
Citation: Ngouoko, J.J.K.; Tajeu, K.Y.;

Temgoua, R.C.T.; Doungmo, G.;

Doench, I.; Tamo, A.K.; Kamgaing, T.;

Osorio-Madrazo, A.; Tonle, I.K.

Hydroxyapatite/L-Lysine Composite

Coating as Glassy Carbon Electrode

Modifier for the Analysis and

Detection of Nile Blue A. Materials

2022, 15, 4262. https://doi.org/

10.3390/ma15124262

Academic Editor: Andrei Victor

Sandu

Received: 14 May 2022

Accepted: 13 June 2022

Published: 16 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Hydroxyapatite/L-Lysine Composite Coating as Glassy Carbon
Electrode Modifier for the Analysis and Detection of Nile Blue A
Jimmy Julio Kouanang Ngouoko 1, Kevin Yemele Tajeu 1, Ranil Clément Tonleu Temgoua 1,2 , Giscard Doungmo 3,
Ingo Doench 4,5,6, Arnaud Kamdem Tamo 4,5,6,*, Théophile Kamgaing 1 , Anayancy Osorio-Madrazo 4,5,6,*
and Ignas Kenfack Tonle 1,*

1 Department of Chemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon;
ngouoalex@yahoo.com (J.J.K.N.); tasergekev@yahoo.fr (K.Y.T.); raniltemgoua@yahoo.fr (R.C.T.T.);
theokamgaing@yahoo.fr (T.K.)

2 Higher Teacher Training College, University of Yaoundé 1, Yaoundé P.O. Box 47, Cameroon
3 Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straβe 2,

24118 Kiel, Germany; gdoungmo@ac.uni-kiel.de
4 Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK-Sensors,

University of Freiburg, 79110 Freiburg, Germany; ingo.doench@imtek.uni-freiburg.de
5 Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg,

79110 Freiburg, Germany
6 Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
* Correspondence: arnaud.kamdem@imtek.uni-freiburg.de (A.K.T.);

anayancy.osorio@imtek.uni-freiburg.de (A.O.-M.); ignas.tonle@univ-dschang.org (I.K.T.);
Tel.: +49-761-203-95096 (A.K.T.); +49-761-203-67363 (A.O.-M.); +237-696-141-545 (I.K.T.)

Abstract: An amperometric sensor was developed by depositing a film coating of hydroxyapatite
(HA)/L-lysine (Lys) composite material on a glassy carbon electrode (GCE). It was applied for the
detection of Nile blue A (NBA). Hydroxyapatite was obtained from snail shells and its structural
properties before and after its combination with Lys were characterized using X-ray diffraction
(XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and
Brunauer–Emmett–Teller (BET) surface area analyses. The coupling of Lys to HA was attributed to
favorable interaction between negatively charged -COO− groups of Lys and divalent ions Ca2+ of
HA. Electrochemical investigations pointed out the improvement in sensitivity of the GCE/Lys/HA
sensor towards the detection of NBA in solution. The dependence of the peak current and potential
on the pH, scan rate, and NBA concentration was also investigated. Under optimal conditions, the
GCE/Lys/HA sensor showed a good reproducibility, selectivity, and a NBA low detection limit of
5.07 × 10−8 mol L−1. The developed HA/Lys-modified electrode was successfully applied for the
detection of NBA in various water samples.

Keywords: hydroxyapatite; lysine; inorganic–organic composite; glassy carbon electrode; electrode
coating; electrochemical analysis; Nile blue A

1. Introduction

Nile blue A (bis [5-Amino-9-(diethylamino)benzo[a]phenoxazin-7-ium] sulphate) is
an azo dye of the phenoxazine family [1]. It finds applications in histology and medicine
for the detection of micro-organisms [2], as well as in photodynamic therapy for the
treatment of malignant tumors [3,4]. It is also applied in dye-sensitized solar cells [5].
However, it is a mutagen [6] and carcinogen [7], and for these reasons, prohibited as a food
additive. The presence of this dye in water is harmful to microbial life [8]. Due to the risks
presented by this dye, its elimination in water and in various matrices is an active field of
research. For that purpose, various techniques have been used, including adsorption [9],
chemical degradation [10], and absorption [11,12]. Furthermore, the quantification of
NBA at trace level is relevant in analytical and environmental sciences. In these fields,
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solid electrodes chemically modified by convenient inorganic materials, likely to display
great affinity for a target species, are usually used. Some common examples of such
materials are silica [13,14], clay minerals [15,16], various carbon derivatives [17–20], and
metal oxides [21,22]. Furthermore, additional studies also have highlighted the use of
conjugated organic polymers (conductive polymers) as electrode modifiers in the fabrication
of modified electrodes for the electroanalysis of various analytes [23,24]. Conducting
polymers are organic compounds with considerable flexibility and an extended π-orbital
system, through which electrons can move from one end of the polymer to the other. They
are among the most relevant and widely used materials for sensor modification due to their
unique physical and chemical properties, such as tunable architecture and versatility, good
stability, and sensitivity [25–28]. The resort to these materials aims at improving either
the sensitivity or the selectivity of the bare solid electrode. In recent years, the scientific
community in analytical electrochemistry has shown great interest in the development
of hydroxyapatite-based sensors [29–31]. Hydroxyapatite is a low-cost material that can
be produced from high calcium phosphate biominerals present, for example, in seashells
and animal bones [32,33]. It is a phosphate mineral with the formula Ca5(PO4)3(OH),
usually written Ca10(PO4)6(OH)2 to underline the fact that a dimer is present in one unit
cell [34]. The acid-base properties, ion-exchange capability, and adsorption ability capacity
of hydroxyapatite (HA) have boosted the development of electrochemical sensors wherein
HA serves as adequate electrode material. Thus, El-Mhammedi et al. [35] used it to modify
a carbon paste electrode, which was then applied for the detection of para-nitrophenol.
Yin et al. [36] also detected 4-nitrophenol, using a glassy carbon electrode modified with
HA nanopowder. Kanchana and Sekar [37] reported the exploitation of the same material
as the GCE modifier for the determination of folic acid. Although these works have been
relevant, the poor electron transfer capacity associated with insufficient selectivity are
known as the drawbacks of sensors based on pure HA. This has further prompted the
search for additional compounds to be combined with HA to yield more efficient sensing
devices. Along these lines, Kanchana and Sekar [38] proposed an electrochemical sensor of
uric acid, based on EDTA/HA nanoparticles. The electroanalysis of both diquat and lead
ions was successfully achieved by Tchoffo and coworkers [31,39], using a glassy carbon
electrode modified with a hybrid material from HA and β-cyclodextrin.

The present work focused on the synthesis of HA powder from snail shells and
the further preparation of HA/L-lysine composite material useful as electrode coating
for the detection of Nile blue A (NBA) in solution by electrochemical analysis. L-lysine
bears amine groups, which are expected to display, upon protonation, strong affinity with
NBA. After its preparation, the Lys/HA composite material was characterized by several
physicochemistry techniques. Then, the HA/Lys composite was deposited as a thin film on
the active surface of a glassy carbon electrode (GCE) for the voltammetric analysis of NBA
by means of cyclic voltammetry (CV), followed by the detection of the same analyte by
differential pulse voltammetry (DPV). Key parameters affecting the amperometric response
of the sensor were investigated to obtain the best NBA analysis conditions, which were
successfully applied for the quantification of NBA in a spring water sample. Scheme 1
below highlights the chemical structure of hydroxyapatite (HA) and that of L-lysine (Lys),
as well as a simplified schematic representation of the structure of the Lys/HA complex,
including the different functional groups available for interactions with the target analyte
(Nile blue A).
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Scheme 1. Chemical structures of hydroxyapatite (HA) and L−lysine (Lys), as well as a simplified
schematic representation of the hydroxyapatite/L−lysine (HA/Lys) complex.

2. Materials and Methods
2.1. Reagents and Chemicals

All chemicals were used without further purification. Na2HPO4 (98%) and KH2PO4 (99%)
were obtained from BDH. NaOH, EDTA, Nile blue A (98%), L-lysine, and methyl or-
ange were purchased from International Fisher Scientific. Caffeine (99%), toluidine blue,
Ni(NO3)2.6H2O (98%), Cd(NO3)2.4H2O (98%), and ascorbic acid were obtained from Sigma-
Aldrich. Pb(NO3)2 (99%) was purchased from VWR Chemicals BDH and Cu(HCO2)2.2H2O
(99%) from Merck Chemicals GmbH. Citric acid monohydrate and HCl (36%) were pur-
chased from J.T. Baker and Pronalys AR, respectively. The phosphate buffer solutions
used in this work consisted of a mixture of monobasic dihydrogen phosphate and dibasic
monohydrogen phosphate. By varying the amount of each salt, we prepared a range of
phosphate buffers with pHs between 5.0 and 9.0. Analytical solutions of NBA at various
concentrations were obtained by dilution from a standard solution of a concentration of
0.01 M, using doubly distilled water.

Specimens of snail shells were collected from a local market in downtown Nkongsamba
(Cameroon). The raw snail shells were washed with water, rinsed with distilled water, and
dried at room temperature for two weeks. They were exploited to yield hydroxyapatite, as
described in the next section.

2.2. Preparation of Hydroxyapatite Powder

The preparation was performed according to a method published by Shavandi et al. [40],
with slight modifications. Thus, the calcination of the snail shells was achieved at 1000 ◦C
for 90 min, in an electrical furnace at a heating rate of 5 ◦C min−1. The calcinated product
was then crushed using a mortar, then sieved to obtain a white powder (with a particle
diameter less than 25 µm). To 2.8 g of calcinated shell, 50 mL of 0.1 M EDTA was added to
yield a solution of 0.1 M Ca-EDTA complex. To that solution and under stirring, 50 mL of
0.06 M Na2HPO4 was added (4 mL min−1). The obtained mixture was stirred for 120 min,
maintained at a pH around 13. Upon drying in an oven for 12 h, a milky white powder
was obtained.

2.3. Preparation of Hydroxyapatite/L-Lysine (HA/Lys) Modified Working Electrode

Before modification, the surface of the glassy carbon electrode (GCE) (3 mm in Ø) was
polished with alumina slurries of different sizes (1, then 0.5 µm) on billiard cloth and placed
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in a sonicator for 5 min to eliminate remaining alumina particles. The thin hydroxyapatite
(HA) film working electrode was prepared by the drop-coating of 5 µL of a dispersion
obtained by sonication for 30 min, and of 5 mg L-lysine with various amounts of HA (0, 1,
2, 3, and 4 mg), in 1 mL of double distilled water. The modified electrodes were dried in an
oven at 80 ◦C for 5 min. In this manuscript, they are denoted: GCE/HA, GCE/Lys, and
GCE/Lys/HA, for the GCEs modified with HA, Lys, and Lys/HA composite, respectively.

2.4. Material Characterization

The synthesized hydroxyapatite (HA), L-lysine (Lys), and the Lys/HA composite
materials were characterized by various physicochemical techniques.

2.4.1. X-ray Diffraction (XRD)

X-ray diffraction patterns were collected using a Stoe Stadi-P X-ray powder diffrac-
tometer, with Cu Kα1 radiation (λ = 1.54056 Å, gemonochromator, flat sample). The data
were collected in the 2θ angle ranging from 5◦ to 70◦, with a scanning speed of 1.5◦ min−1.

2.4.2. Fourier-Transform Infrared (FTIR) Spectroscopy

FTIR spectra were registered on a genesis FTIRM spectrometer (ATI Mattson), equipped
with a DTGS (deuterated triglycine sulfate).

2.4.3. Brunauer–Emmett–Teller (BET) Analysis

Nitrogen adsorption–desorption isotherms were collected for selected samples us-
ing Thermo Electron Corporation, Sorptomatic Advanced Data Processing. Before N2
adsorption, the samples were degassed at 307.13 K under a vacuum.

2.4.4. Scanning Electron Microscopy (SEM)

The surface morphology of the L-lysine (Lys), hydroxyapatite (HA), and Lys/HA
materials was characterized with a scanning electron microscope (FEI Scios FIB-SEM) at
an accelerating voltage of 10 kV. For SEM measurements, the samples were deposited on
conductive carbon tabs and coated with gold under a vacuum, using a sputter coater.

2.5. Electrochemical Measurements

Electrochemical measurements were carried out at room temperature with µ-Autolab
potentiostat (Ecochimie, Holland), employing a conventional three-electrode cell compart-
ment containing the film-modified GCE as the working electrode, the Ag/AgCl (3 M KCl)
as the reference electrode (Metrohm), and a steel auxiliary electrode.

Cyclic voltammetry was carried out in a 0.1 M phosphate buffer solution (pH 5.5)
containing NBA, in the potential range of −0.9 V to +0.1 V. For stripping analysis of NBA,
differential pulse voltammetry in anodic mode was performed at closed circuit in the
potential scan range from −0.7 V to 0 V, using the following optimized parameters: pulse
amplitude: 95 mV; step potential: 7.5 mV; and equilibrium time: 5 s.

3. Results and Discussion
3.1. Characterization of Hydroxyapatite (HA) and L-Lysine/Hydroxyapatite (Lys/HA) Hybrid Materials

Figure 1a presents the X-ray diffraction (XRD) patterns of the synthesized HA, pure
L-lysine (Lys), and Lys/HA composite materials. On the curve of HA (curve 1), the main
diffraction peaks usually observed for pure hydroxyapatite ((101), (002), (300), (310), (222),
and (213)) were identified. This was proof that the prepared HA was well-synthesized and
constituted a single phase material. However, a broaden background indicates a relatively
low crystallinity of the HA. After the addition of lysine to HA, the diffractogram of the
Lys/HA hybrid material (curve 3) matched with that of HA, while the intensity of the
peaks related to L-lysine were negligible. This could be due to the low amount of the amino
acid on the inorganic–organic composite structure. The pattern of pure L-lysine was given
in curve 2, for comparison.
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Figure 1. (a) Powder X-ray diffraction patterns, and (b) FTIR spectra of (1) hydroxyapatite (HA),
(2) L-lysine (Lys), and (3) Lys/HA hybrid material.

This observation led us to estimate the crystallite size and lattice strain [41] of HA
before and after its hybridization with L-lysine. Thus, the Williamson–Hall (W-H) equation
given by Equation (1) was used [42,43];

β cos θ =
kλ

τ
+ 4ε sin θ (1)

where λ is the wavelength of the CuKα X-ray radiation (λ = 1.54178Å), θ is the Bragg angle,
ε is the value of the lattice strain, τ is the crystallite size, β the full width at half maximum
(FWHM) corresponding to (hkl) Bragg’s peak, and k is the Scherrer constant usually equal
to 0.9.

The W-H plots (βcosθ vs. 4sinθ) for Lys/HA and HA are given in Figure S1 (Supple-
mentary Materials). The crystallite size was determined through the y-intercept, while the
lattice strain was derived through the slope of the fitted straight line shown in Figure S1
(Supplementary Materials). The obtained results are given in Table 1.

Table 1. Crystallite size, lattice strain, and crystallinity index of HA and Lys/Ha from W-H method.

Sample Crystallite Size (nm) Lattice Strain (10−3) Crystallinity Index (%)

HA 21.68 3.2 42.4
Lys/HA 40.81 1.6 42.01

The observed decrease in lattice strain and increase in crystallite size from HA to
Lys/HA were due to an increase in the lattice side after the addition of L-lysine. The degree
of crystallization (crystallinity index) was determined based on Equation (2), where C is



Materials 2022, 15, 4262 6 of 17

the area of the peaks in the diffraction pattern (crystalline area), and A is the area between
the peaks and the background (amorphous area).

Crystallinity index =
C

C + A
× 100 (2)

The values of C and A were calculated using Powder X software (version 2017,
Germany). From Table 1, crystallinity index values were less than 50%, showing that
HA crystallites were practically not affected by the addition of Lys.

Although XRD data did not show the presence of L-lysine on HA, FTIR spectroscopy
characterizations were performed to check whether the absorption of amino acid on the sur-
face of HA was effective. The FTIR results are shown in Figure 1b. On the infrared spectrum
of synthesized HA (curve 1, Figure 1b), fundamental vibrational modes of the phosphate
group were observed: the band at 1047 cm−1 was attributed to the phosphate stretching,
and the bands at 608, 561, and 476 cm−1 were due to the phosphate bending [44,45]. The
bands at 3434 and 567 cm−1 were attributed to the stretching vibration of OH−. The peaks
at 1625 and 3334 cm−1 were due to absorbed water. The peaks at 1404 and 874 cm−1 were
attributed to the deformation vibration of CO3

2− incorporated in the PO4
3− site and OH−

site, respectively; the presence of the peak at 874 cm−1 could also have been due to the in-
corporation of HPO4

2−, characteristic of non-stoichiometric HA [35,36]. These observations
confirmed that the synthesized material was pure hydroxyapatite, as revealed by the XRD
results. Upon addition of lysine to HA, a comparison between the spectra of pure lysine
(curve 2, Figure 1b) and Lys/HA composite (curve 3, Figure 1b) showed bands attributed
to the stretching of phosphate (1047 cm−1) and the deformation vibration of carbonate
ions (1404 and 874 cm−1), as well as bands at 1550 cm−1 and 1430 cm−1 attributed to the
symmetric stretching of NH2–H+ and COO−, respectively [46,47]. Furthermore, the band
attributed to the stretching of methylene (-CH2

−) was observed (2927 cm−1) [37,38]. All
these observations suggested the adsorption of lysine on the surface of synthesized HA.

The specific surface area and pore volume of pristine HA, L-lysine, and Lys/HA mate-
rials were calculated from the nitrogen adsorption–desorption isotherms, via the Brunauer–
Emmett–Teller (BET) and the Barrett–Joyner–Halenda (BJH) methods. The measured
specific surface and the pore volume of pristine HA were 46.69 m2 g−1 and 0.1266 cm3 g−1,
respectively (Table 2). These data decreased to 9.63 m2 g−1 and 0.0258 cm3 g−1 when
L-lysine was bounded to the surface of the inorganic backbone, meaning that the coupling
of L-lysine resulted in the reduction of the porosity of HA. Similar results were already
reported by previous works from the literature [48,49], which support the successful ad-
sorption of L-lysine on the surface of HA.

Table 2. Specific surfaces and pore volume of studied materials.

Sample Surface Area (m2·g−1) Pore Volume (cm3·g−1)

HA 46.69 0.1266
L-Lysine 0.23 -
Lys/HA 9.63 0.0258

The surface morphologies of the coating materials L-lysine (Lys), hydroxyapatite (HA),
and HA/Lys composite, as investigated by scanning electron microscopy (SEM), are shown
in Figure 2. The SEM image of the L-lysine material (Figure 2a) showed a smooth surface
of low porosity, typical for protein-based materials, with some platelet-like agglomerates.
In contrast, the hydroxyapatite surface (Figure 2b) showed micro-sized particles clumped
together with interconnected pores. The surface grains were homogeneously small, and
the porous sizes were uniform. The addition of lysine to the hydroxyapatite to form the
Lys/HA composite (Figure 2c) changed the material morphology compared to that of pure
lysine. The surface of the Lys/HA composite (Figure 2c) showed a structure more or less
similar to that of the naked hydroxyapatite (as expected for a low lysine content) with a
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rough surface morphology, a slightly reduced porosity compared to that of HA alone, and
foam-like grains with some agglomerated nanocrystals. As for these SEM observations
and the above discussed X-ray diffractograms, the HA/Lys might have a relatively low
content of organic material, this is, low lysine content. Nevertheless, the addition of lysine
slightly decreased the specific surface area and the diameter of the pores (Figure 2), as
previously revealed by the absorption and desorption experiments of N2 (BET and BJH
measurements). Besides, this addition provided new chemical functions and additional
active sites, as observed in the FTIR analyses, capable to interact with the target analyte
(Nile blue A) in the electrochemical and sorption processes.
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Figure 2. Scanning electron micrographs (SEM) of coating materials: (a) L-lysine (Lys); (b) hy-
droxyapatite (HA); and (c) hydroxyapatite/L-lysine (HA/Lys) composite. Scale bars: (a) 10 µm;
(b,c) 5 µm.

3.2. Electroanalytical Applications of Lys/HA Composite for Nile Blue A Sensing
3.2.1. Preliminary Study on the Effect of the Working Electrode Modification

Preliminary experiments were performed to establish the possibility of using Lys/HA
composite as an electrode modifier for the electroanalysis of NBA. Thus, the performance of
the GCE/HA, GCE/Lys, and GCE/Lys/HA towards the detection of NBA was compared.
The results obtained are shown in Figure 3. Each electrode gave rise to a well-defined
peak in the potential range from −0.6 to −0.1 V. On the bare GCE, a peak current of 6.4 µA
was recorded, proving that NBA was electroactive on the GCE. Then, the presence of
each modifier improved the performance of the GCE, according to the following ability
order: GCE/HA < GCE/Lys < GCE/Lys/HA, with peak currents of 8.8; 12.2, and 13.2 µA,
respectively. The presence of HA, on one hand, and Lys, on another hand, on the GCE sig-
nificantly increased the electrochemical signal of the electrode due to the pre-concentration
of NBA dye. By combining HA and Lys on the GCE, the highest current was obtained,
meaning that the composite material was more efficient towards the fixation of NBA at
the working electrode. To explain these observations, one could reasonably evoke the
adsorption of NBA cations on the HA surface and the uptake by lysine through electrostatic
attraction between the negative carboxylate ions and protonated NH2 groups of NBA. The
–NH3

+ groups of lysine can also interact with NH or the aromatic ring of NBA. Explicitly,
the Ca2+ site of HA can easily bind to negatively charged anionic groups, such as the
COO− carboxyl groups carried by lysine. This thus offers the possibility of incorporating
biological molecules such as amino acids on the surface of HA. Ozhukil Kollath et al. [50]
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provided qualitative and quantitative analyses of the L-lysine molecules incorporated on
the HA surface and the mechanism of interaction, which demonstrated that the carboxyl
group of lysine lends itself well to Coulomb interactions with the Ca2+ of hydroxyapatite,
which leaves the amino group of lysine available for other reactions, such as interactions
with the chemical functions of NBA (for the case of the present work).
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Figure 3. Differential pulse voltammetry (DPV) curves recorded in 0.1 M PBS (pH 5.5) containing
1 µM of NBA on (2) bare GCE, (3) GCE/HA, (4) GCE/Lys, and (5) GCE/Lys/HA. (1) represents the
curve recorded in blank electrolyte using GCE/Lys/HA.

In addition, other studies [35,37,51–53] also demonstrated that there is a special affinity
between HA and amino acids and proteins. This can be explained by the electrostatic
attraction forces existing between the carboxylate groups of the amino acids and the Ca2+

cations on the surface of HA. Such interactions have also been highlighted in various
published works [47,54–58]. Besides, the intermolecular H bonds existing between the
N-containing group and the phosphate on the HA surface, as well as the cooperation of
several protein functions, Ca2+ cations, and phosphate groups on the surface of HA, could
explain this affinity. Therefore, amino acids are adsorbed on HA surfaces and maintain their
activity due to the good biocompatibility of HA. The good stability and the biocompatibility
of HA allow, without ambiguity, to easily incorporate additional chemical functions and
physicochemical properties in their structure (in our case, through the incorporation of
lysine in the structure of HA), allowing its use as an electrode material for the improvement
of the sensitivity and selectivity of resulting electrodes in the electroanalysis of analytes
in solution. Moreover, HA is an inexpensive material with high stability, low toxicity,
and high abundance. Thanks to these advantages, we fabricated a Lys/HA electrode
for the detection of NBA in solution, which improved the electrochemical parameters,
such as sensitivity, stability, and selectivity, of the fabricated electrode with respect to the
detection electrochemistry of the target analyte (NBA). It is also important to point out
the electrocatalytic effect of the modifier, observed through the shift in potential towards
negative values compared to the bare GCE electrode. The observations evolved from this
section’s conclusion revealed that the GCE modified by a combination of Lys and HA is a
prominent tool that can be exploited for the electrochemical analysis and detection of NBA
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in an aqueous solution. However, it seemed useful to analyze some kinetics aspects taking
place at the GCE/Lys/HA, in order to gain insight into the phenomenon occurring in the
bulk of this electrode.

3.2.2. Kinetics Studies of GCE/Lys/HA Sensor by Cyclic Voltammetry

To determine the heterogeneous electron transfer rate constant and the number of
electrons transferred during the oxidation–reduction reaction of NBA at the surface of the
GCE/Lys/HA, the effect of scan rate (v) on both the oxidation and reduction peak current
of NBA was investigated for v, varied between 15 and 150 mV·s−1. The voltammograms
obtained in 0.1 M PBS (pH 5.5) containing 1 mM of NBA are shown in Figure 4a.
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Figure 4. (a) Cyclic voltammograms recorded in 0.1 M PBS (at pH 5.5) +1 mM NBA at various scan
rates: (1) 15, (2) 25, (3) 35, (4) 50, (5) 75, (6) 100, (7) 125, and (8) 150 mV·s−1. The cyclic voltammograms
recorded from lowest to highest intensity are those obtained at increasing scan rates between 15 and
150 mV.s-1 respectively. (b) Plot scan rate potential as a function of the logarithm of scan rate, from
the cyclic voltammograms in (a).

The electrode exhibited a quasi-reversible system, with peak currents increasing with
scan rate. The plot of the peak intensity as a function of scan rate (see Supplementary
Materials, Figure S2) was linear, and the regression equations of the straight line obtained
in oxidation and reduction directions were, respectively:

Iox(A) = 1.354 × 10−6 v(V/s) + 5.163 × 10−5 (R2 = 0.991) (3)

Ired(A) = −5.969 × 10−7 v(V/s) - 1.819 × 10−5 (R2 = 0.985) (4)

The values of R2 close to one showed that both the oxidation and reduction of NBA
at the GCE/Lys/HA are adsorption-controlled processes. Such behavior was obtained by
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Dilek et al. during the electrosynthesis of poly (Nile blue) films on the surface of a glassy
carbon disc electrode [59].

The number of electron(s) exchanged and the heterogeneous electron transfer rate
constant were determined based on the graph Ep(V) vs. Logv (Figure 4b), and on Laviron
Equations (5) and (6) for the quasi-reversible system [60].

Epa = E◦ +

(
2.303RT

(1 − α)nF

)
logv +

(
2.303RT

(1 − α)nF

)
log

(
nF(1 − α)

RTKs

)
(5)

Epc = E◦ +

(
2.303RT

αnF

)
logv +

(
2.303RT
αnF

)
log

(
nFα

RTKs

)
(6)

where R = 8.314 J.mol−1.k−1, T = 298 K, and F = 96,487 C.mol−1.
The value of the transfer coefficient α was obtained from Equation (7), which represents

the ratio of the slope of Equations (5) and (6).

α

1−α
=

0.0271
0.03656

= 0.741 (7)

The obtained value of α was 0.426. By reporting this in the slope of either Equation (5)
or Equation (6), the number of electrons transferred was found to be n = 1.65, smaller than 2
as in the literature [45]. The heterogeneous electron transfer rate constant Ks was calculated
at a scan rate of 50 mV s−1 from Equation (8):

logKs = α log(1 − α) + (1 − α) logα− log
(

RT
nFv

)
− α(1 − α)nF∆E

2.303RT
(8)

A value of Ks = 0.511 s−1 was obtained, indicating that the electron-transfer kinetics
are quite fast, despite the process at the electrode being quasi-reversible.

3.2.3. Effect of the Amount of Hydroxyapatite (HA) in the L-Lysine/HA Composite on the
Detection of Nile Blue A (NBA)

The amount of hydroxyapatite in the modifier film was expected to affect the response
of the electrode. Thus, the variation of the mass of HA in the Lys/HA composite was
evaluated and the results are presented in Figure S3 (Supplementary Materials). It was
observed that the peak current of NBA increased when the mass of HA in the film was
increased between 1 and 3 mg; then it decreased. The observed increase in the peak current
with an HA mass between 1 and 3 mg was associated with the presence of more absorption
sites in the bulk of the working electrode, arising with the increase in HA. Above 3 mg, the
presence of the huge amount of HA in the film reduced the conductivity of the electrode,
as the inorganic material behaves like a physical barrier. The mass of 3 mg was therefore
adopted for further experiments.

3.2.4. Effect of pH on the Peak Current and Potential

To elucidate the oxidation mechanism of NBA at the GCE/Lys/HA, the variation
of peak potential with the pH was studied. For this purpose, DPV experiments at dif-
ferent pH values were carried out in the PBS, and the graphs of the peak current and
peak potential vs. pH were plotted (Figure 5). As noticed, the peak current decreased
slightly when the pH was raised from 5 to 6.5. Then, it significantly increased to reach a
maximum value at pH 8; it then decreased for pH values set between 8 and 9. Regarding the
plot of the peak potential vs. pH, a linear decreasing dependent relation was obtained, ac-
cording to the equation Ep(V) = −0.074 − 0.053 pH (R2 = 0.995). The slope of −0.053 V/pH,
obtained close to the theoretical value of −0.059 V/pH, showed that an equal number of
protons and electrons were exchanged during this process [61–63].
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According to the structure of NBA and to the number of electrons and protons trans-
ferred, the following redox mechanism was proposed [59]. The chemical equation repre-
senting the electro-oxidation mechanism of NBA is highlighted in Scheme 2.
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3.2.5. Validation and Analytical Application of Lys/HA-Coated GCE Electrode
Sensor—Calibration Curve and Interference Studies

DPV analysis of NBA at various concentrations between 0.1 and 1 µM was per-
formed using the GCE/Lys/HA under optimized conditions. The result is presented in
Figure 6. As expected, the DPV peak current Ipa increased with NBA concentration (inset
in Figure 6). The calibration equation and its correlation coefficient were Ipa(A) = 12.18022
[NBA] (mol L−1) + 5.3736 × 10−8 and R2 = 0.992, respectively. A limit of detection of
5.07 × 10−8 mol L−1 was determined, calculated as three times the standard deviation of
the intercept divided by the slope of the calibration curve [64].

Table 3 gives a comparison with the values obtained in other articles for the detection
of similar analytes, in particular methylene blue (MB), since to our knowledge, the elec-
troanalysis of Nile blue A had not yet been carried out. The results displayed in this table
highlight the fact that the developed sensor in this work highlighted a detection limit value
comparable to those recorded in previous publications using modified electrodes for the
detection of analytes similar to Nile blue A, in particular dyes.
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Figure 6. Differential pulse voltammetry (DPV) curves obtained on GCE/Lys/HA in PBS (pH 8) at
various concentrations (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 µM (DPV curves are ordered
from bottom to top, respectively)) of NBA. The first peak, which is the most intense, was used to plot
the concentration dependency. (The inset shows the corresponding calibration curve).

Table 3. Comparison of the performances of the developed sensor GCE/Lys/HA with respect to the
electroanalysis of Nile blue A, with those of other modified electrodes applied to the electroanalysis
of similar analytes.

Electrode Modifier DLR (µM) LOD (µM) Method Analyte Reference

CPE (a) Thiol-functionalized clay 1–14 0.4000 CV (b) MB (c) [65]
CPE Ibuprofen-coated gold 0.01–1 0.0039 DPV (d) MB [66]
CPE Coffee husks 1–125 3.0000 SWV (e) MB [67]
GCE CMTN (f) 0.01–10 0.0030 DPV MB [68]

GCE (g) Lys/HA 0.1–1 0.0507 DPV NBA This work
(a) Carbon paste electrode, CPE; (b) cyclic voltammetry, CV; (c) methylene blue, MB; (d) differential pulse voltam-
metry, DPV; (e) square wave voltammetry, SWV; (f) carbon-modified titanium dioxide nanostructured, CMTN;
(g) glassy carbon electrode, GCE.

The detection limit recorded was lower than those obtained by other authors for
similar analytes. This showed that the Lys/HA composite made from less expensive,
locally available and abundant materials is part of the efficient and stable electrode matrices
allowing the simple and rapid modification of the electrode surface in order to improve its
sensitivity and selectivity with respect to the electrochemical detection of dyes.

The selectivity of the GCE/Lys/HA was evaluated in the presence of some interfering
molecules, such as toluidine blue (TB), methyl orange (MO), caffeine (CAF), citric acid (CA),
and ascorbic acid (AA), as well as some metal cations (Ni2+, Pb2+, Cu2+, and Cd2+). Among
its multiple applications, Nile blue A is a stain generally used in biology and histology. As
examples, Nile blue A is mainly used with living cells, which fix it and give a blue color
to cell nuclei [1]. It has also been applied to textiles and other products, such as leather,
cosmetics, pulp and paper, pharmaceuticals, plastics, and foods [2–5]. In view of what
was said previously, Nile blue A is very often used for various purposes and is therefore
likely to be found in addition to other classes of chemical compounds in various types of
liquid effluents, for example, biological, pharmaceutical, agro-food, and textile effluents.
Concerning the study of the effect of interferents on the response of the Lys/HA fabricated
electrode to the detection of Nile blue A, we attempted to reconstitute a physiobiological or
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industrial effluent by including a wide range of chemicals likely to be found in the effluents
with Nile blue A at the same time. For this, we used as interference species other dyes
(such as toluidine blue and methyl orange), compounds of pharmaceutical interest and
also present in some foods consumed daily (caffeine, citric acid, and ascorbic acid), as well
as metal ions (nickel, cadmium, copper, and lead ions). Thus, in the electrochemical cell
containing a 10−6 M NBA solution, the previously mentioned species were added in a
concentration equivalent to 0.5, 1, 5, and 10-fold that of NBA. The peak current of NBA was
then recorded in optimized conditions, and its variation was noticed as shown in Table 4.

Table 4. Effect of some potential interference species on the response of the GCE/Lys/HA to
10−6 mol·L−1 NBA in 0.1 M PBS (at pH 8).

Interference Species Added Amount over NBA
Concentration

Percentual Variation in the Anodic Peak
Current (Ipa) for NBA

Toludine blue

0.5 −3.45
1 −24.48
5 −44.15
10 −68.49

Methyl orange

0.5 −1.68
1 0
5 −7.95
10 −3.9

Caffeine

0.5 0.72
1 −4.08
5 −7.59
10 −55.75

Citric acid

0.5 −6.34
1 −2.21
5 0
10 18.03

Ascorbic acid

0.5 −1.45
1 8.13
5 13.44
10 18.78

Pb2+

0.5 1.69
1 1.37
5 −2.23
10 −8.8

Cu2+

0.5 1.12
1 2.34
5 −4.3
10 −6.48

Ni2+

0.5 0.32
1 1.31
5 4.09
10 5.16

Cd2+

0.5 −0.28
1 −2.86
5 −3.67
10 −7.5

Globally, when added in a concentration 0.5-fold of NBA, all species did not interfere
on the signal of the NBA analyte. At a concentration equivalent to that of NBA, the TB and
AA significantly affected the response of NBA, as a variation in the target analyte signal for
more than ±5% was recorded. Finally, when the concentration of the investigated species
was more than five-fold that of NBA, then CAF, TB, and AA induced more deviation (≥7%)
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in the response of NBA, somewhat limiting the selectivity of the proposed sensor. For
all the cationic species studied, the presence of these species more or less influenced the
electrochemical signal of Nile blue A, when their concentration was 10 times higher than
that of NBA in the reaction medium, with a recorded variation of more or less 5 % of the
NBA target analyte signal. The obtained results suggest that a GCE/Lys/HA sensor could
be efficiently applied for media less concentrated in NBA dye.

The practical application of the proposed sensor was evaluated through the analysis
of NBA in a spring water sample collected in Dschang (Cameroon). The water was filtered
using a filter paper, and then 50 mL was added in the electrochemical cell. The corre-
sponding amounts of Na2HPO4 and KH2PO4 salts were added to reach a concentration
of 0.1 M. A preliminary electrochemical experiment was performed to check the presence
of NBA in spring water by using the procedure applied for calibration curve experiments.
Under established optimized conditions, no NBA peak was found. By spiking the sample
with 1 µM of NBA, recovery rates above 95% were achieved for experiments conducted in
triplicate. This implies that the methodology herein proposed can be successfully used in
the electroanalytical determination of NBA in water and other aqueous media expected to
contain such a compound.

4. Conclusions

In this work, a composite material consisting of hydroxyapatite and L-lysine (Lys/HA)
was prepared and tested as electrode material for the electroanalysis of Nile blue A (NBA).
Before proposing the use of this composite for sensing purposes, its physicochemical
properties were determined. The deposition of a thin coating of Lys/HA material on a
glassy carbon electrode led to a sensitive and selective method for the detection of NBA
based on differential pulse voltammetry (DPV). The proposed sensor electrode showed
practical application in the detection of NBA in spring water.
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and (b) HA, Figure S2: Plots of the anodic and cathodic peak currents as a function of the scan rate,
recorded on GCE/Lys/HA in 0.1 M PBS (pH = 5.5) containing 1 mM of NBA. The scan rate was
varied between 15 and 150 mV.s−1. Figure S3: Effect of HA mass in the Lys/HA film on the DPV
peak current of 1µM of NBA in 0.1 M PBS (pH 5.5).
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