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Abstract
Introduction: Biomarkers of Alzheimer’s disease (AD) that can easily be measured in routine 
health checkups are desirable. Urine is a source of biomarkers that can be collected easily and 
noninvasively. We previously reported on the comprehensive profile of the urinary proteome 
of AD patients and identified proteins estimated to be significantly increased or decreased in 
AD patients by a label-free quantification method. The present study aimed to validate urinary 
levels of proteins that significantly differed between AD and control samples from our pro-
teomics study (i.e., apolipoprotein C3 [ApoC3], insulin-like growth factor-binding protein 3 
[Igfbp3], and apolipoprotein D [ApoD]). Methods: Enzyme-linked immunosorbent assays (ELI-
SAs) were performed using urine samples from the same patient and control groups analyzed 
in the previous proteomics study (18 AD and 18 controls, set 1) and urine samples from an 
independent group of AD patients and controls (13 AD, 5 mild cognitive impairment [MCI], 
and 32 controls) from the National Center for Geriatrics and Gerontology Biobank (set 2). Re-
sults: In set 1, the crude urinary levels of ApoD, Igfbp3, and creatinine-adjusted ApoD were 
significantly higher in the AD group relative to the control group (p = 0.003, p = 0.002, and  
p = 0.019, respectively), consistent with our previous proteomics results. In set 2, however, the 
crude urinary levels of Igfbp3 were significantly lower in the AD+MCI group than in the con-
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trol group (p = 0.028), and the levels of ApoD and ApoC3 did not differ significantly compared 
to the control group. Combined analysis of all samples revealed creatinine-adjusted ApoC3 
levels to be significantly higher in the AD+MCI group (p = 0.015) and the AD-only group (p = 
0.011) relative to the control group. Conclusion: ApoC3 may be a potential biomarker for AD, 
as validated by ELISA. Further analysis of ApoC3 as a urinary biomarker for AD is warranted.

© 2020 The Author(s)
Published by S. Karger AG, Basel

Introduction

Alzheimer’s disease (AD) accounts for 60–70% of dementia cases and its control is 
important to decrease the prevalence of dementia [1, 2]. Since no cure for AD is currently 
available, it is important to detect it early and to intervene, for example, with lifestyle modi-
fications [3]. At present, combinations of cerebrospinal fluid biomarkers such as amyloid-β42, 
total tau, and phosphorylated tau, and neurological imaging modalities such as structural 
magnetic resonance imaging and positron emission tomography are used to diagnose AD [4]. 
However, these tests are invasive and expensive, and so are unlikely to be applicable to the 
general population. Thus, there is an urgent need for AD biomarkers that can be screened 
easily and noninvasively.

Urine can be collected in a relatively large amount and frequently in a noninvasive 
manner. It contains a variety of biomolecules, and its composition changes depending on 
biological and pathological conditions. This makes urine ideal for biomarker discovery and 
screening tests [5]. However, studies on urinary AD biomarkers are limited [6], with only a 
few reports on protein biomarkers [7, 8].

We previously conducted a comprehensive study of the urinary proteome of 18 AD 
patients and 18 cognitively normal controls by label-free liquid chromatography-tandem 
mass spectrometry [7]. Gene enrichment and molecular network analyses revealed the 
urinary proteome of AD patients to be enriched with proteins related to lysosomes, the 
complement pathway, and gluconeogenesis, as well as proteins involved in the canonical 
pathways of lipoprotein metabolism, HSP90 signaling, MMP signaling, and redox regulation 
by thioredoxin [7]. In that study, several proteins were identified as being increased or 
decreased in AD patients relative to controls.

In the present study, the urine levels of three candidate proteins identified in our prior 
urinary proteome analysis as differing in levels between AD and control samples (i.e., apoli-
poprotein C3 [ApoC3], insulin-like growth factor-binding protein 3 [Igfbp3], and apolipo-
protein D [ApoD]) were measured by enzyme-linked immunosorbent assay (ELISA) and 
compared between AD and control groups.

Materials and Methods

Participants
Participants were divided into two sets (sets 1 and 2). Set 1 included 18 AD patients 

and 18 cognitively normal elderly people (controls) selected in an age- and sex-matched 
manner [7]. Briefly, AD patients visiting Niigata University Hospital who were diagnosed 
with the disease based on the criteria of the National Institute of Neurological and Commu-
nicative Disorders and Stroke Alzheimer’s Disease and Related Disorders Association and 
who were aged between 60 and 80 years were recruited. Controls were selected in an age- 
and sex-matched manner from a subcohort (Sekikawa cohort) of the Murakami cohort, a 
population-based cohort study in areas of the northern Niigata prefecture [9]. Cognitive 
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performance was assessed by the Japanese version of the Mini-Mental State Examination 
(MMSE), and scores > 27 were considered cognitively normal [10]. Detailed characteristics 
of set 1 have been described previously [7]. Briefly, the mean ages of the AD and control 
groups were 72.9 ± 5.6 and 72.8 ± 5.2 years, respectively, and there were 8 males and 10 
females in each group. The mean MMSE scores were 21.6 ± 4.5 and 28.8 ± 0.7, respectively 
(p < 0.001, t test).

Urine samples for set 2 were obtained from the National Center for Geriatrics and Geron-
tology (NCGG) Biobank (14 AD, 5 mild cognitive impairment [MCI], and 36 controls without 
neuropsychiatric disorders). Diseases were classified based on the International Statistical 
Classification of Diseases and Related Health Problems 10th revision. MMSE scores were also 
obtained from the NCGG Biobank for AD and MCI participants. We excluded from the analysis 
1 AD patient and 4 controls who were positive for proteinuria (+ and ++) by test strips. The 
characteristics of set 2 participants are provided in Table 1.

Urine Sample Collection and Laboratory Tests
The procedure for collection and storage of set 1 urine samples has been described previ-

ously [7]. For set 2, spot urine was collected and centrifuged at 3,500 rpm for 5 min (Kubota 
4000, Kubota Corp., Japan), aliquoted, stored at –80  ° C, and transported in dried ice. Samples 
were thawed at 37  ° C for 10 min and checked using urine test strips (Pretest 5bII, Wako, 
Japan). Urinary creatinine levels were measured by latex immunological nephelometry using 
a SPOTCHEM D-01 analyzer (SD-3810, Arkray Global Business, Inc., Japan). Urine samples 
were aliquoted in small volumes and stored at –20  ° C until use.

Proteomics
In the present study, we selected candidate proteins based on the analysis data of our 

previous proteomics study [7] for further confirmation by ELISA. Detailed methods for mass 
spectrometry, label-free quantification, and statistical analysis were reported previously [7]. 
Briefly, set 1 urine samples were analyzed by label-free liquid chromatography-tandem mass 
spectrometry. The normalized spectral index (SIN), a label-free quantification method [11], 
was used to compare protein abundance between different samples. While our previous 
proteomics analysis [7] focused only on proteins that showed a > 2-fold significant increase 
or decrease in AD patients relative to controls, the present study analyzed all proteins from 
the previous dataset that were significantly increased or decreased in AD patients relative to 
controls. The SIN table used in the analysis is provided in online supplementary Table S1 (for 
all online suppl. material, see www.karger.com/doi/10.1159/000509561).

Table 1. Characteristics of the set 2 participants

AD (n = 13) MCI (n = 5) Controls (n = 32) p value

Age, years 79.9±6.6 81.8±3.9 71.9±8.4 0.002a

Male, n (%) 4 (30.8%) 1 (20%) 16 (50%) 0.245c

MMSE, points 17.1±7.9 24.6±1.8 not available 0.003b

Results of urine test strip
Urine protein level, n – (12), ± (1) – (3), ± (2) – (19), ± (13) 0.009c

Urine blood level, n – (10), + (1), 2+ (2) – (5) – (31), + (1) 0.085c

Urine glucose level, n – (13) – (13), 4+ (1) – (16), ± (4), 2+ (1), 3+ (2), 4+ (1) 0.005c

Type 2 diabetes, n (%) 1 (7.7%) 2 (40%) 25 (78%) <0.0001c

Urinary creatinine, mg/dL 74.3±35.2 74.2±34.4 101.8±55.7 0.181a

Data are presented as mean ± standard deviation for continuous variables. AD, Alzheimer’s disease; MCI, mild cognitive impairment; 
MMSE, Mini-Mental State Examination. a Analysis of variance. b Fisher’s exact test. c Unpaired t test with Welch’s correction.
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Enzyme-Linked Immunosorbent Assay
Commercial ELISA kits were used to measure urinary levels of ApoC3 (ELH-ApoC3, 

RayBiotech, Inc., USA), ApoD (3714-1HP, Mabtech AB, Sweden), and Igfbp3 (KIT10430, Sino 
Biological Inc., Beijing, China). Samples were tested in duplicate. A microplate reader 
(iMARKTM, Bio-Rad Laboratories Inc., USA) was used to measure absorbance at 450 nm. The 
Microplate Manager® 6 Software was used for data analysis. Each ELISA result was normalized 
by creatinine level.

Statistical Analysis
SAS (SAS 9.13, SAS Institute Inc., Cary, NC, USA) was used for demographic analysis of set 

2. Categorical variables were expressed as numbers and percentages and compared with 
Fisher’s exact tests or one-way factorial analysis of variance. Continuous variables were 
expressed as mean ± standard deviation and compared with the t test with Welch’s correction. 
The Prism 8 software (GraphPad Software LLC, USA) was used for statistical analyses of 
proteomics and ELISA results and for generating graphs. The t test with Welch’s correction 
was used to compare SIN values between the AD and control groups. Since the ELISA data did 
not pass the D’Agostino-Pearson omnibus normality test for both AD (or AD+MCI) and control 
groups, these groups were compared using the Mann-Whitney U test. p < 0.05 (two-tailed) 
was considered statistically significant.

Results

We selected Igfbp3 and ApoC3 as targets from our previous proteomics data [7] for 
confirmation by ELISA, since they were the most significantly increased and decreased 
proteins, respectively, in AD patients relative to controls according to p values of Welch’s t 
test (online suppl. Table S1). However, given the low level of these proteins in urine, fluctua-
tions in measurement by mass spectrometry may have been substantial. Accordingly, we 
additionally included ApoD in the analysis, as this protein was detected in all samples and was 
significantly increased in AD patients (Table 2; online suppl. Table S1).

The results of the ELISA experiment for set 1 are shown in Figure 1. The crude levels of 
ApoC3, Igfbp3, and ApoD were significantly higher in the AD group relative to the control 
group. The levels of creatinine-adjusted ApoD were significantly higher and the levels of 
creatinine-adjusted Igfbp3 tended to be higher in the AD group relative to the control group. 
No difference was observed in the levels of ApoC3 between the AD and control groups. The 
ELISA results for Igfbp3 and ApoD were consistent with the proteomics data, but the levels of 
ApoC3 in urine measured by ELISA showed an opposite tendency than what was observed in 
the proteomics data.

Table 2. Significantly increased or decreased proteins (p < 0.01) among those detected in all samples

Gene name Fold change 
(AD/control)

p value FDR Detected in 
AD samples, n

Detected in 
control samples, n

Rank 
in AD

Rank in 
control

APOD 1.79 0.001 0.048 18 18 12 21
SERPING1 1.96 0.003 0.052 18 18 66 76
PSAP 2.26 0.007 0.070 18 18 68 88

Top three proteins are shown. p values were calculated using the unpaired t test with Welch’s correction. AD, Alzheimer’s disease; 
FDR, false discovery rate.
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The results of the ELISA experiment for set 2 are shown in Figure 2. Given the limited size 
of the MCI population (n = 5), AD and MCI were combined into one group for the analysis 
(AD+MCI, n = 19). The crude levels of Igfbp3 were significantly lower in the AD+MCI group 
relative to the control group, but no difference was found between the two groups after 
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Fig. 1. Urinary ELISA of set 1. Urinary levels of ApoC3 (a, d), Igfbp3 (b, e), and ApoD (c, f) in set 1 (18 AD and 
18 control urine samples from previous proteomics analysis) as measured by ELISA. Crude levels (a–c) and 
Cre-adjusted levels (d–f) of the three proteins. p values were calculated using the Mann-Whitney U test. Data 
are presented as median and interquartile range. AD, Alzheimer’s disease; ApoC3, apolipoprotein C3; ApoD, 
apolipoprotein D; Cre, creatinine; ELISA, enzyme-linked immunosorbent assay; Igfbp3, insulin-like growth 
factor-binding protein 3.
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adjusting for creatinine. No difference was observed in both crude and creatinine-adjusted 
levels of ApoC3 and ApoD between the AD+MCI and control groups.

Since the same protein standards were used for all ELISA experiments, we also analyzed 
the results of sets 1 and 2 combined (Fig. 3; raw data and percent coefficient of variation of 
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Fig. 2. Urinary ELISA of set 2. Urinary levels of ApoC3 (a, d), Igfbp3 (b, e), and ApoD (c, f) in set 2 (13 AD, 5 
MCI, and 32 control urine samples) as measured by ELISA. Crude levels (a–c) and Cre-adjusted levels (d–f) 
of the three proteins. p values were calculated using the Mann-Whitney U test. Data are presented as median 
and interquartile range. AD, Alzheimer’s disease; ApoC3, apolipoprotein C3; ApoD, apolipoprotein D; Cre, 
creatinine; ELISA, enzyme-linked immunosorbent assay; Igfbp3, insulin-like growth factor-binding protein 
3; MCI, mild cognitive impairment.
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each standard dilution are provided in online suppl. Table S2). The creatinine-adjusted levels 
of ApoC3 were significantly higher in the AD+MCI group relative to the control group (p = 
0.015). When MCI samples were excluded, the p value became smaller (p = 0.011). Receiver 
operating characteristic analysis was performed for ApoC3 and the sensitivity, specificity, 
and area under the curve are shown in Figure 4.
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Discussion

We previously conducted a comparative study of urinary proteomes of AD patients and 
cognitively normal elderly people using label-free mass spectrometry [7]. In the present 
study, the results from the previous study were confirmed and validated in two independent 
sample sets. The candidate proteins examined were ApoC3, Igfbp3, and ApoD, which were 
most significantly increased or decreased in the label-free quantification.

Confirmation of the label-free quantification of mass spectrometry results was performed 
with the same sample set used in the earlier proteomics study (set 1). Candidate proteins for 
validation were selected based on their statistical significance and abundance in urine, given 
reports suggesting that proteins that are more abundant are generally easier to precisely 
quantify in label-free quantification, while proteins of low abundance show greater variation 
[12, 13]. The results of the ELISA for ApoD, an abundant lipoprotein in urine [13], were similar 
to those in the earlier proteomics study. Moreover, the results of the ELISA for Igfbp3, which 
was the most significantly increased protein in the AD group in the proteomics study but was 
low in abundance in urine, were also consistent with those from label-free quantification. In 
contrast, the results of the ELISA for ApoC3, the most significantly decreased protein in the 
AD group in the proteomics study and among the lowest in abundance in urine, showed an 
opposite tendency relative to the results of label-free quantification. Higher sample numbers 
may be required to accurately detect changes in low-abundance proteins.

The results of set 1 were confirmed using an independent sample set (set 2). The ELISA 
results for Igfbp3 and ApoD in sets 1 and 2 were inconsistent. One possible reason for this 
may be the large interindividual variation in the composition of urine [12–17]. Another 
reason may be sampling bias. All urine samples of AD (and MCI) patients were obtained from 
a hospital, while the control urine samples of sets 1 and 2 were obtained from community-
dwelling elderly volunteers and a hospital, respectively. This may explain the high percentage 
of control participants with diabetes in set 2 (Table 1).

Interestingly, the ELISA results for ApoC3 were similar between sets 1 and 2. When 
combining the results of both, ApoC3 levels were significantly higher in the AD+MCI group 
relative to the control group (Fig. 3a). The difference was even more significant when MCI 
samples were excluded from the analysis (Fig. 3d).
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ApoC3 is an abundant apolipoprotein mainly present in triglyceride-rich lipoproteins 
(chylomicrons and VLDL) and, to a lesser extent, in LDL and HDL particles [18]. ApoC3 is primarily 
synthesized in the liver [18], but is also present in the brain [19]. Epidemiological studies have 
found that ApoC3 is associated with a higher risk of cardiovascular disease and type 2 diabetes 
[20, 21]. ApoC3 affects the development of cardiovascular disease by regulating triglyceride 
metabolism and through its direct atherogenic effects [22]. There is also evidence that ApoC3 
exerts proinflammatory effects on both endothelial cells and monocytes [23–25].

Dysregulation of lipid homeostasis and inflammation underlie the development of AD 
pathology [26–28], and type 2 diabetes increases the risk of AD [29]. However, studies on 
the association between ApoC3 and risk of AD are limited. Two cross-sectional studies found 
lower levels of plasma ApoC3 in AD patients compared to control participants [30, 31]. A 
case-cohort study with a mean follow-up period of 5.1 years associated higher levels of 
plasma ApoC3 with lower dementia risk, but not after adjusting for APOE ε4 carrier status 
[32]. A cohort study with 2 years of follow-up concluded that plasma levels of ApoC3 did not 
predict future cognitive decline and also found lower plasma ApoC3 levels in APOE ε4 
carriers; increased plasma ApoC3 levels were associated with a decrease in grey matter 
volume [33]. In another study, the prevalence of homozygosity for the -641C allele in the 
APOC3 promoter (rs2542052) was significantly higher in centenarians than controls, and 
this genotype was associated with significantly lower serum levels of ApoC3 [34]. The APOE 
genotype of participants was not available in the current study, so similar analyses could not 
be performed.

Recently, Zewinger et al. [35] identified ApoC3 as an endogenous mediator that induces 
NOD-like receptor protein 3 (NLRP3) inflammasome-dependent sterile inflammation. Inflam-
masomes are multiprotein complexes that mediate proteolytic activation of IL-1β and IL-18 
[36]. Zewinger et al. [35] treated human monocytes with HDL, LDL, and VLDL, but only VLDL 
stimulated the release of IL-1β. Among the three most abundant proteins in VLDL particles, 
only ApoC3 induced IL-1β release [35]. In the brain, NLRP3 is predominantly located in 
microglia [37]. Amyloid beta accumulation in AD brains reportedly activates the microglial 
NLRP3 inflammasome. These studies suggest that ApoC3 should be further investigated as a 
potential urinary biomarker for AD.

In conclusion, we confirmed that ApoC3 may have potential as a urinary biomarker for 
AD. Further analysis with a larger sample size in a prospective setting is warranted to explore 
this possibility.
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