shown). One can

also see that it is essential for gene therapy to target viral

functionalities for which resistant mutations incur non-negligible

costs (wv0:98).

The effects of altering the inhibition factor e are shown in

Figure 5C–5D for two fitness costs. Here, the inhibition was amplified

tenfold each time, resulting in meaningful improvements. It can be

seen that when mutational fitness costs are minor (w~0:98), highly

potent inhibition is needed to effectively hamper resistance, as this is

the only way to restrain the virus. The tradeoffs between the two

factors are exemplified by the two sets of nearly overlapping curves

(shown in dashed lines), which correspond to a tenfold increase in

inhibition coupled with a slight decrease in fitness cost.

While mutational fitness cost for viral replication in the U cell

pool appears to dominate resistance dynamics, our simulations

also indicate that powerful inhibition can in fact control the virus,

and constitutes an important design criterion. It takes effect by

weakening early mutants, such that for a given n, more mutations

are needed to reach a sufficiently fit virus. One means to achieve

increased potency may be through combination therapy, provided

that the individual effects are multiplicative. Nonetheless, to the

best of our knowledge, the incremental contributions of single

therapies within an ensemble have not been determined to date.

Divide and Conquer – An Effective Strategy to Combat
Resistance

Combination therapy has traditionally been the treatment of

choice against the rapidly mutating HIV-1. Simultaneous

targeting of several functional domains slows down resistance by

concurrently increasing the genetic barrier and strongly suppress-

ing replication. Gene therapy adopted this principle [12,13,41],

but more importantly, opened the door to a new combination

strategy that has hitherto been infeasible, that is, of combining

targets across cell populations as opposed to within individual cells.

Ex vivo gene transduction provides the clinician with control

over the destination of delivered drugs, which, in turn, enables the

infusion and in vivo expansion of distinct P cell pools, each

containing different inhibitors that target distinct viral function-

alities. In this setting, a strain that resists one inhibitor is confined

Figure 5. Effects of altering the fitness cost and the inhibition potency on therapy efficacy. Success rates (fractions of successful
treatments) and average fixation times are shown as functions of the genetic barrier n (x-axis) for a range of mutational fitness costs w (A,B) and for a
range of inhibition factors e (C,D). The data summarize the outcomes of 500 simulation runs per each parameter set, similar to Figure 4. In each panel,
different colors are used to depict different parameter values, with black depicting the default case. The plots demonstrate that increasing the fitness
cost (lowering w) and decreasing the inhibition factor e both result in prolonged viral suppression. This is manifested in improved success rates and in
delayed resistance emergence. Panels C and D depict the effects of varying the inhibition factor for two distinct fitness costs (w~0:95, 0:98),
illustrating the tradeoff between the two factors. It can be seen that a tenfold increase in inhibition (e~0:01?e~0:001, w~0:98) is as effective as a
slight decrease in fitness cost (e~0:01, w~0:98?w~0:95). Panels C and D also point out that minor fitness costs (e.g., w~0:98) must be
compensated by powerful inhibition (eƒ0:001) in order to attain long-term suppression with potentially achievable genetic barriers (nƒ8).
doi:10.1371/journal.pcbi.1000883.g005
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to replicate only on a fraction of the P cell population, and is still

suppressed within the rest of it until it acquires additional

mutations. The idea, then, is to limit the resources available to

the evolving virus by forming sub-populations of P cells.

We illustrate this principle and explore its potential using a

computational model (see the Methods section and Text S1). Since

this strategy can be used on top of any gene therapy technique, it

represents an additional mechanism to combat resistance. We thus

seek to quantify its added value compared to using homogeneous

protection. Our model considers two gene therapies, P1 and P2,

targeting distinct viral functions such that cross-resistance between

them is excluded. This may apply, for example, to binding and/or

fusion inhibitors (P1) combined with integrase and/or reverse-

transcriptase inhibitors (P2). Both therapies are modeled as equally

powerful - they display the same n and same e, and each may

correspond to one or to several concurrent inhibitors. When

introduced into two cell populations, they divide the P cells into

two smaller sub-populations and give rise to a complex

quasispecies environment with viral strains that display a range

of resistance levels to one or both therapies. The baseline case, as

captured by the previously discussed model, corresponds to use of

just one of these therapies.

The resulting average fixation times and success rates were

compared to their single-therapy counterparts (Figure 4A–4B). We

found that fixation times improved gradually (but modestly)

throughout the entire range, until a dramatic increase in favor of

therapy combination took place at n~5 (Figure 4B). The same

effect is manifested as a meaningful shift in the success-rate curve

in favor of combination therapy - it suffices to use two therapies

with n~6 as opposed to n~8, which is required for a successful

stand-alone approach (Figure 4A). Figure 4 pertains to simulations

performed with default parameter values, but we observed the

same trend for a wide range of other parameter values, with some

variation in the position (n) of the dramatic shift (data not shown).

Simulations with three distinct therapies showed further improved

gains at all levels, as expected (data not shown). We conclude from

our findings that this approach is powerful when used judiciously

within the ‘‘right’’ n range.

To Split or Not to Split – Comparison of Combinatorial
Strategies

Another interesting question is how the added value of splitting

therapies across cells compares with the added value of increasing

the genetic barrier. This question is of significance to gene therapy,

where large n’s are necessary to guarantee long-term suppression

(Figure 4). Large barriers will likely be accomplished through

combinatorial approaches (within each cell), which in turn, are

associated with technical and physiological challenges [59,60] that

may consequently limit the achievable barriers. This is especially

relevant to RNAi therapy, which is characterized by low

individual barriers and strongly relies on combinatorial approach-

es, but at the same time, faces serious obstacles associated with

multiple payloads [61]. In light of these challenges, splitting

therapies may offer an alternative to pursuing large multi-

component payloads.

We used our model to answer the following question: is it more

beneficial to use two therapies whose genetic barrier is n or to

invest the effort to design one therapy with an enhanced barrier

nz1? We show that there is not a definitive answer to this

question, as illustrated in Figure 6A for n~4. Average fixation

times under both strategies are depicted for a range of inhibition

factors e, where each case resulted in a different answer. The

‘‘splitting strategy’’ appears to perform slightly better in the

presence of a relatively weak therapy (e~0:1), but loses its

advantage under more potent regimens. Similar situations were

observed for other n values (data not shown).

We interpret our ambiguous results by examining the viral

replication fitness (Eq. (1)) under both conditions. Consider a

resistant strain M whose replication fitness equals

wM
~kk(UzeM P){d. When two therapies are split across cells,

Figure 6. Efficacies of different combinatorial gene therapy strategies. Two strategies are considered: protecting the entire P cell
population with a single gene-based inhibitor whose genetic barrier is n~5, and dividing the P cell population into two sub-populations, such that
each one is protected by a different gene-based inhibitor whose genetic barrier is n~4. (A) The efficacies of the two strategies are compared in terms
of their resultant average fixation times, for three different inhibition factors (e). All other parameters are set to their default values (see the Methods
section). The different relations between fixation times that are observed for different e values suggest that none of the strategies is universally
advantageous. Data are based on the outcomes of 500 simulation runs per each parameter set, similar to Figure 4. (B) The ratio between the
approximate inhibition levels that each strategy exerts on a given strain is depicted (y-axis) as a function of the number of mutations (m) a strain
possesses (x-axis), for each of the three considered e values. The ratio is greater than one when the single-therapy strategy inhibits a strain more
potently than the two-therapy strategy, and vice versa. It can be seen that the ratios correlate with the advantageous strategy, that is, larger ratios
pertain to improved performance of the single-therapy strategy.
doi:10.1371/journal.pcbi.1000883.g006
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one can think of it as downsizing the pool of P cells susceptible to

M by a factor of two, corresponding to a replication fitness of

wM
~kk(Uz0:5eM P){d. On the other hand, an enhanced genetic

barrier typically renders the mutants less resistant than before the

enhancement, as they now need to overcome additional inhibitory

mechanisms. In our model, this is reflected in a smaller inhibition

factor e�M , which should be compared to 0:5eM . An important

point here is that in practice, the extent of decrease from eM to e�M
is case-dependent. Since no pertaining data are currently

available, we determine e�M based on simple functional relations

between the inhibition factor and the number of mutations (see the

Methods section). Our results are therefore model-specific, yet

they support our main point that the answer is nontrivial and that

strategies should be compared on a case basis.

We further linked our findings to the suggested interpretation by

computing the ratios 0:5eM

�
e�M when n~4. In our model,

resistance is a function of the number of mutations, giving rise to

five distinct ratios 0:5em

�
e�m

� �4

m~0
for each case considered, as

depicted in Figure 6B. The considered cases differ in their initial

inhibition potency (e0~eWT ), which determines all intermediate

inhibition factors. The correlation between the ratios and the

advantageous strategy can be readily observed – the more potent a

therapy is (i.e., smaller eWT ), the sooner the ratio curve crosses one,

at which point the single-therapy strategy imposes stronger

inhibition. For example, in the weakest therapy case (eWT~0:1),

the curve is entirely below one, which means that the ‘‘splitting

strategy’’ presents the virus with harsher conditions throughout its

escape route. In the other extreme case (eWT~0:001), a single

therapy exerts stronger inhibition fairly early in the evolutionary

process, even on pre-existing mutants. The middle case shows

mixed effects, which balance out to yield similar fixation times.

In our analysis, we assumed that increasing n has no

implications for therapy potency, or in other words, that e is

independent of n. However, when an increase in n is achieved by

the insertion of additional genes into each P cell, it may be

reasonable to assume that e concomitantly becomes smaller. If we

further assume that e decreased tenfold during the transition to a

larger n, then our simulations indicate that fixation times are

consistently longer for the single therapy regimen (Figure 6A). As

we already emphasized, this might be a model-specific prediction

that may not hold true under other conditions, but we can

certainly state that a simultaneous decrease in e renders the single-

therapy strategy more powerful than before. Finally, we stress that

such scenario-specific results stand in contrast to the comparison

we made earlier, where we found that splitting equally-powerful

therapies across cell populations is always advantageous over using

one of them alone (Figure 4).

Effects of Proliferation Enhancement
As we showed earlier, the potential reductions in viral load

under gene therapy are limited in comparison to HAART

(Figure 2C). Methods to enhance the selective advantage of P

cells by extending their proliferation capacity are being explored,

as a means of boosting their expansion, such that lower viral set

points could be attained. Proposed techniques include expression

of stimulatory interleukins, microRNAs, and telomerase reverse

transcriptase (hTERT) [34,62,63,64,65]. While each technique

carries the risk of uncheck proliferation that could result in cancer

[66], engineering additional safety controls could eventually solve

this problem [34]. We chose to consider the idea of proliferation

enhancement even though the underlying technology is not fully

developed yet, so that we can better understand its impact on the

emergence of resistance.

The potential gains from proliferation enhancement were

previously illustrated by von Laer et al.’s modeling study [21],

and our baseline model displays similar trends of reduction in the

viral load. Since latently infected cells are precluded from the

model, a sufficiently powerful enhancement can in fact eradicate

the virus. It also expedites P cell accumulation, thereby

intensifying the selective pressure on the virus soon after therapy

begins, but at the same time accelerating viral decline (see Figure

S2). Figure 7A–7C shows the outcomes of simulations of viral

evolution under this strategy, with a range of improved

proliferative abilities and with default parameter values. We

modeled enhanced proliferation as a constant percentage increase

in the proliferation rate of P cells with respect to U cells,

represented by a factor aw1 (see the Methods section). We found

that enhancing proliferation consistently expedited the fixation of

resistant strains and, as explained below, seemingly paradoxically

improved the success rates. Overall, the improvements are modest,

and gains diminish with increasing a. The major therapeutic

benefit of this approach is in improved viral reduction before

resistance emerged, despite the faster emergence (Figure 7C). In

particular, improvements become major for large n’s, amounting

to one to two logs. Note that under such conditions, early-

appearing mutants that are weakly resistant to therapy may reach

50% of the viral population at very low densities sometime during

WT’s decline to extinction, albeit without expanding much

further. We therefore modified the definition of fixation to exclude

cases where the entire viral population continues to circulate well

below detectable levels (e.g., 0.01/mL).

The shortened fixation times are not surprising and reflect a

combined influence of acceleration in both WT’s decline and P-

cell expansion. As P cells accumulate, the selective pressure on the

virus builds up and fuels the expansion of resistant strains. P cell

levels are also higher, which further assists those strains. In light of

these factors, it is rather surprising that success rates gradually

improved with further enhancement (Figure 7A). We attribute this

result to a strong counteractive effect of the drastic viral decline

and extinction, which cuts down the de novo generation of highly

resistant strains. It is also worth noting that we further explored

resistance dynamics when proliferation is impaired (av1), as that

may reflect current conditions in gene therapy trials. Therapy

effects on the entire viral population are weakened and slowed

down in this case, and so, as expected, lesser gains from therapy

are associated with weaker and delayed resistance (data not

shown).

The effects of proliferation enhancement resemble those of the

intensification of traditional anti-HIV drugs [16], and, in fact, the

similarity to post-HAART dynamics manifests itself in another

way – it allows the P cells to ‘‘take over’’ the immune system. This

is because sufficiently intense proliferation renders them advanta-

geous even in the absence of HIV, allowing them to populate the

system at the expense of a dwindling U cell reservoir (Figure S2).

Fitter P cells occupy bigger portions of the immune system and

bring it closer to HAART’s homogenous conditions. To

summarize, in the absence of resistance, proliferation enhance-

ment constitutes an important step towards achieving HAART-

like performance. However, when resistance is accounted for, this

strategy may be associated with adverse effects and may prove

beneficial under limited conditions.

Table 1 summarizes each of the above-discussed strategies along

with their impact on treatment outcomes and their parametric

tradeoffs. The first three columns pertain to the qualitative

changes in the figures of merit introduced earlier (Figure 4), where

the success threshold (first column) stands for the minimal n for

which success rates exceed 0.9. The fourth column quantifies the
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changes in the success threshold that correspond to the specified

parameter deviations from the default case.

Discussion

We developed a computational model of HIV-1’s evolutionary

dynamics in the presence of gene therapy to study its long-term

efficacy against the virus. We used the model to quantify the

contributions of key therapy-design parameters and different

treatment strategies to the suppression of viral resistance. We find

that when judiciously designed, gene therapy has the potential to

provide long-term suppression of HIV-1, but meeting this goal

requires highly powerful and robust antiviral genes, which may not

be currently available. In particular, large barriers, ranging from 5

to 9 (depending on therapy parameters), are needed in order to

guarantee that viral suppression below a few percent of pre-

therapy loads lasts at least four years. In addition, gene therapy is

characterized by very slow dynamics in comparison to HAART, as

a consequence of its inherently different mechanism of action. In

particular, it can take about two years to reach a new viral set

point (Figure 2A). This, in turn, makes a long-lasting resistance

control even more critical, if one aims to fully realize the therapy’s

clinical benefits. We find that delaying resistance emergence

merely to the point of reaching a new steady-state viral set point

still requires fairly large genetic barriers, which are only slightly

smaller than those required for a four-year viral control.

We find that two controllable parameters play a key role in

delaying emergence of resistance – the replicative fitness cost

associated with mutation (w) and the therapy’s inhibition factor (e).

Our results demonstrate that intensifying both factors can severely

impair the competence of mutants, and thereby offset the effects of

a significant mutational influx of newly emerging strains (Figure 5).

Our analysis stressed the difference between the ways by which the

two factors w and e take effect, where the mutational fitness cost

acts primarily by hindering viral replication in U cells (Figure 1B)

and the inhibition potency serves to hinder the virus as it replicates

in P cells. This brings into attention a major difference between

gene and traditional therapies, namely that gene therapy leaves a

major fraction of the target cells unprotected. As it turns out, one

can harness this apparent weakness to improve virus control. Our

model predictions support this by showing that small relative

decreases in the average fitness cost per mutation dramatically

improve success rates and delay resistance emergence (Figure 5).

The fitness of mutants in the U cell reservoir, thus, plays an

important role here, and targeting highly conserved regions may

prove to be particularly beneficial for gene therapy. These results

also stress the importance of assessing the fitness of resistant

mutants on cultures of unprotected cells as part of a therapy’s

evaluation.

Our model predicts that sufficiently potent inhibition also

provides a powerful means for preventing the development of

resistance. However, major amplifications in potency are

required in order to achieve benefits that are comparable to

those attainable by minor relative changes in fitness cost

(Figure 5). For example, we find that e’s as low as 1024 can

Figure 7. Effects of proliferation enhancement. Success rates (A),
average fixation times (B), and average viral reductions (C) are shown as
functions of the genetic barrier n (x-axis) for a range of acceleration
factors (a). A factor aw1 stands for a constant boost (of a{1 percent)

to the proliferation rate of P cells in comparison to the proliferation rate
of U cells. Different colors depict different a values, with black depicting
the default case (i.e., no enhancement). Each point summarizes the
outcomes of 500 simulation runs with default parameter values, similar
to Figure 4. Success rates consistently improve as a consequence of
proliferation enhancement (A), but when the virus escapes, fixation is
generally expedited (B). Major improvements in viral reductions take
place before fixation occurs (C).
doi:10.1371/journal.pcbi.1000883.g007
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successfully hamper resistance when combined with a barrier

n~5. Whether such e’s are practical or not is yet to be

determined. Combination therapy, possibly involving different

gene-based techniques, may provide a viable approach to

achieving this goal, and may simultaneously feature large n’s

[4,14]. Nonetheless, its promise depends on the synergistic

interaction between multiple concurrent agents. For example,

potent inhibition may be achieved when their joint potency (e)

amounts to the product of their individual e’s, rather than to

their sum. Importantly, such cumulative effects have not yet

been quantified or validated in the context of gene therapy.

Note also that the importance of highly potent inhibition in

preventing resistance stands in contrast to its negligible

contribution in reducing the sensitive virus load (Figure 2B).

The methods presented above are conventional approaches to

enhancing an antiretroviral treatment’s efficacy, as applied to gene

therapy. However, there are supplementary, less obvious, ways to

boost gene therapy’s performance, which are not possible with

HAART. One such method is to combine multiple therapies across

cells such that the P cells form several sub-populations, where each

population is susceptible to different viral strains. We illustrated

this novel principle through simulations of an abstracted model,

which considers several distinct and equally powerful therapies.

Our results demonstrate that dramatic improvement in success

rates as well as in fixation times can be obtained in this manner

(Figure 4). However, these occur only within a certain window of

genetic barriers. When applied outside this window, improvements

are modest, albeit increasing with increasing number of therapies.

One must therefore reliably characterize the individual therapies

before attempting such a strategy.

It is also interesting to compare the improvements obtained

by splitting therapies to those obtained by increasing the genetic

barrier of a single therapy. We find that the ‘‘winning’’ strategy

varies, depending on the therapy parameters and on the

resistance spectrum of intermediate mutants (Figure 6). The

comparison result particularly depends on e, and on whether it

decreases while n increases. It is reasonable to expect that e
would decrease when n is extended by an insertion of additional

therapeutic genes, as long as they exert their effects via distinct

independent pathways [13,14,41]. In this case, our model

predicts that a single improved therapy will perform at least as

well as a two-therapy approach. If this is not the case, it is

difficult to predict the overall effect on e and which strategy

performs better. An example of the latter case is a combination

of RNAi targets, which is constrained by a maximum tolerable

level of siRNA molecules so as to avoid toxicity [67] and

competition for cellular resources [68]. It is possible that overall

inhibition power may not decrease or may even increase under

such constraints, especially when numerous targets are involved.

Although combination gene therapy has been extensively

studied via experiments over the past few years, we are unaware

of any quantitative results that can be used within our model.

Nonetheless, our analysis points out the key parameters which

need to be quantified in order to compare the two options,

namely, the therapies’ entire spectrum of inhibition potencies.

Gene therapy pressures the virus indirectly by way of a slow P

cell expansion, and its limitations derive from the persistence of U

cells. It has been argued that it could be improved by boosting

proliferation of P cells, such that they outcompete U cells [42]. We

explored the implications of such strategy on resistance dynamics

and observed mixed effects on clinical outcomes: the likelihood of

viral escape is decreased for a narrow range of genetic barriers, but

when escape does occur, it occurs more rapidly than without

enhancement (Figure 7). Overall, both effects are moderate, even

for increases of 30%–40% in proliferative activity. In light of our

results, it is worth noting that this technique is appealing for other

reasons. It induces rapid viral decline, powerfully suppresses WT

virus, and facilitates an extensive re-population of the immune

system with P cells. These major improvements may be associated

with further clinical advantages that are not captured by our

model, such as the recovery of the lymphocyte homeostasis

mechanism, which is believed to be impaired in the presence of

high HIV load [47,69,70].

It is also worthwhile to consider alternative ways for gene

therapy to overcome its limitations. Resorting to hematopoietic

stem cells may not suffice, as simulations we conducted show that

when the infused fraction is small, both approaches are confined

by the same factors and exhibit similar dynamics and efficacies

(data not shown). Only when large fractions are infused, can

meaningful improvements over T-cell-based methods be obtained

(see Figure S3). This is concerning in light of results of recent

clinical trials which indicate that current delivery efficiencies reach

several percent at best [4,41,71]. A potentially promising way to

overcome this limitation is by including a selectable genetic marker

in the antiviral payload that renders the P cells resistant to a

chemotherapeutic agent, to which stem cells are normally

sensitive. It thereby allows for their chemotherapeutic selection

and expansion in vivo. Recent progress in this direction is

encouraging, as substantial selective expansions were observed in

large animal models that were treated with such drugs [72,73,74],

suggesting that these may be used with humans [36,74]. Another

option is to ablate the immune system to make space for the P

cells, and despite its associated risks, is it currently applied in a

number of ongoing clinical trials [75]. From a modeling

perspective, these approaches can be captured by increasing the

fraction of infused stem cells. Our simulations then suggest that the

effects of increased fractions on resistance dynamics are qualita-

tively similar to those of proliferation enhancement, although they

are more modest (see Figure S4). At any rate, a more elaborate

modeling study of stem-cell delivered therapy is required to map

Table 1. Influence of strategies for delaying escape on the average treatment outcome.

Strategy
Success
threshold (n)

Average
fixation time

Average viral
load at fixation

Change in threshold from
default case

Increasing mutational fitness cost (wQ) Q q Q w: 0.95R0.92Rn: 8R6

Increasing inhibition potency (eQ) Q q Q e: 0.01R0.001Rn: 8R6

Combining therapies across cells Q q Q Two therapiesRn: 8R6

Enhancing proliferation (aq) Q Q Q* a: 1R1.1–1.4Rn: 8R7

*The improvements in viral declines by fixation time are major, and significantly exceed those achievable under all other strategies.
doi:10.1371/journal.pcbi.1000883.t001
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the conditions that facilitate considerable responses. This exceeds

the scope of this work but the ideas and models presented here are

readily applicable to this case.

Gene therapy could also potentially be combined with

HAART, so as to benefit from HAART-induced suppression.

The problem with this approach is that HIV is the driving force

behind the expansion of P cells, and their selective advantage

over U cells becomes small with decreasing viral loads [42]. It

thus appears that methods for stimulating P cell proliferation

and/or selection must be developed, such that the P cells can

accumulate independently of the infection, and can then be

effectively combined with HAART. Moreover, these methods

can then leverage on a broad range of agents, including a

variety of RNA-based inhibitors (reviewed in [4]), which may

not propel sufficient cell expansion, but do provide powerful

viral suppression (see Text S1).

A number of simplifying assumptions were incorporated into

our model to retain its generality and tractability. First, we

assumed a fixed incremental effect of each subsequent mutation

on a strain’s phenotype. In reality, individual effects depend on

the actual mutational composition and on order of appearance,

and not all mutational routes yield a viable virus. We therefore

neglected epistatic interactions between mutations and param-

eterized only the average incremental contribution. Second, we

assumed that fitness in P cells is monotonically increasing with a

mutant’s order, and thus mutants of sufficiently high order

always thrive under therapy conditions, and will likely emerge if

generated. Other choices of fitness functions, such as ones that

are non-monotonic or monotonic but assigning lower fitnesses

to all strains, can render such high-order mutants less

competent. Such choices would result in quantitatively different

(more optimistic) emergence statistics, and would mostly depend

on therapy effects on pre-existing mutants. Clearly, once data

for specific therapies become available, the model should be

revised to generate more precise predictions, but at this point,

we focus on capturing the key features involved in the

development of viral resistance, namely, the tradeoffs between

the effects of w and e. These qualitative findings do not depend

on the monotonicity assumption since the same factors

determine the ability of pre-existing strains to outgrow in the

mixed-cell environment. The ideas and analysis pertaining to

combinatorial approaches also apply regardless of the mutants

order and are not function-specific. However, the effects of

proliferation enhancement may differ under non-monotonic

fitness assignments and should be revisited once relevant data

are available.

We also assigned equal mutational fitness costs to replication in

both cell types, which may not always apply. This implies that a

strain is never fitter in P cells than in U cells, and matches recent

experimental findings [23] (see the Methods section). However, if

highly resistant strains replicate better in P cells, our predictions

are over-optimistic - they provide upper bounds on therapy

efficacy and overestimate w’s impact on escape. Another

simplification entails neglecting escape routes that are unlikely

under HAART but may be selected in mixed cell compositions.

Consider, for example, a strain with several mutations that

partially resists therapy and is less fit than WT in U cells. Suppose

that an additional mutation then partially rescues its fitness in U

cells and possibly boosts its resistance as well. If such

compensatory routes exist, they may be selected in environments

where both fitness traits are valuable, and our assumption

excluded such possibilities from consideration. Future work may

further investigate the consequences of such complex fitness

landscapes.

We extended our model to account for the contribution of

recombination to the formation and loss of resistant strains. To

maintain reasonable model complexity and size (especially for

large n’s), we included only simple recombination patterns,

whereby mutations from distinct strains are adjoined, and

mutations are lost during recombination with WT. The

complete details are given in Text S1. We observed very little

quantitative effects on the average treatment outcome, even

under very high recombination rates. Therefore, in the interest

of clarity and simplicity, we omitted recombination from the

model. However, a more detailed treatment of recombination,

particularly in conjunction with epistatic interactions, may

reveal other outcomes, as it was previously shown that

recombination effects are pronounced only in the presence of

epistasis [76,77]. A detailed analysis of this type requires a large

dedicated model (see e.g. the work in [77]) and is not practical

when studying a wide range of genetic barriers as was done

here. Future work may incorporate such detailed mechanisms

for special cases of interest. An additional extension we

considered entailed a homeostasis control of thymus input rates

as opposed to constant rates, but that did not qualitatively affect

our results either (data not shown).

Many of our assumptions can be partially corroborated by in

vitro assays. For example, it is common practice to characterize the

spectrum of potentially resistant mutants through serial passage

experiments. In our case, one can assess the attenuated infection

rates from single-round infection assays [10,44] and reconstruct an

approximate ‘‘resistance profile’’. Similar tests should be conduct-

ed with U cells to quantify both fitness traits. Assays with a mixed

cell population can serve to probe the fitness landscape and

identify mutants that trade their resistance to therapy for

recovered fitness in U cells, as these may be selected in vivo.

Experiments can also help determine the incremental contribu-

tions of single agents in combinatorial settings and whether they

interact multiplicatively, additively, or in any other way. The real

challenge is in extrapolating in vitro findings to clinical settings,

since these do not fully reflect their in vivo counterparts, but yet are

indicative of relative competence among strains. Clinical data are

invaluable to validating our model, but to the best of our

knowledge, sustained P cell expansion has not yet been reported in

any clinical trial. Thus, experimental data from animal models

[41,78] can provide a starting point for better characterizing P cell

expansion and viral suppression, by fitting variations of our model

to clinical measurements.

To summarize, we use a generalized model of HIV gene

therapy to identify both the most effective routes to control the

virus and the critical properties of the antiviral genes that must be

experimentally assessed during the design of such therapies.

Methods

Infection Dynamics
Baseline model. Our model extends upon a commonly used

model of HIV dynamics [16,17], which considers three entities:

healthy target CD4+ T cells (U), productively infected T cells (IU),

and free virions (V). We added two equations that track the

densities of healthy P cells (P) and productively-infected P cells (IP).

These follow similar dynamics, using modified parameter values.

Additionally, we modified the T cell dynamics, such that two

sources contribute to T cell renewal: a constant influx of naı̈ve T

cells from the thymus, and self-proliferation [37,79,80,81]. Since

we consider therapy delivery by T cell infusion, the thymus

contribution is limited to U cells. The proliferation mechanism, in

contrast, encompasses both cell types, and saturates according to
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Michaelis-Menten kinetics. This form was derived in [37] based on

the idea that the activation and proliferation of T cells are

confined by their competition for antigen-presenting sites. Our

formulation also reflects an assumption that the ex vivo

manipulation of P cells did not compromise their proliferative

ability and that they display a normal T cell phenotype.

Importantly, both cell types are assumed to equally contribute to

saturation, thus equally competing for presence in the T cell pool.

In the presence of gene therapy, the model dynamics are governed

by the following equations:

dU

dt
~lz

rU

hzUzP
{dU{kUV

dP

dt
~

rP

hzUzP
{dP{ekPV

dIU

dt
~kUV{dIU

dIP

dt
~ekPV{dIP

dV

dt
~r IUzIPð Þ{cV

ð2Þ

where l is the thymus-input rate, r and h are Michaelis-Menten

constants, d is the lymphocyte death rate, k is the rate at which WT

infects susceptible cells, d is the death rate of infected cells, c is the

virion clearance rate, and r is the rate of virus production from

infected cells. An additional parameter conveys the effects of

therapy on P cells, that is, an inhibition factor e, which attenuates

the rate at which they are infected. If the proliferation of the P cells

is enhanced, the rate is multiplied by an acceleration factor aw1,

yielding a rate ar= hzUzPð Þ. When stem cells are infused, the

thymus input rate of U cells becomes 1{fð Þl, and a thymus input

term of f l is added to the P cells’ equation, where f is the fraction

of gene-modified stem cells.

The efficacy of early-stage inhibitory genes may be further

enhanced by way of combination with late-stage inhibitory genes

[12,82]. When combined with a perfect viral production suppressor,

the virus dynamics are governed by dV=dt~rIU{cV . Steady-

state analysis was carried out for this ideal case, which lends itself to

simple analytical results. This model has three steady states:

uninfected in the absence of therapy (V~0, P~0), infected in

the absence of therapy (V=0, P~0), and infected in the presence

of therapy (V=0, P=0). Since the viral load maintains the same

ratio relative to the infected U cell density in all three cases (i.e.,

V=IU~ r=cð Þ), we compare the infected cell densities (IU ) between

the latter two states, instead of the viral loads. Specifically, we

have I0
U
~l=dzr

.
~kkhzd
� �

{d
.

~kk before therapy and

IT
U

~l= d(1{e)½ � after therapy, where ~kk~kr=c is a generalized

infection rate combining viral infectivity, production, and clearance

rates.

Suppression gain. It is clear from the above expression for

IT
U

that the virus is not eradicated unless l~0. Otherwise, the viral

suppression gain, or the ratio of cells infected in the absence vs. in

the presence of therapy, is given by

G~
I0

U

IT
U

~I0
U d

1{e

l

� �
: ð3Þ

Since d is well-characterized to be between 0.3 and 0.7 per day

[38,83] and the pre-therapy infected-cell levels are maximally

on the order of a few tens per mL [84], the maximal suppression

gain (when e&0) is approximately 10-fold greater than 1=l. If

we assume that l supplies no more than a few percent of the

natural T-cell mortality in adults [45], this amounts to a

contribution on the order of 0.01*0.01*1000 = 0.1 cells/

[mL*day] (i.e., 1% of a death rate of 0.01/day multiplied by

an average T-cell level of a healthy individual). Combining these

estimates yields a maximal suppression gain of approximately

two logs. To realize gains comparable to HAART [40], the

thymus’ relative contribution should be considerably lower than

a few percent. We used Eq. (3) to illustrate the dependence of G

on e and l (Figure 2B–2C), while keeping the pre-therapy

conditions fixed so as to allow for a fair comparison (see Text S1

for details).

At this point, we note that our choice of the baseline model was

guided by a comparison we conducted between this model and a

model of a different type of protection, whereby the genes inhibit

expression of viral proteins in infected cells rather than infectivity.

Such inhibition confers a selective advantage to the infected P cells

in the form of extended life spans, and may additionally suppress

virus production [20,22]. Currently, a wide array of suitable

methods exists, with some already being tested in clinical trials

(reviewed in [4]). We found that for a wide range of relevant e
values, viral-entry inhibitors are more advantageous than gene-

expression inhibitors (see Text S1 for details and for conditions

under which the latter approach may be practical).

Evolutionary Dynamics
Multistrain model. We extended the baseline model to

account for the dynamics of a collection of viral strains, displaying

a range of resistance capabilities to therapy. Three equations

describe the dynamics of each mutant strain M, tracking the

densities of infected U cells (IUM
), infected P cells (IPM

), and free

virions (M), as follows:

dIUM

dt
~wMkUMzmFU (M){dIUM

dIPM

dt
~eMwM kPMzmFP(M){dIPM

dM

dt
~r IUM

zIPM

	 

{cM

ð4Þ

where wM is a replicative fitness cost associated with mutating from

WT, and eM is the infectivity inhibition factor, expressing altered

protection against strain M. The terms mFU (M) and mFP(M)
represent the mutation of other strains into M during reverse

transcription, where m is the rate of point mutation at any resistance-

conferring site, and FU (M), FP(M) stand for the density of U and P

cells that are newly infected with strains that may precede M,

respectively. The infection terms wM kUM and eMwM kPM were

subtracted from the susceptible-cell equations. Note that we assumed

that viral production rates are unaffected by the mutational process,

which is more likely to alter the fusion, binding, or integration

capacities of the virus [10]. Our model formulation also neglects the

loss of infected cells due to mutation into other strains. In preliminary

simulations we observed that inclusion of such loss had little effect on

our results.

Stochastic events. We supplemented Eq. (2) with a

stochastic module that accounts for the randomness taking place

during mutant appearance [18]. We followed previous approaches

to implementing a stochastic counterpart of our model [85,86],

which takes effect whenever a species’ density falls below a

predefined threshold (similar to [86]). Additional details are found

in Text S1.

Fitness cost. We modeled the replication fitness of a mutant

as dependent on the number of resistance-conferring sites that are
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mutated away from their WT form. We refer to this number as the

number of resistance mutations, or the order of the mutant. We

assumed that fitness effects are multiplicative [53], implying a

fitness cost of wM~wm for an m-order mutant, where w is a fixed

average fitness cost per mutated site. We also assumed that this loss

applies to infection of both U and P cells. This implies that for P

cells, wmk sets an upper limit on the infection rates of m-order

mutants, as these may be further downgraded by a factor of

eMƒ1. In other words, a strain cannot be fitter in P cells than in U

cells. Similar relations, where mutants display weaker replication

in P cells than in U cells, were recently observed in vitro for RNAi-

escape mutants [23], and motivated our modeling choice.

Nevertheless, this assumption may be optimistic, in the sense

that sufficient adaptation may result in highly resistant strains that

replicate better in P cells than in U cells. Our model can be readily

adapted to reflect such conditions, but in the lack of relevant gene

therapy data, we assumed that resistance manifests itself only

through overcoming inhibition.

Infectivity inhibition. We assumed that a mutant’s resistance

level depends on the number of resistance mutations, with each

additional mutation contributing equally and multiplicatively to

overall resistance. We therefore spaced the inhibition factors of

intermediate mutants between the WT and full-resistance levels, as

follows. If n mutations confer full resistance, then the inhibition

factor of an m-order mutant (0ƒmƒn) is set to eWTD
m,

where D~ 1=eWT½ �
1=n, and eWT stands for WT inhibition.

Therefore, the fully-resistant n-order mutant experiences no

inhibition by P cells, and is equally competent in both cell types.

Note that such scheme disregards epistatic effects and is equivalent

to a linear change in viral infectivity on a logarithmic scale.

Almost no quantifiable data is available on the efficacy of gene

therapies against increasingly resistant mutants, making it difficult

to accurately model the changes in e. However, the reasoning

behind our choice is twofold. First, if several protective genes are

combined, we assume their inhibitory effects are multiplicative.

Partial resistance can then be thought of as escaping a subset of

therapies [86]. Second, recent experiments with traditional

antiretroviral therapies support a similar multiplicative form of

declining efficacy with mutation accumulation [54,77,87]. In the

context of gene therapy, we are aware of one recent work that

partially quantified the infectivity inhibition of intermediate

mutants under in vitro conditions [10], indicating that single-

mutation contributions are non-additive and nonlinear, thus

further supporting our modeling assumption. Moreover, our

understanding of the mechanism of HIV’s escape from RNA-

mediated inhibition [11,22], where potency correlates with the

goodness of match between the genome and the target sequence,

further motivates our choice.

Mutations. Our model accounts only for first-order accrual

of point mutations, that is, each strain may be added at most a

single point mutation at each ODE integration step (Figure 1B).

For simplicity, we also excluded the reverse mutational process

(i.e., towards less-resistant strains), as its contribution is minor due

to much-lower densities of higher-order mutants. Our

assumptions thus imply that an m-order mutant may be directly

preceded by each of the (m21)-order mutants whose mutated

sites form a subset of its m sites. For example, if M123 is 3-point

mutations away from WT (the subscripts label the mutated sites),

then its predecessors are the 2-order mutants M12, M13, and

M23.

Complexity reduction. The above assumptions allude to

perfect symmetry among same-order mutants, as any m-order

mutant experiences a fitness cost factor of wm and an inhibition

factor of eWTD
m. We exploited it to obtain a smaller and simplified

model. For each m, we grouped all m-order strains into one class

and summed the various densities over all class mutants. The

resulting equations appear as follows:

dIU
M(m)

dt
~wmkUM(m)z

(n{mz1)m wm{1kUM(m{1)
� �

{dIU
M(m)

dIP
M(m)

dt
~eWT DmwmkPM(m)z

(n{mz1)m eWT Dm{1wm{1kPM(m{1)
� �

{dIP
M(m)

dM(m)

dt
~r IU

M(m)
zIP

M(m)

� �
{cM(m)

ð5Þ

where n is the order of the fully-resistant mutant, and IUM(m)
,

IPM(m)
, and M(m) are the aggregate densities per m. The

multiplicity coefficient (n2m+1) accounts for the affiliation of

each (m21)-order strain with the predecessor sets of multiple m-

order strains. For example, when n = 3, the mutant M1 contributes

to the influx of both M12 and M13 (m = 2), whereas WT

contributes to M1, M2, and M3 (m = 1). The symmetric model

has 3(nz1)z2 equations, compared to 3|2nz2 in the general

case. Such complexity reduction becomes significant when

considering the large n’s required for effective gene therapy, and

is crucial for tackling the more elaborated scenario of multiple P-

cell populations.

Heterogeneous Protected-Cell Composition
We assumed the availability of two distinct protective-gene

cassettes, which target different viral components, and thereby give

rise to two non-overlapping sets of resistance-conferring sites, S1
and S2. We further assumed that both cassettes, hereafter called

Therapy 1 and Therapy 2, are equally powerful, that is, they have

the same starting inhibition factor eWT , same n, and same

intermediate inhibition factors. When used jointly, there is no

cross-resistance between them. That means that the inhibition

exerted by Therapy 1 (2) on a given strain depends solely on the

number of mutated sites in S1 (S2), and is independent of the

mutated sites in S2 (S1). For a given n, there are now 2n
resistance-conferring sites, contained in S1~ 1, . . . ,nf g and

S2~ nz1, . . . ,2nf g. A strain that shares m mutated sites with

S1 and l mutated sites with S2 will encounter inhibition factors of

e1~eWTD
m and e2~eWTD

l by Therapies 1 and 2, respectively.

The fitness cost factor is determined by the total number of

mutated sites, and equals wmzl .

Symmetric form. A straightforward implementation of such

model encompasses 22n strains and 4|22nz3 equations. As

before, we exploited the inherent symmetry and classified the

strains into N~
nz2

n

� �
resistance-phenotype classes. In

particular, each class is identified by a pair m,lf g (0ƒm,lƒn),

and all its members share m sites with one therapy’s set and l sites

with the other set (see Text S1 for details and equations). The

model has 3|Nz2 equations (which is on the order of n2) and

takes a similar form to Eq. (4), with modified inhibition and fitness

cost factors, predecessor classes, and multiplicity coefficients. The

major reduction in model size ensured the tractability of the model

and the simulations for relevant n values.

Model Parameters and Initialization
We used the following parameter values based on prior studies

[70,83,84,86,88,89,90]: the death rate of healthy CD4+ cells,
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d~0:015 1/day; the death rate of infected cells, d~0:5 1/day; the

viral clearance rate, c~6 1/day; the mutation rate, m~3|10{5

per base per replication. The virion production and infection rates

are not well characterized and were set to r~120 virions/

[cell*day] and k~0:00008 mL/[virion*day], respectively, to

match observed viral dynamics in untreated infections. We set

the T-cell renewal parameters to yield realistic T cell densities in

the absence of infection (1,000–1,300 cells/mL) and realistic pre-

therapy viral loads (102–103 virions/mL) [16,38,90]. We also

assumed that the thymus regenerates 1% of the total cell loss,

implying the following parameter values: l~0:2 cells/[mL*day],

r~20 cells/[mL*day], and h~90 cells/mL. We also tested

numerous other parameter values and did not observe qualita-

tively different results. A species was considered extinct if its

density fell below 3|10{9 per mL, corresponding to one entity per

body, based on 5 liters of blood which contain 1%–2% of the

entire susceptible cell population [86]. Its dynamics were treated

stochastically as long as its density did not exceed 3|10{7 per mL.

The default values of therapy-related parameters were w~0:95
and e~0:01 [44]. The fraction of infused P cells was 1% of the

entire U cell population at the time of infusion (day 0) [5,21]. The

system was first brought to steady state, where simulations over a

400-day period ensured convergence to a HIV set point. Our

parameter choices result in pre-existing strains with one, two, and

three resistance mutations. Clinical experience suggests that

double-point mutations are likely to exist in sufficient levels in

untreated HIV patients, but it is not known if triple-point

mutations are sufficiently abundant as well. Our model may thus

be too ‘‘pessimistic’’, and under less conservative parameter

choices will result in less stringent requirements for a successful

gene therapy.

Supporting Information

Figure S1 Stochastic effects that dominate mutant appearance

result in large variations in fixation times. Effects of increasingly

larger genetic barriers n (x-axis) on the time to fixation (y-axis),

which is the time required for the resistant strains to reach 50% of

the viral population, measured from therapy initiation at day 0.

Each marked point represents the average of at least 50 simulation

runs in which fixation occurred within four years from therapy

initiation. The bars correspond to one standard deviation. Each

curve depicts the aggregate outcome for different parameter

choices, where w is a fixed average fitness cost per mutated site

and e is the therapy’s inhibition factor (see the Methods section for

more details). All other parameters were set to their default values.

The figure shows that larger n’s are associated with increasing

variation in fixation time. This is because the stochastic

fluctuations of newly emerging mutants build up along the

evolutionary process. When n becomes larger, more mutations

are needed in order to confer sufficient resistance, and hence the

time to fixation of such highly-mutated strains depends on the

appearance times of their preceding mutants, which experience

random drift as well.

Found at: doi:10.1371/journal.pcbi.1000883.s001 (0.05 MB PDF)

Figure S2 Infection dynamics under enhanced proliferation of

protected cells. System dynamics in the absence of viral resistance

and when the P cells have a proliferative advantage over the U

cells. Enhanced proliferation of P cells was modeled as a constant

percentage increase in their proliferation rate compared to the U

cells’ proliferation rate. Simulations were performed with default

parameter values and with 30% increase in the P cells’

proliferation rate (see the Methods section for more details).

Enhanced proliferation expedites P cell accumulation and viral

decline and drives the virus to extinction. It additionally results in

higher P cell densities, allowing them to increase their relative

proportion in the immunity system on the expense of a declining U

cell population.

Found at: doi:10.1371/journal.pcbi.1000883.s002 (0.16 MB PDF)

Figure S3 Infection dynamics following infusion of a large

fraction of protected stem cells. System dynamics in the absence of

viral resistance and when protected stem cells are infused to the

patient. Stem cell infusion was modeled by an addition of a

constant thymus-export term to the renewal of P cells, and by a

reduction in the rate of thymus export to the U cell compartment.

The modified terms are determined by the fraction of the

protected stem cells in the bone marrow (see the Methods section).

The simulation corresponds to 90% of the stem cells being

protected, and to a bone-marrow contribution of 10%, and was

performed with default infection and therapy parameter values.

Increasing the fraction of protected stem cells expedites P cell

accumulation and viral decline, and allows for higher P cell

densities to be reached, such that their relative proportion in the

immunity system is increased on the expense of the declining U

cell population.

Found at: doi:10.1371/journal.pcbi.1000883.s003 (0.06 MB PDF)

Figure S4 Effects of increasing the fraction of protected stem

cells. Success rates (A), average fixation times (B), and average viral

reductions (C) are shown as functions of the genetic barrier n (x-

axis) for a range of infused fractions. The parameter f corresponds

to the fraction of stem cells that are protected (see the Methods

section), and different colors depict different f values. Each point

summarizes the outcomes of 500 simulation runs with default

parameter values. Success rates gradually improve with increasing

protected fractions (A), but when the virus escapes, fixation is

generally expedited (B). The viral reductions obtained by the time

of fixation are also improved (C).

Found at: doi:10.1371/journal.pcbi.1000883.s004 (0.03 MB PDF)

Text S1 Additional details about the model and simulations.

Found at: doi:10.1371/journal.pcbi.1000883.s005 (0.43 MB

DOC)
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