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Abstract

The hemodynamic response function (HRF) characterizes temporal variations of blood oxygenation level-dependent (BOLD)
signals. Although a variety of HRF models have been proposed for gray matter responses to functional demands, few studies
have investigated HRF profiles in white matter particularly under resting conditions. In the present work we quantified the
nature of the HRFs that are embedded in resting state BOLD signals in white matter, and which modulate the temporal
fluctuations of baseline signals. We demonstrate that resting state HRFs in white matter could be derived by referencing to
intrinsic avalanches in gray matter activities, and the derived white matter HRFs had reduced peak amplitudes and delayed
peak times as compared with those in gray matter. Distributions of the time delays and correlation profiles in white matter
depend on gray matter activities as well as white matter tract distributions, indicating that resting state BOLD signals in
white matter encode neural activities associated with those of gray matter. This is the first investigation of derivations and
characterizations of resting state HRFs in white matter and their relations to gray matter activities. Findings from this work
have important implications for analysis of BOLD signals in the brain.
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Introduction

Blood oxygenation level-dependent (BOLD) signals have been
widely used to measure neural activity and functional connec-
tivity in the human brain with functional magnetic resonance
imaging (fMRI) (Ogawa et al. 1990). A major paradigm of fMRI
is based on resting state acquisitions (Biswal et al. 1995), using
which several “resting state networks” (RSNs) in cortical gray

matter (GM) have been reliably detected (Yeo et al. 2011). One
such component is the default mode network (DMN) whose
central node resides in the posterior cingulate cortex (PCC), and
which is considered responsible in part for intrinsic awareness
during rest but is deactivated under attention demanding tasks
(Raichle 2015).

Although spontaneous neural activities in GM have been the
primary focus of resting state fMRI acquisitions, corresponding
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resting state BOLD fluctuations in the signals from white matter
(WM) have usually been ignored. However, considerable evidence
of reliable detections of BOLD signals in WM has accumulated,
particularly in response to explicit tasks or stimulations (see
ref Grajauskas et al., 2019 for review). In a recent tactile stim-
ulation study, Wu et al. (2017) found that fiber bundles in the
somatosensory circuit exhibited significantly greater temporal
correlations with the primary sensory cortex and greater signal
power during tactile stimulations than in a resting state. In a
visual stimulation study, Huang et al. (2018) demonstrated that
specific WM regions are robustly activated, which includes the
optic radiations (ORs) and other structures related to visual
activity. In the meantime, resting state BOLD signals in WM
have also been increasingly recognized. For example, temporal
correlations of low frequency resting state signals that persisted
over long distances within distinct WM structures were reported
and shown to be anisotropic by Ding et al. (2013). By clustering
BOLD signals acquired in a resting state, Peer et al. (2017) found
that symmetrical WM functional networks could be identified,
and were correlated specifically with functional networks in GM.
Marussich et al. (2017) used independent components analysis to
derive spatially independent patterns within WM that appeared
to reorganize during natural vision. More recently, differential
correlation patterns between WM tracts and GM parcels were
quantified in a resting state, and these were altered in response
to visual stimulations (Ding et al. 2018). Taken together, these
studies suggest that BOLD signals in WM in a resting state also
reflect neural activities associated with GM.

Given the growing evidence for the existence of BOLD signals
inWM, there remain unanswered questions regarding the nature
of the hemodynamic response function (HRF) inWM.Bymeans of
event-related paradigms, we have observed that the HRF in WM
may be characterized by a reduced peak amplitude and delayed
peak time relative to GM (Li et al. 2019). Similar observationswere
also made earlier by a few other groups using functional tasks or
CO2 challenges. For instance, Yarkoni et al. (2009) reported that
certain WM regions exhibited delayed and subdued hemody-
namic responses compared to GM in a reaction-time based fMRI
analysis, and Fraser et al. (2012) found a reduced peak amplitude
in WM responses to visual stimulations. Meanwhile, Courte-
manche et al. (2018) and Tae et al. (2014) both found delayed
functional activities in the corpus callosum. The time delay
appeared more pronounced during a hypercapnic challenge in
which, compared with GM, a substantially slower response was
observed in WM (Rostrup et al. 2000), a phenomenon that was
also seen in experiments of cerebrovascular reactivity to CO2

inhalation (Thomas et al. 2014).
Although task-based and event-related studies have yielded

valuable insights into the HRF profiles in specific WM tracts,
it is unclear in general how WM BOLD signal variations in a
resting condition are modulated in time, which tends to be of
more fundamental interest and is independent of the nature of
the task or stimulus. However, the lack of explicit event onset
times during a resting state presents a significant challenge to
the derivation of HRFs. Previously, there have been observations
of avalanches in brain activity (Beggs and Plenz 2003; Liu and
Duyn 2013), which are presumably intrinsic spontaneous events
that evoke transient hemodynamic responses in the brain. By
using activity avalanches in GM as references, and assuming
associations of BOLD signals in WM with neural activities in GM,
HRFs in WM under resting conditions may be derived.

This study was motivated to extract HRFs in WM on the basis
of activity avalanches and characterize their profiles in resting
state fMRI. We demonstrate that HRFs in WM can be derived

using neural activity avalanches in GM as synchronizing events,
and the derived HRFs have reduced peak amplitudes and delayed
peak times compared to the usual canonical waveform assumed
for GM.

GM avalancheswith smaller amplitudeswere associatedwith
reduced amplitudes in the derived WM HRFs, and the derived
amplitudes tended to approach zero when the reference time
points were arbitrarily chosen. Bymapping the HRF latencies and
signal correlations betweenWM and GM references, we find that
the distribution patterns of signal latencies as well as temporal
correlations show regional specificity to GM. Moreover, we used
diffusion tractography to reconstruct WM tracts connecting to
GM reference regions, and demonstrated that there was strong
correspondence between tract structure and signal lags.

Materials and Methods

Subjects

The present study was approved by the Vanderbilt University
Institutional Review Board. Thirty-two healthy and right-handed
individuals (16 M/16F; mean age, 33.03±11.1; range, 21–55) with
no history of neurological or psychiatric disorderswere recruited.
Written informed consents were obtained from all subjects.

Image Acquisitions

Imaging was performed on a 3T MRI scanner (Philips Healthcare,
Inc., Best, Netherlands) with a 32-channel head array coil at
Vanderbilt University Institute of Imaging Science. Functional
MRI of each subject included 1 run of 200 volumes acquired
using a T2∗-weighted single-shot gradient echo (GE), echo-planar
imaging (EPI) sequence with a repetition time (TR) of 2 s (total
acquisition time=400 s). Each functional volume consisted of
34 axial slices with the following parameters: spatial resolu-
tion=3×3×3.5 mm3; SENSE factor = 2; matrix size=80×80;
field of view (FOV) = 240×240 mm2; echo time=35 ms; slice
gap=0.5 mm. To provide anatomical references, high-resolution
T1-weighted images were also acquired using a multishot, 3D
magnetization-prepared rapid GE sequence at voxel size of
1× 1×1 mm3. During the image acquisitions, subjects lay in a
supine position with eyes closed in a resting state. Restricting
pads within the head coil were used to minimize potential
subjects’ head motion during the process of image acquisitions.

For reconstructions of WM tracts, diffusion weighted
images (DWIs) were acquired using an EPI sequence and
32 diffusion-encoding directions (acquisition parameters:
b = 1000 s/mm2, TR=4500 ms, TE=84 ms, matrix size= 112×112,
FOV=240×240mm2, voxel size= 2×2mm2, slice thickness=2.0 -
mm, slice gap=0).

FMRI Preprocessing

All images were preprocessed using the statistical parametric
mapping (SPM12) software package (www.fil.ion.ucl.ac.uk/spm/
software/spm12). First, the functional images for each partic-
ipant were slice-timing corrected and realigned to the mean
volume using a 6-parameter rigid body transformation, which
were subsequently corrected for head motion. Based on the
motion parameters from the SPM12, subjects with maximum
head translation >2 mm or rotation >2◦ within the 200 volumes
were excluded. Second, for each subject, the T1 structural image
was segmented to obtain the GM, WM, and cerebrospinal fluid
(CSF) masks, which were coregistered to the mean fMRI volume
from the same subject and then spatially normalized to the
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Montreal Neurological Institute (MNI) space. Finally, linear trends
were removed from the normalized fMRI time series to correct for
signal drifting, followed by temporal filtering using a low-pass
filter at f <0.1 Hz. To further reduce the effects of confounding
factors that might contribute to artificial correlations in fMRI
time series,we also removed several sources of spurious variance
by linear regressions, including 6 head motion parameters and
average signals from CSF according to a previous fMRI study
(Behzadi et al. 2007).

Extraction of GM and WM BOLD Signals

The analyses in this studywere restricted to GM andWM regions.
To begin with, a mean WM mask was first defined by averag-
ing individual WM segments from the study subjects and then
thresholded at a value of >0.8, so as tominimize potential partial
volume effects from adjacent GM voxels. A similar process was
carried out to define a mean GM mask based on individual GM
segments with a threshold value of 0.6. The thresholded mean
WM and GM masks were used as common masks for each of the
subjects studied. Next, GM was parcellated into 90 structures (45
in each hemisphere, cerebellum excluded) according to the Auto-
mated Anatomic Labeling (AAL) atlas (Tzourio-Mazoyer et al.
2002). These GM regions of interest (ROIs) were then constrained
within the mean GMmask. Third, BOLD signals in GM were aver-
aged within each of the ROIs to produce mean time series, which
were subsequently used to derive pairwise temporal correlations
among GM regions. To improve the signal-to-noise ratio (SNR) in
WM,BOLD signals were spatially smoothedwithin themeanWM
mask using a 3-mm full-width half-maximum isotropic Gaussian
kernel. Finally, all-time series in GM and WM were normalized
to zero mean and unit variance, which were then interpolated
from 200 into 400 time points using spline interpolations. The
normalization of all-time series in GM andWM to zeromean and
unit variance transforms GM and WM signals into comparable
intensity ranges to facilitate convolution-based lag time compu-
tations, correlation analysis, and subsequent group averaging.

BOLD time series in 3 representative GM ROIs, namely the
left PCC, left intraparietal sulcus (IPS), and right opercular part
of inferior frontal gyrus (IFGoperc), were used as references in
our analyses. The rationale for the selection of these ROIs is as
follows: The PCC is a key node of the DMN, which is activated
under resting conditions (Raichle et al. 2001) and whose time
coursesmay be representative of task-negative networks.The IPS
is a major component of the dorsal attention network negatively
correlated with the DMN (Vossel et al. 2014), and is generally
active during task conditions. A third GM ROI, the right IFGop-
erc, was also included because it was found to have minimum
temporal correlations with the left PCC, which thus could serve
as a “nuisance” GM region in a resting brain. Note that as the IPS
is not parcellated in the AAL atlas, it was manually defined in
this study as a 13-voxel cube centered at peak coordinates (MNI
coordinates: −28, −58, 46) of IPS activation reported previously
(Battista et al. 2018). Correlation coefficients (CCs) between the
left PCC and left IPS and right IFGoperc are given in the black
boxes in Supplementary Figure 1. Note that both the CCs were
very small, indicating that BOLD signals in the left IPS and right
IFGoperc were independent of those in the left PCC.

Detection of HRF in GM and WM

The BOLD HRF is a key feature in characterizing neural activities
in fMRI, the derivation of which helps elucidate the relationship
between GM and WM neural activities in this study. Figure 1

presents the workflow of the experimental procedures used in
thiswork. First, 6 local peakswith high amplitude (denoted by red
asterisks in Fig. 1A) were identified from the BOLD signal of each
representative GM ROI. A time window of 24 s centered at each
of the signal peaks was then used to extract spontaneous brain
activities, termed neuronal activity avalanches (Liu and Duyn
2013), within which the voxel-averaged fMRI time course was
obtained. Meanwhile, the HRF in each WM voxel was estimated
by averaging the time series in the same time window as for
the reference GM. Finally, an average HRF in each GM reference
andWM voxel was calculated by averaging the 6 individual HRFs
within each subject, and then by averaging across all the subjects.

In order to examine whether the derived WM HRFs vary with
the amplitude of activity avalanches in reference GM, 3 groups
of local peaks were defined at high, medium, and low levels
of amplitude (denoted by the red, cyan, and green asterisks,
respectively in Fig. 1A) in the BOLD time series in the PCC and
were used separately to derive WM HRFs similarly as above. The
quantitative standards of high, medium, and low levels are as
follow: First of all, all local signal peaks (except those within 10 s
of the 2 ends) were identified and sorted into a descending order
of the amplitude. To select peaks of high level, the first 6 peaks
were chosen as an initial candidate list, and their consecutive
time differences were recorded. Any peak with a time difference
of <5 s to the preceding one would be excluded and a new peak
in the sorted peaks would then be recruited to the end of the list.
This procedure was repeated until all 6 peaks had consecutive
time differences of ≥5 s. To select medium and low levels of
peaks, the first and last 6 peaks were chosen respectively from
the remaining sorted peaks and iterative procedures as above
were implemented. An example of high, medium, and low levels
of peaks from one subject is shown in Figure 1A. For further
comparisons, WM HRFs were also derived from HRFs in the left
PCC defined using 6 and 100 random time points in the BOLD
time series, respectively.

Furthermore, to validate the effectiveness of the proposed
method, we compared HRFs extracted from WM signals with
those obtained by shuffling the signal phases. Specifically, a
fast discrete Fourier transform was applied to an original WM
time series, and then an inverse Fourier transform was used to
reconstruct a new WM time series after random phase-shuffling
of the component frequencies while keeping their amplitudes
the same. The time axis of the reconstructed signal was aligned
to that of each avalanche extracted from the BOLD time series in
the left PCC, and the WM HRF of the perturbed time series was
similarly derived.

Calculation of WM Lag Time Relative to GM References

For each of the 3 representative GM ROIs, individual GM HRFs
corresponding to avalanches and corresponding derived WM
HRFs were first convolved together. Lag time was then estimated
from the location of the maximum value in the convolution
product. To enhance the stability and precision of lag time com-
putations, the average lag time was calculated across 6 refer-
ence avalanches and then smoothed with a kernel of 3×3×3
voxels for each subject as implemented in Mitra et al. (2015).
The smoothed lag times were subsequently averaged across all
subjects and mapped onto the mean WM mask.

In order to characterize the dependency ofWM lag time on the
distance of WM voxels to reference GM,WMmasks with 3 differ-
ent depths, namely superficial,medium, and deep,were defined.
Specifically, the WM depth mask was created by successively
dilating each GM reference 100 times using a square structuring

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa056#supplementary-data


4 Cerebral Cortex Communications, 2020, Vol. 1, No. 1

Figure 1. Schematic diagram of the proposed workflow. (A) An example of 3 groups of local signal maxima (6 for each group marked in red, cyan, and green asterisks,

respectively) corresponding to local spontaneous neural activities at 3 amplitudes (high, medium, and low) were identified in a GM region. HRFs triggered by the neural

activities are defined as 11 s before and 12 s after the local maxima. (B) Positions of the local maxima in the red group in (A). (C) Derivations of WM HRFs for individual

neural activities by aligning the time window of each activity extracted in the GM region. (D) Average of 6 HRFs in GM and WM. Orange, yellow, and purple color denotes

the HRF in representative voxels in superficial (voxel 1), medium (voxel 2), and deep (voxel 3) WM, respectively, and green color denotes the mean of the WM HRFs. (E)

Six lag times are computed by finding local maxima of convolution between GM HRFs and BOLD signals in WM. (F) Color-coded average lag time superimposed onto the

WM mask.

element with size of 3×3 voxels and then multiplying with
the mean WM mask. The intersection of WM mask and each
GM reference dilated at 1st–10th, 11th–20th and >20th times

were defined respectively as superficial, medium, and deep WM
relative to the GM reference (see Supplementary Fig. 2). The WM
stratified as such allowed a similar number of voxels in each of
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these layers. Finally, for each of the GM references, the resulting
WM mask at 3 different depths was masked onto the WM lag
time map to allow for computations of average WM lag time in
each of the 3 WM depths.

Correlation analysis between the derived WM HRFs and
reference GM HRFs

To explore the relationship of the HRFs between WM and GM,
pairwise Pearson’s correlations were sought between each HRF
of the 3 GM references and corresponding derived WM HRFs
for each subject. The maps of CCs were confined within the
meanWMmask and averaged across all subjects, and differences
between the correlation map with respect to each of the GM
references and the mean of the 3 maps were computed.

Statistical testing

Differences in HRF profiles between GM and WM as well as
among different depths of WM were statistically analyzed.
Specifically, for each reference GM region, differences in the
mean lag time among the superficial, medium, and deep WM
were first examined. Second, for each WM depth relative to
the left PCC, the peak amplitude of WM HRFs derived from
high, medium, and low amplitude of the reference GM HRF
was compared. Third, distribution patterns of lag time in
WM with respect to 3 different GM references were assessed.
Lastly, differences in distribution patterns of the coefficient
of correlation between derived WM HRFs and GM HRFs in 3
reference regions were explored. In all these analyses, paired
2 sample t-tests were used with significance level of P<0.01.

Probabilistic Fiber Tracking

DWIs were processed using the diffusion toolbox of Functional
Magnetic Resonance Imaging of the Brain (FMRIB) Software
Library, version 5 (Jenkinson et al. 2012). First, DWIs were
corrected for head motion and image distortions (stretches and
shears) due to eddy currents with affine transformation. Second,
estimation of diffusion parameters by sampling crossing fiber
models with a Bayesian framework was used to model diffusion
signals as ball (isotropic) and stick (anisotropic) components,
so as to generate a distribution of likely fiber orientations as
well as an estimate of the uncertainty on these orientations
within each voxel. Third, the 3 representative GM ROIs created
in the fMRI analysis section, namely the left PCC, left IPS,
and right IFGoperc, were used as seed regions to reconstruct
ROI-to-voxel fiber tracts in the whole-brain WM. In order to
coregister the GM ROIs from MNI space to the DWI space,
(forward and backward) transformation matrices were created
by first coregistering the B0 image to the T1 images in the native
space and then normalizing them to the MNI space using the
Linear Imager Registration Tool supplied in FMRIB library. The
GM ROIs were then backward transformed from the MNI space
to the native space of DWI to guide probabilistic tractography.
Fourth, fiber tracking was initiated from all voxels in each ROI to
generate 5000 streamline samples, with a step length of 0.5 mm,
a curvature threshold of 0.2, and a maximum of 2000 steps.
Connectivity distributions from the ROIwere generated, inwhich
each brain voxel had a value representing its connectivity to the
seed mask. Subsequently, connectivity distributions for each
subject were forward transformed to the MNI space and then
binarized with a preset threshold (number of voxels in the seed
mask×5000× 0.005). The final connectivitymapwas obtained by

summing up individual binarized maps, which was thresholded
at >75% of the subject account.

Results

Detections of Resting State HRFs in WM

HRFs derived for the left PCC, left IPS, and right IFGoperc are
depicted in Figure 2A–C, in which blue color denotes the HRF in
GM, and orange, yellow, and purple colors respectively denote
the HRF in superficial, medium, and deep WM relative to the
corresponding GM reference. The mean and standard deviation
of WM lag time at each depth was 2.81±0.32 s, 3.16±0.29 s, and
3.35±0.29 s for the left PCC reference, 3.13±0.25 s, 3.43±0.23 s,
and 3.43±0.27 s for left the IPS reference, and 3.30±0.41 s,
3.48±0.36 s, and 3.51±0.37 s for the right IFGoperc reference,
which are plotted in Figure 2D. It is quite apparent from
Figure 2(A–C) that all WM HRFs manifested a similar shape with
those of GMHRFs, but with a largely reduced peak amplitude and
delayed peak time. Statistical analysis further revealed that the
HRFs in WM varied with the relative distance to the GM regions
(Fig. 2D). Specifically, the mean lag time became greater as the
WM depth increased relative to the left PCC, with P<0.01 for all
3 pairs of comparisons. For both the left IPS and right IFGoperc,
the mean lag time in the superficial WMwas smaller than in the
medium and deep WM (P<0.01), but there were no significant
differences between the medium and deep WM. The trend of
more delayed peak time in deeper WM is consistent with the
report by Li et al. (2019), which supports the notion that WM
signals are associated with activities in GM, but the response
profiles depend on the relative distance to the GM cortex and
distributions of local vasculature (Nonaka et al. 2003; Akashi
et al. 2017).

The relationship of the derived WM HRFs and the reference
GM HRFs in the left PCC at 3 different levels of BOLD signal
amplitude (high, medium, and low) is shown in Figure 3(A–C
and G). It can be observed that as the amplitude of PCC HRF
decreased, the derived WM HRF became subdued and their
characteristic profiles tended to diminish. The mean and
standard deviation of the HRF amplitude in the left PCC at each
peak amplitude were 2.00±0.19, 1.02±0.25, and−0.12±0.23,
and of the derived WM HRFs were 0.30±0.17, 0.06±0.17,
and−0.05±0.20, respectively in superficial WM, 0.27±0.19,
0.05±0.16, and−0.06±0.20, respectively in medium WM, and
0.25±0.17, 0.04±0.17, and−0.09±0.21, respectively in deep
WM (see Fig. 3G). Statistical analysis further showed that the
reference GM HRF in the left PCC had significant differences
among the 3 peak amplitudes (P<0.01). The derived mean peak
amplitudes of WM HRFs at different depths all decreased as the
peak amplitude of the reference GM HRF decreased. Specifically,
in each WM depth, the peak amplitude of the WM HRF derived
from high amplitude of GM HRF was higher than that derived
from medium and low amplitude of GM HRF (P<0.01). The
decline trend did not reach the significance level of P<0.01 at
the superficial and medium WM depths when comparing the
peak amplitude of WM HRFs derived from medium with that
from low amplitude of reference GM HRFs. In particular, when
the reference HRF was randomly sampled from 6 or 100 time
points in the left PCC, virtually no HRFs could be derived from
the WM (Fig. 3D).

To explore whether the observed coupling of HRFs in GM and
WM was incurred by coincidences or methodological biases,
a WM BOLD time series was reconstructed with randomly
perturbed phases but intact magnitudes and used for HRF
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Figure 2. Average HRFs of GM regions and WM voxels and statistical comparisons. (A–C) HRFs of the left PCC, left IPS, and right IFGoperc and derived HRFs of WM at

different distances to the GM regions. HRFs of GM regions are denoted in blue color, HRFs of representative voxels in superficial, medium, and deep WM are denoted in

orange, yellow, and purple color, respectively. The error bars are the standard errors of the mean. (D) Mean and standard deviation of lag time of superficial, medium,

and deep WM relative to the left PCC, left IPS, and right IFGoperc, respectively, and pairwise comparisons using 2 sample t-test.

estimations by referencing the left PCC. The original and
reconstructed BOLD time series are shown in Figure 3E (denoted
as blue and red curves, respectively) and the derived WM HRF is
given in Figure 3F. As expected, the derived WM HRF had near
zero amplitude and no similarity with the reference GM HRF.
This phenomenon, along with the amplitude dependency of WM
responses shown above, essentially ruled out the possibility that
the coupling of HRFs in GMandWMwas coincidental or artificial.

Distributions of WM Lag Time Relative to GM References

Maps of WM lag times relative to the left PCC, left IPS, and right
IFGoperc are shown in Figure 4(A–C), with warmer colors denot-
ing longer lag times. The lag time relative to the left PCC in (A),
appeared to be generally shorter than that relative to the other 2
GM references in (B,C), with longest lag time relative to the right
IFGoperc (C). The dependency of WM lag times on the associated
GM regions suggests that the signal changes evoked within WM
are produced by a mixture of neural activities associated with
different GM regions.

Distributions of the WM lag time are summarized in his-
tograms for each of the 3 GM references in the right column
of Figure 4. All the histograms were nearly normally distributed,

with mean values around 3.22, 3.40, and 3.43 s relative to the
left PCC, left IPS and right IFGoperc, respectively (denoted as red
lines in Fig. 4(D–F). Spatially, WM voxels with relatively short lag
time tended to form clusters that resembled some of the known
WM tracts. Specifically, in reference to the left PCC (Fig. 4A),
identifiableWM tracts with short lag time included the cingulum
(cingulate gyrus, CGG), splenium of corpus callosum (SCC), supe-
rior and posterior corona radiata (SCR, PCR), posterior thalamic
radiation (PTR, including OR), all of which are close to the PCC.
In reference to the IPS (Fig. 4B), WM tracts with short lag time
included mainly the superior longitudinal fasciculus (SLF), and
in reference to the IFGoprec (Fig. 4C), identifiable WM tracts with
short lag time included the posterior limb of internal capsule
(PLIC) and SLF. Differences in the WM lag time among the 3 GM
references are shown in Supplementary Figure 3. It can be seen
that, when compared to the WM lag times with both the left IPS
(A) and right IFGoperc (B) as references, a large portion ofWMhad
a significantly shorter lag time with the left PCC as the reference
(P<0.01). This portion of WM was mostly distributed near the
posterior cortex of the brain (see the regions with negative T-
statistics in Supplementary Fig. 3A, B). This indicates that the
WM lag time depended both on GM reference and WM depth
relative it, which may be related to hemodynamic variations in

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa056#supplementary-data
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Figure 3. Derived average HRFs of WM voxels from different selections of BOLD time series in the left PCC. (A–C) Derived HRFs using neural activities at high, medium,

and low amplitude, respectively. (D) Derived HRFs using neural activities at 6 and 100 random time points. (E) An example of BOLD time series in WM before (blue) and

after (red) signal perturbation. The perturbation was implemented by randomly permuting the phases of the original time series in the Fourier spectrum but keeping the

magnitudes intact. (F) Derived HRFs for 3 WM voxels at the same locations as in Figure 3(A) from BOLD time series perturbed as in (E) with the left PCC as the reference.

(G) Paired t-tests of the peak amplitudes in the derived WM HRFs using neural activities at high, medium, and low amplitude of PCC. The error bars are the standard

deviations.
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Figure 4. Distributions of WM lag time relative to the left PCC, left IPS, and right IFGoperc. (A–C) Maps of WM lag time superimposed onto the WM mask for the left PCC,

left IPS, and right IFGoperc reference regions, respectively. Identifiable WM tracts with low lag time are annotated. (D–F) Histograms of WM lag time relative to the left

PCC, left IPS, and right IFGoperc, respectively. The red line denotes the mean value of each histogram.

WM and the proximity of relevant vasculature to the WM site.
When compared to the WM lag time with the right IFGoperc as
the reference (C), a small portion ofWM had significantly shorter
lag time with the left IPS as the reference (P<0.01). Detailed
lag time distributions from individual subjects are provided in

Supplementary Figure 4. It can be observed that, likely due to
much weaker BOLD signals in WM, there is a fair amount of
variabilities among the individual subjects. Our further analysis
indicated that stable lag time distributions could be reached by
averaging data from 12 subjects, which had high similarity with

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa056#supplementary-data
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that computed from all the subjects studied, with a CC>0.7 for
all the 3 GM references.

Resting State Correlations between WM and GM References

Figure 5 shows maps of Pearson’s CCs in HRFs between each
WM voxel and the 3 reference GM regions. As seen in the left
column, different GM references corresponded to different pat-
terns of WM correlations. The left PCC corresponded to most
widespread correlations, and the IFGoperc corresponded to the
least correlations. Close inspections of the WM voxels with high
CCs with the reference GM regions (please see the red regions in
the left column of Fig. 5) reveal correlation distributions tended
to be oriented toward the locations of the reference regions, a
phenomenon that was more pronounced for the left PCC and
right IFGoperc. WM CCs with the 3 reference GM regions are
compared in Supplementary Figure 5. It can be seen that a large
portion of WM had greater correlations with the left PCC than
with the left IPS (A) and right IFGoperc (B), with the most pro-
nounced differences spatially close to the left PCC. It can also be
appreciated that WM had relatively greater correlations with the
left IPS thanwith the right IFGoperc inmanyWM regions (C). The
correlation distributions were consistent with the WM lag time
distributions in that the closer the WM region was to the GM
reference, the smaller the lag time in WM, and the greater the
correlation (Supplementary Fig. 5). This relation could be better
revealed by further liner regression analysis between the lag
times andCCs ofWMrelative to the 3GM references (see the right
column of Fig. 5), which exhibits strong negative correlations
between them,with a regression CC of −0.72,−0.70 and −0.85 for
the left PCC, left IPS, and right IFGoperc, respectively (P<0.01).

Probabilistic Fiber Tracking

Maps of connectivity to the left PCC are shown in Supplementary
Figure 6. It can be seen that WM had widespread connections
to the left PCC with high probability. In contrast, there were no
structural connections to the left IPS and right IFGoperc at the
same threshold level as for the left PCC (data not shown). The
WM tracts connecting to the left PCC were primarily located in
the CGG, SCC, PCR, and PTR, structures that are close to the left
PCC. These tracts grossly overlapped with the structures with
small lag time relative to the left PCC as shown in Figure 4(A)
and Supplementary Figure 3(A,B). The consistency between the
distribution of structural connectivity and the map of lag times
supports that latencies of BOLD signals in WM are related to
the structural connectivity responsible for transferring neural
activity between cortical regions.

Discussion

General Findings

We have explored in this study the HRFs of BOLD effects in
WM measured during a resting state. It was demonstrated that
HRFs in WM can be derived by reference to avalanches of neural
activity in GM, and these were found to exhibit reduced peak
amplitudes and delayed peak times compared with those in GM.
Distributions of lag times in WM depend on the functionality
of GM references, and the amplitudes of derived WM HRFs are
coupled with those of the GM HRF referenced. Specifically, the
amplitudes of derived WM HRFs are proportional to those of the
GM HRFs referenced, and diminish when HRFs in the reference

GM are randomly chosen. In addition, analyses of correlations
between WM and 3 representative GM regions reveal that the
correlation patterns correspond to the functionality of the GM
regions. Finally, distributions of WM tracts from probabilistic
fiber tracking for each reference GM showed strong consistencies
with the maps of WM lag time. These results converge to suggest
that the WM BOLD signals are associated with the GM BOLD
signals that encode changes in neural activities.

Characteristics of WM HRFs

This study demonstrates that WM HRFs are derivable from GM
HRFs by referencing activity avalanches in GM, and for the first
time derives the temporal filtering that modulates BOLD sig-
nals in a resting state without requiring explicit onset times of
neural events. Profiles of the derived WM HRFs include reduced
peak amplitudes and delayed peak times as compared with GM
HRFs, in agreement with our recent findings using event-related
(Stroop color-word interference) task fMRI (Li et al. 2019). WM
has much less dense vasculature than GM (Nonaka et al. 2003),
with blood flow approximately one-fourth of the latter (Raichle
et al. 2001), and thus the amplitudes of hemodynamic responses
in WM are expected to be reduced. The delayed time to peak of
WM HRFs has been well characterized in several reports from
both resting state and task-related fMRI studies (Tae et al. 2014;
Thomas et al. 2014; Erdoğan et al. 2016; Tong et al. 2017; Ding
et al. 2018; Courtemanche et al. 2018). Additionally, the derived
WM HRFs appeared to also have prolonged initial dips, a phe-
nomenon that has been reported in several previous task-based
studies (Menon et al. 1995; Yacoub et al. 2001; Hu and Yacoub
2012). HRFs in GM have been shown in some measurements to
consist of a period of early initial dip, presumably originating
froma rise in deoxyhemoglobin due to an increase inmetabolism
before subsequent blood flow increases (Hu and Yacoub 2012). If
increased activity in GM causes an increase in energy demand in
WM, then the prolonged initial dip in WM may be attributed to
a longer arrival time of cerebral blood flow from feeding arteries
in the pial matter than GM (Nonaka et al. 2003; Brown and Thore
2011; Giezendanner et al. 2016). In spite of the consistency with
previous studies and vascular physiology, the initial dips we
observed may contain undershoot, partly or even fully, from the
preceding event, which we are unable to resolve in this work.

Relations of Lag Time and BOLD Signal Correlations in WM

In this study, distributions of lag time in WM were found to
be inversely related to maps of BOLD signal correlations with
reference GM, i.e., WM regions with smaller latencies tend to
have higher correlations with the GM. A shorter lag time may
correspond to a greater degree of signal synchrony between WM
and GM. It should be noted that the WM regions with small lag
times are mostly located near the reference GM. Although WM
regions more distant from the reference GM tend to have larger
time delays and thus reduced signal correlations, BOLD signals
in the distant WM regions are also more likely to be mixed with
signals from other GM regions, which may further weaken the
correlations.

Structural Basis of WM Clusters

It was found that the WM voxels with small latencies and
high correlations tend to cluster into distinct WM tracts such
as CGG, SCC, SCR, PCR, and PTR, most of which have known
structural connections with the PCC (Mamah et al. 2010). These

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa056#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa056#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa056#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa056#supplementary-data
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Figure 5. Maps of correlation coefficients betweenWM and GM and their relation with lag times. (A–C) Maps of correlation coefficient between theWM and the left PCC,

left IPS, and right IFGoperc, respectively. (D–F) Scatter plots of WM lag time versus correlation coefficient relative to the left PCC, left IPS, and right IFGoperc, respectively.

Each plus sign (+) represents 1 WM voxel.

structures were largely confirmed by our fiber tracking analyses.
Anatomically, the PCC is connectedwith ventromedial prefrontal
cortex and retrosplenial cortex, which are also parts of DMN
(Kaboodvand et al. 2018), through the CGG (Heilbronner and
Haber 2014) and dorsal SCC (Knyazeva 2013), respectively. The
PCC receives a significant portion of the afferent axons from the
superficial nucleus of the thalamus through the thalamocortical
fibers as well (Leech and Sharp 2014), the latter of which are

involved in the control of cortical arousal and consciousness
(Xie et al. 2011). Although direct connections between the PCC
and SCR or PCR have not been well documented, it has been
reported that mean diffusivities are simultaneously increased in
the PCC and SCR/PCR in patients withmild cognitive impairment
(Thillainadesan et al. 2012) and Alzheimer’s disease (Li et al.
2016). It is worth noting that both the left IPS and right IFGoperc
showed small latencies in SLF across different axial slices. SLF
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is an association fiber tract that structurally connects the IFG
and inferior parietal lobule (Briggs et al. 2019). IFGoperc also
showed small latency in the PLIC which contains 2-way tracts for
transmission of information to and from all areas of the cerebral
cortex, especially the primary motor and premotor cortex as
well as sensory area (Lemaire et al. 2011). This is consistent with
a report that the right IFGoperc cooperates with the premotor
cortex and plays a role in inhibition and generation of a motor
response (Hampshire et al. 2010).

Methodological Considerations

Estimations of HRFs from resting state fMRI signals have been
previously pursued by Tagliazucchi et al. (2012),whichwas subse-
quently refined byWu et al. (2013),who innovated amore sophis-
ticated blind deconvolution approach for this purpose. In both of
these works, fMRI signal peaks with relatively large amplitudes
are considered to reflect intrinsic spontaneous “events”, often
referred to as brain activity avalanches (Beggs and Plenz 2003;
Liu and Duyn 2013), which convolve with the tissue hemody-
namic responses to produce the measured BOLD signals. It has
been demonstrated that the spatiotemporal dynamics of fMRI
time series can be efficiently captured by a small set of such
intrinsic events (Tagliazucchi et al. 2012; Liu and Duyn 2013), the
underpinning for which is long range correlations of avalanche
activities across functionally connected brain regions (Cifre et al.
2017). Although these pioneering studies have established the
validity and possibility of extracting GM HRFs from resting state
fMRI signals on the basis of brain activity avalanches, exten-
sions to derivations of WM HRFs need further investigations.
As mentioned previously, we have recently found in an event-
related study that BOLD signals in WM under functional tasks
exhibit response profiles quite distinct from those in GM, which
tends to suggest that WM HRFs under resting conditions might
also differ. Therefore, we began our explorations of resting state
HRFs in WM by employing more basic methods as proposed
in Tagliazucchi et al. (2012), such that potential confounds that
advanced methods may entail could be avoided. Furthermore,
we use detected avalanches in GM rather than in WM as ref-
erences. This is based on our assumption that WM activities
are associated with reference GM and consideration that WM
BOLD signals are much weaker than GM (Huang et al. 2018), thus
providing an unreliable basis for establishing HRF references. As
a side note, the relation of BOLD signals in GM andWM has been
recently studied by Tarun et al. (2020) with an elegant graph-
based mathematical framework. The goal of this work, however,
is to interpolate BOLD signals in WM rather than detecting HRFs
from measured WM signals, as is the goal in our work.

Alternative Interpretations

With respect to interpretations of fluctuations in resting state
WM fMRI signals, a study by Özbay et al. (2018) reported that
brain fMRI signals are in part mediated by extrinsic sympa-
thetic activities, which in principle can induce instantaneous
signal fluctuations in WM. However, the observed sympathetic
activities in 8 carefully chosen participants they studied had
variable frequencies with typical range of 0–0.03 Hz, and thus
contribute mostly to low frequency components of spontaneous
brain activities.Moreover, the impact of sympathetic activities on
fMRI signals was found to be pronounced only when participants
were in moderate sleep. Therefore, although sympathetic activ-
ities may contribute to some of the variations in fMRI signals,

the effects should not dominate in a waking resting state study,
particularly in light of our observations that the distribution of
signal latencies and correlation profiles in WM are relative to
the GM reference chosen (which rules out other system level
effects as well). The signal latencies observed in WM, on the
other hand, might well be interpreted as draining vein effects
from cortical GM. However, as pointed out in our earlier work
(Huang et al. 2018; Li et al. 2019), there are 2 distinct blood
draining subsystems in the brain that serve WM and cortical
GM separately. Specifically, the first subsystem is a superficial
system that drains the cerebral cortex and subcortical WM (i.e.
the outer centimeter of superficial WM), whose venous drainage
collects deoxygenated blood into the pial veins located at the
surface of the brain. The second subsystem is a deep system that
drains deep WM tracts via the subependymal veins, which are
close to the lateral ventricles (SanMillán Ruíz et al. 2009).As such,
there are no vascular interactions between the 2 spatial domains,
and under normal physiology, the blood flow out of activated GM
and superficial WM is unable to reach deep WM to modulate
the signals therein (Sarwar and McCormick 1978). Finally, we
should note that the underlying mechanism for our derivations
of WM HRFs is “matched filtering”. One may speculate that the
derived HRFs might be simply from random noises, as could
occur due to the inherent property of this type of operations. Our
experiments, however, demonstrate that distribution patterns of
the derived HRFs depended on the relative location of WM to
GM. Moreover, when BOLD signals in WM were randomly phase-
shuffled, virtually no HRFs could be derived (see Fig. 3E,F), which
basically excluded the possibility that the WM HRFs we derived
were random noise artifacts.

Limitations

It should be pointed out that our derivations of WM HRFs by
nature are data driven. Certainly the data driven analysis is
unable to determine the timing of avalanche activities precisely.
Ideally, using measurements from independent techniques such
as electroencephalograms or local field potentials could provide
more precise localizations of spontaneous neural events. How-
ever, such approaches are still far from optimal and thus are
not widely applicable yet (Wu et al. 2013). In addition, there is a
common concern over studies of WM BOLD signals that whether
the detected signals are due to residual partial volume effects
from adjacent GM. In the present study, precautions were taken
to minimize the potential effects of partial volume averaging
from GM signals. First, the WM mask, which was obtained by
segmenting the T1 weighted images of each individual subject
to confine the spatial domain of WM signals, was given a tight
threshold of >80%. This could remove the subcortical transition
zone between GM and superficial WM. Second, the WM HRFs
were derived on the basis of voxel-wise analyses, which further
reduced the possibility of signal contaminations fromGMnearby.
Meanwhile, fMRI data may contain confounding effects from
cardiopulmonary activities, subjects’ head movements, global
sympathetic tones, and other artifacts (Power et al. 2017) that
are particularly pronounced in WM. To ameliorate this problem,
we did not extract the WM HRFs by directly finding local signal
maxima from the WM time series as we did for the GM HRFs
since neural activities at local signal maxima might originate
from artifacts. GM BOLD signals, on the other hand, typically
have much higher SNR ratio and thus can be used as a more
reliable basis for identifying intrinsic neural activities, which
were extracted for references in this study. To further suppress
the impact of spurious signal peaks in WM, our WM HRFs were
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derived by averaging the estimates made with 6 GM HRFs at
different local maxima of the time series. Lastly but not least
importantly, the temporal resolution of 2 s used in this study is
somehow limited. We recognize this limitation and thus employ
spline interpolations to increase the nominal resolution of the
signals (Mitra et al. 2015). Ultimately, the accuracy of lag time
calculations will benefit from using higher temporal resolutions
such as “multiband” or “simultaneous multi-slice” (SMS) acqui-
sitions protocols. However, the benefit of improved temporal
resolutions and the cost of degraded image quality, which often
comes with rapid imaging, should be traded-off optimally before
these protocols become widely adopted (Demetriou et al. 2018).
In the near future,wewill systemically evaluate the performance
of the SMS technology, and employ an optimized protocol in our
functional studies.

Conclusion

This study investigates HRFs of BOLD effects in WM from resting
state fMRI. It demonstrates that resting state HRFs in WM can be
derived by referencing to activity avalanches in GM. The derived
resting state WM HRFs tend to have lower peak amplitudes and
delayed peak times compared with those in GM. Distributions of
lag times and temporal correlations in WM depend on the GM
reference chosen. These findings suggest that BOLD signals in
WM may encode neural activities associated with those in GM.

Supplementary Material

Supplementary material can be found at Cerebral Cortex Commu-

nications online.
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BOLD based functional MRI at 4 Tesla includes a capillary bed
contribution: echo-planar imaging correlates with previous
optical imaging using intrinsic signals. Magnetic Resonance in

Medicine 33:453–459.
Mitra A, Snyder AZ, Blazey T, Raichle ME. 2015. Lag threads
organize the brain’s intrinsic activity. Proceedings of the National
Academy of Sciences 112:E2235–E2244.

NonakaH,AkimaM,Hatori T,NagayamaT,Zhang Z, Ihara F. 2003.
Microvasculature of the human cerebral white matter: arteries
of the deep white matter. Neuropathology 23:111–118.

Ogawa S, Lee T-M, Kay AR, Tank DW. 1990. Brain magnetic reso-
nance imaging with contrast dependent on blood oxygenation.
Proceedings of the National Academy of Sciences 87:9868–9872.

Özbay PS, Chang C, Picchioni D, Mandelkow H, Moehlman TM,
Chappel-Farley MG, van Gelderen P, de Zwart JA, Duyn JH. 2018.
Contribution of systemic vascular effects to fMRI activity in
white matter. NeuroImage 176:541–549.

Peer M, Nitzan M, Bick AS, Levin N, Arzy S. 2017. Evidence for
functional networks within the human brain’s white matter.
The Journal of Neuroscience 37:6394–6407.

Power JD, Plitt M, Laumann TO,Martin A. 2017. Sources and impli-
cations of whole-brain fMRI signals in humans. NeuroImage

146:609–625.
Raichle ME. 2015. The brain’s default mode network. Annual

Review of Neuroscience 38:433–447.
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA,
ShulmanGL. 2001.A defaultmode of brain function.Proceedings
of the National Academy of Sciences 98:676–682.

Rostrup E, Law I, Blinkenberg M, Larsson H, Born AP, Holm S,
Paulson O. 2000. Regional differences in the CBF and BOLD
responses to hypercapnia: a combined PET and fMRI study.
NeuroImage 11:87–97.

San Millán Ruíz D, Yilmaz H, Gailloud P. 2009. Cerebral develop-
mental venous anomalies: current concepts. Annals of Neurol-

ogy: Official Journal of the American Neurological Association and the

Child Neurology Society. 66:271–283.

Sarwar M, McCormick WF. 1978. Intracerebral venous angioma:
case report and review. Archives of Neurology 35:323–325.

Tae WS, Yakunina N, Kim TS, Kim SS, Nam E-C. 2014. Activation
of auditory white matter tracts as revealed by functional mag-
netic resonance imaging. Neuroradiology 56:597–605.

Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. 2012. Crit-
icality in large-scale brain fMRI dynamics unveiled by a novel
point process analysis. Frontiers in Physiology 3:15.

Tarun A, Behjat H, Bolton T, Abramian D, Van De Ville D. 2020.
Structural mediation of human brain activity revealed by
white-matter interpolation of fMRI. NeuroImage 213:116718.

Thillainadesan S, Wen W, Zhuang L, Crawford J, Kochan N, Rep-
permund S, Slavin M, Trollor J, Brodaty H, Sachdev P. 2012.
Changes in mild cognitive impairment and its subtypes as
seen on diffusion tensor imaging. International Psychogeriatrics
24:1483–1493.

Thomas BP, Liu P, Park DC, Van Osch MJ, Lu H. 2014. Cerebrovas-
cular reactivity in the brain whitematter: magnitude, temporal
characteristics, and age effects. Journal of Cerebral Blood Flow and

Metabolism 34:242–247.
Tong Y, Lindsey KP, Hocke LM, Vitaliano G, Mintzopoulos D, Bd
F. 2017. Perfusion information extracted from resting state
functionalmagnetic resonance imaging. Journal of Cerebral Blood
Flow and Metabolism 37:564–576.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F,
Etard O, Delcroix N, Mazoyer B, Joliot M. 2002. Automated
anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain.
NeuroImage 15:273–289.

Vossel S, Geng JJ, Fink GR. 2014. Dorsal and ventral attention
systems: distinct neural circuits but collaborative roles. The
Neuroscientist. 20:150–159.

Wu G-R, Liao W, Stramaglia S, Ding J-R, Chen H, Marinazzo D.
2013. A blind deconvolution approach to recover effective con-
nectivity brain networks from resting state fMRI data. Medical

Image Analysis 17:365–374.
Wu X, Yang Z, Bailey SK, Zhou J, Cutting LE, Gore JC, Ding Z.
2017. Functional connectivity and activity of white matter in
somatosensory pathways under tactile stimulations. NeuroIm-

age 152:371–380.
Xie G, Deschamps A, Backman S, Fiset P, Chartrand D, Dagher
A, Plourde G. 2011. Critical involvement of the thalamus and
precuneus during restoration of consciousnesswith physostig-
mine in humans during propofol anaesthesia: a positron emis-
sion tomography study. British Journal of Anaesthesia 106:548–
557.

Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G,
Ugurbil K, Hu X. 2001. Investigation of the initial dip in fMRI at
7 Tesla. NMR in biomedicine: an international journal devoted
to the development and application of magnetic resonance. In
Vivo 14:408–412.

Yarkoni T, Barch DM, Gray JR, Conturo TE, Braver TS. 2009. BOLD
correlates of trial-by-trial reaction time variability in gray and
white matter: a multi-study fMRI analysis. PLoS One 4:e4257.

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D,
Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR.
2011. The organization of the human cerebral cortex estimated
by intrinsic functional connectivity. Journal of Neurophysiology
106:1125.


	Hemodynamic Response Function in Brain White Matter in a Resting State
	Introduction 
	Materials and Methods
	Subjects
	Image Acquisitions
	FMRI Preprocessing
	Extraction of GM and WM BOLD Signals
	Detection of HRF in GM and WM
	Calculation of WM Lag Time Relative to GM References
	Correlation analysis between the derived WM HRFs and reference GM HRFs
	Statistical testing
	Probabilistic Fiber Tracking

	Results
	Detections of Resting State HRFs in WM
	Distributions of WM Lag Time Relative to GM References
	Resting State Correlations between WM and GM References
	Probabilistic Fiber Tracking

	Discussion
	General Findings
	Characteristics of WM HRFs
	Relations of Lag Time and BOLD Signal Correlations in WM
	Structural Basis of WM Clusters
	Methodological Considerations
	Alternative Interpretations
	Limitations

	Conclusion
	Supplementary Material
	Notes
	Funding


