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Cognitive impairment amongst Parkinson’s disease (PD) patients is highly prevalent and associated with an
increased risk of dementia. There is growing evidence that altered cerebrovascular functions contribute to cognitive
impairment. Few studies have compared cerebrovascular changes in PD patients with normal and impaired cogni-
tion and those with mild-cognitive-impairment (MCI) without movement disorder. Here, we investigated arteriolar-cer-
ebral-blood-volume (CBVa), an index reflecting the homeostasis of the most actively regulated segment in the
microvasculature, using advanced MRI in various brain regions in PD and MCI patients and matched controls. Our
goal is to find brain regions with altered CBVa that are specific to PD with normal and impaired cognition, and
MCI-without-movement-disorder, respectively. In PD patients with normal cognition (n=10), CBVa was significantly
decreased in the substantia nigra, caudate and putamen when compared to controls. In PD patients with impaired
cognition (n=6), CBVa showed a decreasing trend in the substantia nigra, caudate and putamen, but was signifi-
cantly increased in the presupplementary motor area and intracalcarine gyrus compared to controls. In MCI-
patients-without-movement-disorder (n=18), CBVa was significantly increased in the caudate, putamen, hippocampus
and lingual gyrus compared to controls. These findings provide important information for efforts towards developing
biomarkers for the evaluation of potential risk of PD dementia (PDD) in PD patients. The current study is limited in
sample size and therefore is exploratory in nature. The data from this pilot study will serve as the basis for power
analysis for subsequent studies to further investigate and validate the current findings.

INTRODUCTION
Parkinson’s disease (PD) is defined by its characteristic motor
symptoms of bradykinesia, rigidity, and tremors. However, non-
motor symptoms such as cognitive impairment are frequently
reported in PD, with more than one-third of patients showing
signs of impairment in at least one cognitive domain at the time
of diagnosis with PD (1). Gaining a better understanding of the
mechanistic underpinnings of cognitive impairment is important,
as cognitive impairment is associated with accelerated functional
decline and neuropsychiatric symptoms including anxiety and

depression, and the risk of progression to dementia is over four
times greater in PD patients with cognitive impairment than in
PD patients with normal cognition (2, 3). Despite significant
efforts, currently there is no robust measure to predict which
patients with PD are at the greatest risk of developing PD demen-
tia (PDD).

Cognitive impairment in PD is likely due to the presence of
pathologic alpha-synuclein in the cortex, although in �30% of
individuals, there is additional amyloid and tau pathology (4–6).
There is also growing evidence that cerebrovascular disease is an
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important contributor to cognitive impairment. Cerebrovascular
abnormalities including altered cerebral blood flow (CBF), cere-
bral blood volume (CBV), and blood–brain barrier permeability
(7–10) have been linked with pathophysiology in various demen-
tias (11, 12). Following those reports(13), we previously used
advanced neuroimaging methods to show increased volumes of
small pial arteries and arterioles (arteriolar cerebral blood vol-
ume, CBVa) in several brain regions such as the orbitofrontal cor-
tex and the hippocampus in elderly adults with mild cognitive
impairment (MCI) compared with the volumes of those in age-
matched elderly controls. Cerebral vascular risk factors have also
been associated with PDD. Within PDD, there is growing recogni-
tion regarding the importance of vascular pathology. Among
individuals in the Parkinson’s Progression Markers Initiative
cohort, we found that the rate of change in measures of global
cognition was greater among those with white matter hyperin-
tensities on magnetic resonance imaging (MRI) (14). Altered CBF,
CBV, and microvasculature have also been shown in patients
with PD (15–23). However, to date, few studies have examined
and compared cerebrovascular changes in PD patients with nor-
mal cognition, PD patients with impaired cognition, and MCI due
to Alzheimer’s disease.

PD-related cognitive impairment and AD-related cognitive
impairment manifest differently (24), with the former being a
subcortical dementia and the latter a cortical dementia (25–28).
The type and regional distribution of pathology differ between
PD and AD. The pathognomonic changes in PD include loss of
pigmented dopaminergic cells and presence of Lewy bodies in
the substantia nigra (29, 30). Dopamine loss changes the rela-
tionship within the basal ganglia pathways and subsequently
changes the signaling between the basal ganglia and the cortex,
leading to motor and some executive dysfunctions observed in
individuals with PD (31). Indeed, multiple studies have shown
small blood vessel damage in patients with PD, mainly in the
substantia nigra, caudate, and putamen (15–23). The presup-
plementary motor area (preSMA) receives significant inputs
from the basal ganglia and, in individuals with PD, significant
atrophy (32), metabolic changes (33), and hypoactivation (34)
have been observed in their preSMA. These are considered to
be markers of changes in motor planning and not cognitive
change per se. Although hypoactivation and atrophy in the
entorhinal cortex, hippocampus, parahippocampus, and poste-
rior cingulate gyrus have been identified in individuals with
AD (26–28, 35) and in those with PD-related cognitive
changes (36–38), other brain regions including the intracal-
carine gyrus (39), thalamus (40), and lingual gyrus (41) appear
to subserve PD-related cognitive impairment than AD-related
amnestic MCI. Still other areas such as the nucleus accumbens
(26–28, 42, 43) are affected primarily in AD-type dementia
than in PD-related cognitive impairment. Different patterns of
neuronal loss were reported in the nucleus basalis of Meynert
in AD, PD, and PDD (44).

In this study, we used the inflow-based vascular-space-oc-
cupancy (iVASO) MRI approach (45–50) to determine potential
arteriolar abnormalities (CBVa) in the brain in a cohort of
patients with PD and matched controls and in a cohort of MCI
patients without movement disorders and matched controls. Pial
arteries and arterioles are the most actively regulated blood

vessels (51–55) and are affected by aging before venous vessels
(56). Therefore, the measurement of changes in CBVa may pro-
vide a more sensitive marker than measurement of changes in
total CBV and CBF, which include both arteriolar and venous
vessels. Hua et al. (13) have previously reported on the MCI
without movement disorder cohort and their data has been
reanalyzed here with a different approach (see Methods).
Based on the literature discussed previously, CBVa in prese-
lected brain regions was calculated and compared in patients
and matched controls in each cohort, with the goal of finding
brain regions with altered CBVa that are specific to PD with
normal cognition, PD with impaired cognition, and MCI with-
out movement disorder.

METHODS
Study Participants
In total, 2 cohorts of participants were recruited for this study.
The first cohort includes 10 PD patients with normal cognition, 6
PD patients with impaired cognition, and 7 healthy controls
matched in age, sex, and education level. All patients with PD
had a clinically established or clinically probable PD diagnosis
according to the criteria described in the study by Postuma et
al. (57). The Movement Disorder Society–sponsored revision of
the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
(58, 59) was used as a key part to evaluate clinical symptoms.
All participants were recruited through the Johns Hopkins
Parkinson’s Disease and Movement Disorders Center. This
study has been approved by the Johns Hopkins Institutional
Review Boards. Demographic data for this PD cohort are sum-
marized in Table 1.

The second cohort consists of 18 MCI patients without
movement disorder and 22 age-, sex-, and education-matched
cognitively normal controls. This second cohort was recruited at
the University of Zurich, Switzerland. The current study uses
recently published MRI and clinical data of this cohort (13). The
published MRI data was reanalyzed using a different method in
the current study (see Data Analysis). As reported earlier, the
study procedures were in accordance with guidelines issued by
the local ethics committee (Kantonale Ethikkommission Zürich),
as well as with the Declaration of Helsinki (60). Demographic
data for this MCI without movement disorder cohort are sum-
marized in Table 2 [data indicated in Table 2 has been published
recently in (13)].

In both cohorts, each participant gave written informed con-
sent for their participation. Each participant completed an MRI
session on a 7T human MRI system and received a cognitive
assessment (see Cognitive Assessment). None of the participants
had other neurologic disorders or met Diagnostic and Statistical
Manual-5 criteria for psychiatric disorders.

Cognitive Assessment
All participants completed a cognitive assessment. All cognitive
tests were administered and scored according to standardized
procedures. The cognitive battery for the PD cohort consists of
the following tests:

(1) The Logical Memory Subset of the Wechsler Memory
Scale (WMS–III) (62)
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(2) Controlled Oral Word Association Test (COWAT) (62)
(3) Hopkins Verbal Learning Test–Revised (HVLT-R) (62)
(4) The 60-item Boston Naming Test–2nd Edition (BNT-60) (62)
(5) Digit Span Forward and Backward (63).

Individuals were classified as either PD with normal cogni-
tion or PD with impaired cognition according to the Level 1 clas-
sification outlined by Litvan et al. (64). In particular, individuals
with impairment on at least 2 tests were stratified to the PD with
impaired cognition group.

In the MCI without movement disorder cohort, the following
cognitive tests were performed:

(1) The Mini-Mental State Exam (MMSE)
(2) The Revised Boston Naming Test (BNT-15) (65)
(3) Digit Span Backward (63)
(4) Trail Making Test (TMT) (66)
(5) Verbal Learning and Memory Test (VLMT) (67).

Participants were categorized as cognitively normal or cog-
nitively impaired according to established criteria (61).

MRI
Participants in both cohorts underwent a 7T MRI scan (Philips
MRI scanner; Philips Healthcare, Best, The Netherlands). The
hardware and software on the 7T MRI systems at both sites were
identical. A 32-channel phased-array head coil (Nova Medical,

Wilmington, MA) was used for radiofrequency reception and a
head-only quadrature coil for transmittal. High-resolution ana-
tomical images were acquired with a 3D Magnetization Prepared
RApid Gradient Echo (MPRAGE) sequence (voxel = 0.75mm iso-
tropic) (68, 69). A 3D iVASO MRI scan covering the entire brain
(13, 70, 71) was performed to measure regional gray matter
(GM) CBVa using the following parameters: time of repetition
(TR)/time of inversion (TI) = 10 000/1383, 5000/1093, 3800/
884, 3100/714, 2500/533, and 2000/356 millisecond; voxel =
3.5� 3.5� 5 mm3, slices = 20; and parallel imaging accelera-
tion (SENSE) = 2� 2. A reference scan (TR = 20 seconds, other
parameters identical) was obtained so that the scaling factor
M0 in iVASO images can be determined to calculate absolute
CBVa values.

Data Analysis
The statistical parametric mapping (SPM) software package
(Version 8, Wellcome Trust Centre for Neuroimaging, London,
United Kingdom; http://www.fil.ion.ucl.ac.uk/spm/) and other
in-house code programmed in Matlab (MathWorks, Natick, MA)
were used for image analyses. Motion correction in iVASO
images, coregistration between anatomical and iVASO images,
and normalization to the Montreal Neurological Institute space
were performed using SPM. Regional GM CBVa maps in the
whole brain were calculated from the iVASO signals after

Table 1. Demographic Data and Clinical and Cognitive Assessment of the Parkinson’s Disease (PD) Cohorts E

Pa

Controls
(Con)

PD Cognitive
Normal
(PDcn)

PD Cognitive
Impaired
(PDci) Overall

PDcn
vs
Con

PDci
vs
Con

PDci
vs

PDcn

Demographics

N 7 10 6 N/A N/A N/A N/A

Sex (female) 4 5 3 .95 .77 .80 1

Age (years) 59.86 6 6.09b 64.90 6 7.85 66.33 6 10.37 .32 .16 .22 .78

Education (years) 15.71 6 2.69 17.20 6 1.40 16.50 6 3.21 .46 .22 .65 .63

Disease Duration (years) N/A 2.80 6 1.34 3.36 6 1.41 N/A N/A N/A .45

Unified Parkinson’s Disease Rating Scale

Motor N/A 25.11 6 8.09 27.02 6 6.33 N/A N/A N/A .55

Neuropsychological Assessment

Logical Memory Subset of the Wechsler
Memory Scale 26.75 6 6.80 27.30 6 4.19 19.00 6 5.57 .02 .80 .05 .02

Logical Memory Subset of the Wechsler Memory
Scale Recall 25.00 6 5.29 25.20 6 4.47 11.60 6 7.06 .001 .95 .01 .009

Controlled Oral Word Association Test 88.50 6 16.20 97.30 6 12.92 70.00 6 15.76 .007 .108 .04 .01

HVLT-R Learning Trials 22.00 6 6.32 23.90 6 5.00 14.80 6 4.32 .02 .62 .05 .005

HVLT-R Recall 6.75 6 2.63 7.40 6 3.66 3.60 6 2.88 .14 .72 .13 .05

60-Item Boston Naming Test 51.67 6 3.51 52.30 6 1.34 53.80 6 6.22 .06 .08 .06 .08

Longest Digit Span Forward 6.75 6 9.00 6.70 6 1.83 7.00 6 2.00 .95 .95 .81 .79

Longest Digit Span Backward 5.00 6 7.00 5.70 6 1.34 4.60 6 1.34 .25 .13 .54 .17

Please see Methods on details regarding the test applied.
a P values were derived with the ANOVA, chi-square test, or t test, as appropriate.
b mean 6 standard deviation.
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surround subtraction (72) based on the iVASO equations [73].
GM, white matter, and cerebrospinal fluid maps generated from
the anatomical images using the SPM segmentation algorithm
were applied to correct for the partial volume effects of white
matter and cerebrospinal fluid on the iVASO difference signal in
GM (74). A signal-to-noise ratio (SNR) threshold of one standard
deviation below the mean SNR was applied to exclude low SNR
voxels from further analysis (73).

The IBASPM116 atlas (75–79) (PickAtlas software, Wake
Forest University, NC) was used to identify the preselected ana-
tomical regions based on the literature reviewed in the
Introduction, from which average CBVa values were calculated.
Group differences in GM CBVa in each region were examined
using analysis of covariance with age, sex, education, regional
GM volume from anatomical scans, and motion parameters esti-
mated from the motion correction routine in SPM as covariates
in the analysis. Effect size was estimated with Cohen’s d. All sta-
tistical tests were corrected for multiple comparisons by control-
ling the false discovery rate (adjusted P< .05) (80). Note that
data from all patients and their corresponding control partici-
pants were acquired at the same site and no statistical compari-
son between the data acquired from different sites was performed
in this study.

Note that the current study adopted a region of interest–
based analysis strategy to test our hypotheses in preselected
brain regions based on literature. CBVa in each brain region
identified on magnetic resonance images using the IBASPM116
atlas was averaged and compared. This result is different from
that of our previous study on the MCI without movement disor-
der cohort (13), in which CBVa was compared across the brain on
a voxel basis and significant clusters of altered CBVa were iden-
tified. CBVa in each cluster within each brain region (which may
not cover the entire region) was averaged and compared.

RESULTS
Demographic data for the PD cohorts are summarized in Table 1.
Age, sex, and education levels were matched among PD patients
with normal or impaired cognition and controls (P > .1). Disease
duration and UPDRS motor score were matched among PD
patients with normal or impaired cognition (P = .45, .55).
Significant deficits were observed in PD patients with impaired
cognition compared with the other 2 groups in the following
tests: Logical Memory Subset of the Wechsler Memory Scale (P =
.02), Controlled Oral Word Association Test (P = .007), and
HVLT-R (P = .02); and trending significant in BNT-60 (P = .06).

Demographic data for the MCI without movement disorder
cohort are summarized in Table 2. Individuals with MCI and con-
trols in this cohort had matched age, sex, and education levels
(P > .1). Patients with MCI showed significantly lower scores
compared with controls on the Verbal Learning And Memory
Test (P< .001) and Mini-Mental State Exam (P = .01).

The main findings in CBVa changes are summarized in Tables
3–5, and in Figure 1. The CBVa values in controls in all brain
regions investigated were in the normal range of CBVa reported
for healthy human subjects in the literature (81).

In PD patients with normal cognition (n = 10), CBVa was sig-
nificantly decreased in the substantia nigra (P= .04), caudate
(P= .04), and putamen (P= .01) compared with controls (n = 7),
but comparable with controls in all the other regions
investigated.

In PD patients with impaired cognition (n=6), CBVa showed
a trend toward decrease in the substantia nigra (P= .06), caudate
(P= .09), and putamen (P= .06) compared with controls (n=7).
CBVa was significantly increased in the preSMA (P= .01) and
intracalcarine gyrus (P= .03) compared with controls, and it also
showed a trend toward increase in the hippocampus (P= .07),
entorhinal cortex (P= .09), and parahippocampus (P= .07).

Table 2. Demographic Data and Clinical and Cognitive Assessment of the Age-Related MCI Patients Without
Movement Disorder

Controls
Age-Related MCI Patients

Without Movement Disorder Pa

Demographics

N 22 18 N/A

Sex (female) 8 6 1

Age (year) 72 6 5b 75 6 7 .08

Education (year) 13.64 6 2.56 15.06 6 3.28 .13

Number of APOE4 Alleles 7 9 N/A

Neuropsychological Assessment

Mini-Mental State Exam 29.45 6 0.86 28.44 6 1.42 .01

15-Item Boston Naming Test 14.41 6 0.73 14.17 6 1.25 .47

Digit Span Backward 6.27 6 1.39 5.94 6 1.76 .52

Verbal Learning and Memory 11.05 6 2.57 5.39 6 2.93 <0.001

Trail Making B/A 2.98 6 1.37 2.75 6 1.40 .62

Please see Methods on details regarding the test applied; Data indicated in Table 2 have been published recently in (13).
aP values from 2-sample t tests between the 2 groups, or from chi-square test for categorical variables.
bmean 6 standard deviation.
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In MCI patients without movement disorder (n= 18), CBVa
was significantly increased in the caudate (P= .04), putamen
(P= .05), hippocampus (P= .02), and lingual gyrus (P= .05) com-
pared with controls (n = 22). CBVa showed a trend toward
increase in the nucleus accumbens (P= .08), posterior cingulate

cortex (P= .06), entorhinal cortex (P= .06), and parahippocampus
(P= .06).

In all patients with PD and MCI, the CBVa values in the cere-
bellum were not significantly different from those in controls in
the respective cohorts.

Table 3. Altered Gray Matter CBVa in PD Patients Compared With Controls—CBVa Values in Each Brain Region

Regions

Control (n=7)
PD Cognitive

Normal (n=10)
PD Cognitive

Impaired (n=6)

Mean SD Mean SD Mean SD

Substantia Nigra 0.90 0.15 0.63 0.22 0.63 0.31

Caudate 0.90 0.05 0.76 0.26 0.71 0.26

Putamen 0.90 0.09 0.63 0.20 0.63 0.32

Nucleus Accumbens 0.89 0.06 0.85 0.19 0.92 0.07

Posterior Cingulate Cortex 0.93 0.04 0.87 0.20 0.96 0.07

Hippocampus 0.91 0.08 0.90 0.13 1.01 0.12

Entorhinal Cortex 1.00 0.06 1.01 0.05 1.33 0.46

Parahippocampus 0.99 0.10 1.01 0.07 1.35 0.46

Presupplementary Motor Area 1.10 0.08 1.06 0.12 1.34 0.13

Thalamus 0.99 0.09 0.97 0.04 1.09 0.15

Intracalcarine Gyrus 1.08 0.09 1.14 0.45 1.50 0.37

Lingual Gyrus 1.04 0.03 1.04 0.16 1.20 0.24

Nucleus Basalis of Meynert 1.00 0.03 1.02 0.07 1.03 0.09

Cerebellum 1.03 0.01 1.01 0.08 1.04 0.07

Table 4. Altered Gray Matter CBVa in PD Patients Compared With Controls—Statistical Results E

Regions

PD Cognitive Normal
vs Control

PD Cognitive Impaired
vs Control

PD Cognitive Impaired
vs PD Cognitive Normal

Relative
Change (%)a

Effect
Sizeb P t dfc

Relative
Change (%)

Effect
Size P t df

Relative
Change (%)

Effect
Size P t df

Substantia Nigra �29.56% �1.31 .04 �4.32 12 �29.63% �1.01 .06 �3.04 11 �0.11% 0.01 .99 �0.01 11

Caudate �14.86% �0.57 .04 �2.90 15 �20.30% �0.84 .09 �2.86 10 �6.39% �0.19 .55 �0.65 12

Putamen �29.78% �1.45 .01 �5.96 14 �29.63% �1.00 .06 �3.29 11 0.21% 0.01 .99 0.02 11

Nucleus Accumbens �4.04% �0.21 .38 �0.96 15 3.75% 0.50 .31 1.28 10 8.12% 0.44 .10 1.94 14

Posterior Cingulate Cortex �6.38% �0.32 .17 �1.60 15 3.34% 0.48 .27 1.37 11 10.38% 0.54 .06 2.38 14

Hippocampus �0.99% �0.08 .80 �0.28 13 11.97% 1.01 .07 2.86 11 13.10% 0.94 .03 3.31 12

Entorhinal Cortex 1.24% 0.23 .65 0.57 11 32.67% 0.88 .09 2.99 10 31.04% 1.14 .10 2.92 10

Parahippocampus 1.96% 0.24 .68 0.53 11 35.36% 0.93 .07 3.10 10 32.75% 1.19 .09 3.06 10

Presupplementary Motor Area �3.45% �0.33 .34 �1.18 12 22.37% 2.14 .01 6.21 11 26.75% 2.28 .01 7.73 12

Thalamus �1.58% �0.28 .69 �0.51 11 10.48% 0.79 .11 2.27 11 12.25% 1.25 .07 3.35 10

Intracalcarine Gyrus 5.67% 0.15 .48 0.76 15 38.86% 1.36 .03 4.51 10 31.40% 0.85 .03 3.11 13

Lingual Gyrus 0.05% 0.00 .99 0.02 15 15.38% 0.80 .11 2.73 10 15.33% 0.82 .09 2.51 11

Nucleus Basalis of Meynert 1.60% 0.25 .36 �1.33 14 3.33% 0.46 .24 0.81 10 1.71% 0.23 .51 0.97 13

Cerebellum �1.70% �0.24 .27 �1.26 14 1.37% 0.26 .47 0.88 10 3.13% 0.41 .19 1.51 13

a Relative change was defined as 100 � (mean CBVa in patients � mean CBVa in controls)/(mean CBVa in controls) %.
b Effect size was estimated with Cohen’s d = (mean CBVa in patients � mean CBVa in controls)/s, where s is the pooled standard deviation of the 2
groups.
c Degree of freedom.
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DISCUSSION
In this study, microvascular abnormalities as reflected by volume
changes in small pial arteries and arterioles (CBVa) were investi-
gated using iVASO MRI in PD patients, MCI patients without
movement disorder, and matched controls. As pial arteries and
arterioles are the primary regulators of regional perfusion in brain
tissues (82–84), CBVa is considered as an indicator of the homeo-
stasis of microvasculature that may provide additional informa-
tion regarding the underlying neurophysiological changes than
behavioral measures and conventional structural MRI. The same
MRI scans and analyses were performed in 2 separate cohorts of
PD patients and MCI patients without movement disorder and cor-
responding control groups recruited at 2 sites. This allowed us to
better match the controls in each cohort, as the age and many
other factors can differ substantially among PD patients and MCI
patients without movement disorder. The MRI scans were acquired
on a 7T human MRI system with identical hardware and software
at both sites. Only data acquired on the same MRI system were
compared to minimize the confounding effects from the potential
differences between the 2 sites.

Patients with PD who enrolled for this study had an average
disease duration of�3years and an average UPDRS score of 20–
30, which is generally considered to be early stage (but not pro-
dromal) PD (85). The degree of cognitive decline in PD patients
with impaired cognition group was mild, as reflected by their
performance on the cognitive assessments, and was comparable
to that in the MCI patients without movement disorder group as
reported in our previous study (13).

The main finding in this study is that PD patients showed
significant CBVa decreases in the substantia nigra, caudate, and
putamen compared with controls, whereas MCI patients without
movement disorder and PD patients with impaired cognition
showed significant CBVa increases in several brain regions
closely related to cognition, compared with controls. We inter-
pret the decreased CBVa as an indicator for microvascular dam-
age, especially in the substantia nigra in PD patients, as
evidenced in several studies in the literature (15–23). In contrast,
similar to our previous studies in MCI patients without move-
ment disorder (13) and Huntington’s Disease patients (86) in
which the same MRI methods were used, one possible explana-
tion for the elevated CBVa observed in several brain regions may
be a compensatory mechanism in the earlier stages of the dis-
eases, in which the number of blood vessels increases to normal-
ize the restricted blood flow owing to the reduction of diameter
in individual vessels. The exact mechanism is unclear and war-
rants further investigation that integrates MRI and other imaging
and histological techniques.

The substantia nigra is one of the first brain regions that
accumulates Lewy bodies in postmortem pathological studies in
PD. In our data, CBVa decreased in the substantia nigra in both
PD patients with normal cognition and PD patients with impaired
cognition. CBVa in the substantia nigra in MCI patients without
movement disorder did not show significant changes compared
with controls. The dorsal striatum, which consists of the caudate
and the putamen, is another region that is known to be affected
early in PD. Interestingly, our data showed decreased CBVa in

Table 5. Altered Gray Matter CBVa in Age-Related MCI Patients Without Movement Disorder Compared With
Matching Controls

Regions

MCI
(n=18)

Control
(n=22)

Mean SD Mean SD
Relative

Change (%)a
Effect
Sizeb P t dfc

Substantia Nigra 1.15 0.83 1.09 0.88 5.50% 0.07 .59 0.55 31

Caudate 2.31 1.65 1.17 1.31 97.44% 0.77 .04 3.22 35

Putamen 2.15 1.38 1.29 1.01 66.67% 0.72 .05 3.15 35

Nucleus Accumbens 1.52 1.00 1.02 0.99 49.02% 0.50 .08 3.01 32

Posterior Cingulate Cortex 1.55 0.78 1.11 0.82 39.64% 0.55 .06 3.06 32

Hippocampus 1.77 0.93 1.07 0.65 65.42% 0.89 .02 3.33 34

Entorhinal Cortex 1.89 0.78 1.08 0.52 75.00% 1.25 .06 3.05 32

Parahippocampus 1.81 0.53 1.05 0.70 72.38% 1.21 .06 3.05 32

Presupplementary Motor Area 1.76 0.47 1.32 0.52 33.33% 0.88 .12 1.97 36

Thalamus 1.63 0.71 1.17 0.66 39.32% 0.67 .15 1.90 36

Intracalcarine Gyrus 1.82 0.68 1.50 0.77 21.33% 0.44 .13 1.95 36

Lingual Gyrus 1.85 0.88 1.45 0.69 27.59% 0.51 .05 3.12 35

Nucleus Basalis of Meynert 1.21 0.98 1.17 1.00 3.42% 0.04 .60 0.57 35

Cerebellum 1.29 1.01 1.19 0.88 8.40% 0.11 .50 0.69 35
a Relative change was defined as 100 � (mean CBVa in patients � mean CBVa in controls)/(mean CBVa in controls) %.
b Effect size was estimated with Cohen’s d = (mean CBVa in patients � mean CBVa in controls)/s, where s is the pooled standard deviation of the 2
groups.
c Degree of freedom.
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the caudate and putamen in PD patients but increased CBVa in
these regions in MCI patients without movement disorder com-
pared with their respective controls.

In this exploratory study, our data seem to suggest that
CBVa increase in the preSMA and intracalcarine gyrus, and pos-
sibly the hippocampus, entorhinal cortex, and parahippocampus,
may be differentiating between PD patients with normal cogni-
tion and patients with impaired cognition. The hippocampus,
entorhinal cortex, and parahippocampus are closely related to
overall cognition and to episodic memory and are known to be
affected in dementia (87–91). Our data showed relatively large
effect sizes (close to 1) in CBVa increase in these three regions in
both PD patients with impaired cognition and MCI patients with-
out movement disorder compared with matching controls. In PD
patients with normal cognition, CBVa values in these regions did
not show significant changes. The preSMA and intracalcarine
gyrus are two regions that are considered to be primarily affected
in PDD but not in AD-MCI. In our data, PD patients with
impaired cognition showed significantly increased CBVa in these
two regions compared with controls, with the largest effect sizes
among all regions investigated. No significant changes in CBVa
in PD patients with normal cognition and MCI patients without
movement disorder were detected in these two regions. In con-
trast, the opposite CBVa changes in the caudate and putamen,
along with CBVa changes in the substantia nigra, nucleus
accumbens in the ventral striatum, and the posterior cingulate

cortex, seem to suggest that measuring CBVa in these regions
may be key in differentiating between PD patients with impaired
cognition and MCI patients without movement disorder. In addi-
tion, the lingual gyrus is another region that showed increased
CBVa only in the MCI patients without movement disorder
cohort. To the best of our knowledge, there are very few studies
currently on the potential differential neurovascular changes in
different brain regions among PD, PD-MCI, and AD-MCI. The
preliminary findings in this study require further investigation
and validation in subsequent studies.

The cerebellum is known to be largely spared in the early
stages of both PD and AD-MCI. In our data, all PD and MCI
patients showed comparable CBVa values in the cerebellum as in
controls in respective cohorts. Besides, the CBVa values in all
regions in the control subjects were in the normal range of CBVa
in human subjects reported in the literature (81). These results
provide validation for the CBVa values measured in this study.

No comparison between the MCI patients without movement
disorder and PD cohorts were conducted in the analysis described
in Results, as the data were acquired on the same type of MRI
system but at two different sites. Nevertheless, the CBVa values
in the MCI without movement disorder cohort seemed to be
slightly greater overall than those in the PD cohort. As CBVa val-
ues tend to increase with age (81), one possible explanation is the
�10-year age difference between the patients in MCI and PD
cohorts.

Figure 1. Comparisons of arteriolar cerebral blood volume (CBVa) values in chosen brain regions between Parkinson’s
Disease patients with normal cognition, PD patients with impaired cognition (A), and mild cognitive impairment (MCI)
patients without movement disorder with matching controls (B). *P< .05.
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There are several limitations in this exploratory study.
First, although significant effects were detected in our data,
the sample size is small, especially for the PD cohort.
Subsequent studies will continue to recruit PD patients with
normal and impaired cognition and matched controls at the
Johns Hopkins site to validate the current findings. Second,
the cross-sectional design is also a fundamental limitation.
Future studies with longitudinal measures at different stages
of the disease are required to evaluate whether regional CBVa
changes can be a predictor for the risk of developing PDD in
PD patients. Using the smallest effect size (�0.5) for signifi-
cant between-group CBVa differences detected in this study,
we were able to conduct a power analysis that determined we
would need �30 participants per group in subsequent studies
to achieve a power of 0.8 with alpha = 0.05.

In summary, CBVa abnormalities in different brain regions
were detected in PD patients with normal cognition, in PD patients
with impaired cognition, and in MCI patients without movement
disorder compared with matched controls by use of iVASO MRI.
Our data implies that CBVa changes in several key brain regions
may be specific to each condition and thus may provide clues to dif-
ferentiate one condition from the others. These findings provide fur-
ther details regarding microvascular abnormalities in different brain
regions in PD patients and inMCI patients without movement disor-
der who have not been reported in existing literature. This may help
advance our understanding of the pathophysiology of PDD and
may aid the development of imaging biomarkers in PDD. The data
from this study will serve as the basis for power analysis for subse-
quent studies to further investigate and validate the current
findings.
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