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Abstract: Amphiphilic antimicrobial polymers have attracted considerable interest as structural
mimics of host defense peptides (HDPs) that provide a broad spectrum of activity and do not induce
bacterial-drug resistance. Likewise, surface engineered polymeric-brush-tethered HDP is considered
a promising coating strategy that prevents infections and endows implantable materials and medical
devices with antifouling and antibacterial properties. While each strategy takes a different approach,
both aim to circumvent limitations of HDPs, enhance physicochemical properties, therapeutic per-
formance, and enable solutions to unmet therapeutic needs. In this review, we discuss the recent
advances in each approach, spotlight the fundamental principles, describe current developments
with examples, discuss benefits and limitations, and highlight potential success. The review intends
to summarize our knowledge in this research area and stimulate further work on antimicrobial
polymers and functionalized polymeric biomaterials as strategies to fight infectious diseases.
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1. Introduction

The rapid rise and spread of multidrug-resistant pathogens alongside the dwindling
rate of antimicrobial drug development threaten global health and jeopardize economic
stability [1–3]. Antibiotics are becoming increasingly ineffective, leading to an escalation in
persistent illnesses and disabilities and an increasing rate of mortalities [4–6]. More than
700,000 deaths from antimicrobial resistance occur worldwide every year [7], while antibi-
otic failure in treating sepsis, for example, contributes to ~11 million deaths annually [8].
In the United States alone, drug resistance has resulted in >35,000 deaths [4], while failing
antibiotics in sepsis treatment has led to >200,000 deaths. The ability of bacterial pathogens
to develop biofilms has also exacerbated the antibiotic resistance crisis, causing notorious
infections of tissues and implanted medical devices that are extraordinarily difficult to
treat [9,10]. Biofilms are responsible for approximately 65–80% of all clinical disorders
associated with infections, and unfortunately, there are no specific antibiofilm therapies to
treat such infections [10]. Despite the substantial progress in antimicrobial drug research,
drug resistance is still on the rise, and many diseases caused by resistant “superbugs”
remain challenging to cure.

HDPs were introduced in the early 1980s [11] as promising small molecules to re-
place failed/failing antibiotics in treating infectious diseases. All multicellular organisms
naturally express these molecules as innate immune response elements that synchronise
multiple tasks in and outside the cells [12,13]. Examples of the putative functions of HDPs
include (1) eliminating bacterial growth through the direct antimicrobial activity without
generating resistance [14–16], (2) inhibiting and eradicating biofilms by promoting disper-
sal and abolition through inhibition of biofilm-specific signalling pathways [17–21], and
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(3) modulating the innate immune responses through various mechanisms to indirectly
resolve infections and inhibit potentially harmful inflammation [13,22–24]. As a result of
these multifaceted functionalities, HDPs have recently re-emerged again as a new anti-
infective group that captures a wide range of potential practical applications, including the
treatment of mild and chronic infections [25] and inflammatory disorders [26], wound heal-
ing [27], tissue repair [28,29], the protection of implanted device [30], and many others [31].
Representative examples of the backbone structures of HDPs are shown in Figure 1.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 2 of 24 
 

 

include (1) eliminating bacterial growth through the direct antimicrobial activity without 
generating resistance [14–16], (2) inhibiting and eradicating biofilms by promoting disper-
sal and abolition through inhibition of biofilm-specific signalling pathways [17–21], and 
(3) modulating the innate immune responses through various mechanisms to indirectly 
resolve infections and inhibit potentially harmful inflammation [13,22–24]. As a result of 
these multifaceted functionalities, HDPs have recently re-emerged again as a new anti-
infective group that captures a wide range of potential practical applications, including 
the treatment of mild and chronic infections [25] and inflammatory disorders [26], wound 
healing [27], tissue repair [28,29], the protection of implanted device [30], and many others 
[31]. Representative examples of the backbone structures of HDPs are shown in Figure 1.  

 
Figure 1. Examples of HDPs with diverse structures. The molecular models were reproduced from the RCSB Protein Data-
bank (http://www.rcsb.org/pdb/home/home.do). β-defensin 2, 1W2E; magainin 2, 2MAG; α-defensin 5, 1ZMP; Indolicidin, 
1G89; Snakin 1, 5E5Q. 

Structurally, HDPs are short-chain amphipathic molecules (usually between 10–50 
amino acids) with cationic (charges, +2 to +9) and hydrophobic (proportion generally 30–
65%) residues [31–33]. The conventional concept of the mode of action was that the cati-
onic groups drive peptide adherence to the anionic surfaces of bacterial membranes, ena-
bling insertion into the membrane driven by clusters of hydrophobic residues, which per-
turbs the integrity of the cell membrane. This was initially proposed to cause membrane 
damage and permeabilization, leakage of cellular components, and consequent cell death 
[31,32,34]; however, recent studies have suggested that such a mechanism is not by any 
means the only possible or even the major way in which many or most peptides kill cells. 
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Figure 1. Examples of HDPs with diverse structures. The molecular models were reproduced from the RCSB Protein
Databank (http://www.rcsb.org/pdb/home/home.do). β-defensin 2, 1W2E; magainin 2, 2MAG; α-defensin 5, 1ZMP;
Indolicidin, 1G89; Snakin 1, 5E5Q.

Structurally, HDPs are short-chain amphipathic molecules (usually between 10–50 amino
acids) with cationic (charges, +2 to +9) and hydrophobic (proportion generally 30–65%)
residues [31–33]. The conventional concept of the mode of action was that the cationic
groups drive peptide adherence to the anionic surfaces of bacterial membranes, enabling
insertion into the membrane driven by clusters of hydrophobic residues, which perturbs
the integrity of the cell membrane. This was initially proposed to cause membrane damage
and permeabilization, leakage of cellular components, and consequent cell death [31,32,34];
however, recent studies have suggested that such a mechanism is not by any means the only
possible or even the major way in which many or most peptides kill cells. In contrast to
prokaryotic cells, it was suggested that eukaryotic cells have a partially negatively charged
cell membrane, thus decreasing binding of cationic HDPs and driving selectivity [35,36];
however, this too is not really correct since many of these peptides have the properties of
cell-penetrating peptides and can freely translocate across eukaryotic membranes [37,38].
It is important to appreciate that, although membrane perturbation is often associated
with the mechanism of action of HDPs, there is significant convincing evidence that HDPs
have many other actions against bacteria. Indeed, it has been suggested that HDPs likely
act in a multi-modal fashion to attack various targets [21,25,39,40]. For example, such
peptides have been reported to target membrane-associated enzymes (e.g., inhibiting cell
wall biosynthesis by sequestering the microbe-specific lipid receptor lipid II), inhibit cell
division, inhibit macromolecular synthesis (protein, RNA or DNA synthesis by binding
to intracellular targets, including nucleic acids), or target synthesis of other bacterial cell
macromolecules, heat shock proteins, and others [21,39]. Indeed, the antibacterial activity
of HDPs is far more complex than we thought, and further studies are needed in this
area. In addition, since the interaction of HDPs with various targets is fairly non-specific
(binding to complementary anionic and hydrophobic regions of the targets), it is unlikely
we will see the development of bacterial resistance, as described for antibiotics. Since a
complete discussion of the mechanism of action of HDPs is beyond the scope of this article,
we refer the readers to the many articles that provide an in-depth discussion [23,31,41–43].

The benefits of HDPs over antibiotics and many other chemical compounds as a new
generation of antimicrobial agents rely on their multifaceted functionality; broad spectrum
of activity, including most existing antibiotic-resistant superbugs; and low development
of bacterial resistance due to their multiple bacterial targets and the rapid bactericidal
effects. Nevertheless, despite these benefits, the progression of HDPs into viable drug
candidates is yet to be achieved. Their progress to clinical use has been languid and
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hampered by several constraints, including their inhibition by physiological concentrations
of salts and anionic polymers, such as glycosaminoglycans; their susceptibility to proteases
and peptidases that abound at infection sites; and (largely unknown) toxicity at higher
concentrations as well as their cost and issues with large-scale production [44,45]. For
this reason, several mimics of HDPs have been proposed and developed to address these
shortcomings, such as all-D amino acid peptides [46,47], β-peptides [48], peptoids [48,49],
peptide-mimicking polymers [50], and others [51], which were to some extent successful
in reproducing biological properties similar to those of HDPs. This review explicitly
discusses HDP-inspired antimicrobial polymers and addresses their design principles,
recent developments, limitations, and future development. It also highlights the concept
of engineering polymer brushes with HDPs in medical devices and implants to defeat
infections and biofilms.

2. HDP-Mimicking Polymers

Inspired by the unique properties of HDPs, cationic antimicrobial polymers (exchange-
ably stated as HDP-mimicking polymers) were conceived to overcome certain inherited
limitations of HDPs and generate clinically accepted antimicrobials. These HDP-mimicking
polymers are designed to retain the critical structural features of HDPs, thus generating
similar or more biologically active compounds while being less expensive and easier to
manipulate and produce on large scales.

2.1. Fundamental Structural Design Principle

The theoretical structural design of HDP-mimicking polymers is based on combin-
ing the properties of HDPs with the structural benefits of polymer disinfectants to create
mimics with amphiphilicity and antimicrobial functions against a broad range of mi-
croorganisms [52]. As described earlier, HDPs are generally rich in cationic amino acids
(e.g., arginine and lysis) and amino acids with hydrophobic side chains (e.g., tryptophan,
phenylalanine, tyrosine, leucine, isoleucine, and valine), which give them an amphiphilic
nature that is crucial to their action and promotes their attachment to the bacterial sur-
face/membranes (Figure 2, magainin 2). By analogy, the cationic polymers consist of two
main functional components/monomers: the first contains cationic functional groups,
and the second has hydrophobic functional groups (see examples in Figure 2 from refer-
ences [53–55]). These two monomers are connected in various ways (e.g., random or block,
Figure 2), leading to different cationic/hydrophobic polymers with tunable antimicrobial
activity [56,57]. These structural mimetics resemble the overall cationic amphiphilicity of
HDPs rather than their typically defined secondary structures that create defined cationic
and hydrophobic domains.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 4 of 24 
 

 

 
Figure 2. Evolution of antimicrobial polymers from HDPs. Magainin 2, as an example of an HDP, shows the hydrophobic 
and cationic domains. In the centre are examples of antimicrobial polymers, and on the right are examples of the described 
strategies of monomers connectivity in polymers, (block and random), where green and purple circles represent cationic 
and hydrophobic monomers, respectively. 

2.2. Structural Features Influencing Bioactivity and Toxicity 
2.2.1. Cationic Functional Groups 

Cationic groups are the sources of positive charge in polymers and are the compo-
nents involved in the initial adherence of the polymer to the surface of the bacterial mem-
brane through electrostatic interactions. A broad diversity of cationic groups in the mon-
omers have been used in antimicrobial polymers, including primary, tertiary, or quater-
nary amine groups [62–64]; sulfonium ions [65]; phosphonium ions [66], etc. Inspired by 
lysine-rich HDPs, a primary amine group was one of the most commonly used cationic 
groups in polymers. In fact, several studies have revealed polymers bearing primary, sec-
ondary, or tertiary amines have relatively higher antimicrobial activity and lower hemol-
ysis (lower red blood cell lysis) when compared to synthetic polymers bearing quaternary 
ammonium groups [63]. Polymers bearing primary amines have also been shown to have 
better activity than their tertiary and quaternary ammonium counterparts regarding bac-
terial cell surface binding and membrane-disrupting abilities [64,67]. 

Other forms of the cationic group in antimicrobial polymers include the guanidinium 
[68,69] and the iminium structures, such as pyridinium [70–72] and imidazolium salts 
[73,74]. It has been reported that iminium-containing cationic polymers exhibit relatively 
high antimicrobial activity (lower minimal inhibitory concentrations, MICs) against vari-
ous bacteria and fungi when compared to counterparts with quaternary ammonium 
groups [75]. To date, many cationic monomers have been reported [56,76–80], and these 
studies concluded that cationic groups and their optimization in the polymer structure 
are required to achieve maximum antimicrobial activity with minimal toxicity against 
mammalian cells.  

2.2.2. Hydrophobic Functional Groups 
A complement to the cationic component, the hydrophobic monomers are the source 

of hydrophobicity in HDP-mimicking polymers. They are responsible for the polymer’s 
insertion into the lipid bilayer of the microbial membrane and disruption of membrane 
permeability (and presumably translocation across the membrane) [57,60]. Several hydro-
phobic group structures in the monomers have been used in antimicrobial polymers, in-
cluding linear short alkyl groups (methyl, ethyl) or cyclic groups (cyclic hexane), etc. In 
general, similar to the cationic monomers, optimising the hydrophobic components is re-
quired to achieve maximum antimicrobial activity with limited toxicity towards mamma-
lian cells. So far, linear alkyl groups have been the most effective hydrophobic group used 
in antimicrobial polymer, and their lengths significantly affect the polymers’ antibacterial 

Figure 2. Evolution of antimicrobial polymers from HDPs. Magainin 2, as an example of an HDP, shows the hydrophobic
and cationic domains. In the centre are examples of antimicrobial polymers, and on the right are examples of the described
strategies of monomers connectivity in polymers, (block and random), where green and purple circles represent cationic
and hydrophobic monomers, respectively.



Pharmaceutics 2021, 13, 1820 4 of 24

To date, several types of synthetic antimicrobial polymers have been reported, and
these may include but are not limited to poly-methacrylate copolymers, poly-norbornenes,
nylon-3 copolymers, poly-carbodiimides, quaternary vinyl pyridines, and others. Some
excellent reviews of the history, classifications, mechanisms of action, etc., of these cationic
polymers were previously published [52,58–61].

2.2. Structural Features Influencing Bioactivity and Toxicity
2.2.1. Cationic Functional Groups

Cationic groups are the sources of positive charge in polymers and are the components
involved in the initial adherence of the polymer to the surface of the bacterial membrane
through electrostatic interactions. A broad diversity of cationic groups in the monomers
have been used in antimicrobial polymers, including primary, tertiary, or quaternary amine
groups [62–64]; sulfonium ions [65]; phosphonium ions [66], etc. Inspired by lysine-rich
HDPs, a primary amine group was one of the most commonly used cationic groups in
polymers. In fact, several studies have revealed polymers bearing primary, secondary, or
tertiary amines have relatively higher antimicrobial activity and lower hemolysis (lower
red blood cell lysis) when compared to synthetic polymers bearing quaternary ammonium
groups [63]. Polymers bearing primary amines have also been shown to have better activity
than their tertiary and quaternary ammonium counterparts regarding bacterial cell surface
binding and membrane-disrupting abilities [64,67].

Other forms of the cationic group in antimicrobial polymers include the guani-
dinium [68,69] and the iminium structures, such as pyridinium [70–72] and imidazolium
salts [73,74]. It has been reported that iminium-containing cationic polymers exhibit rela-
tively high antimicrobial activity (lower minimal inhibitory concentrations, MICs) against
various bacteria and fungi when compared to counterparts with quaternary ammonium
groups [75]. To date, many cationic monomers have been reported [56,76–80], and these
studies concluded that cationic groups and their optimization in the polymer structure
are required to achieve maximum antimicrobial activity with minimal toxicity against
mammalian cells.

2.2.2. Hydrophobic Functional Groups

A complement to the cationic component, the hydrophobic monomers are the source
of hydrophobicity in HDP-mimicking polymers. They are responsible for the polymer’s
insertion into the lipid bilayer of the microbial membrane and disruption of membrane
permeability (and presumably translocation across the membrane) [57,60]. Several hy-
drophobic group structures in the monomers have been used in antimicrobial polymers,
including linear short alkyl groups (methyl, ethyl) or cyclic groups (cyclic hexane), etc.
In general, similar to the cationic monomers, optimising the hydrophobic components is
required to achieve maximum antimicrobial activity with limited toxicity towards mam-
malian cells. So far, linear alkyl groups have been the most effective hydrophobic group
used in antimicrobial polymer, and their lengths significantly affect the polymers’ antibac-
terial activity [81]. For example, an earlier study by Hedrick et al. [82] investigated the
influence of different sized lengths of alkyl chains in polycarbonate-based polymers, show-
ing that MICs against pathogenic bacteria decrease as the alkyl chain length increases from
3 to 8 carbons [82]. Similar results were observed in other studies on different classes of
antimicrobial polymers [83,84]. However, excess hydrophobic components or an increase
in the length of the hydrophobic side chain can enhance the polymer’s hemolytic activity
and decrease its solubility, which can be a challenging limitation. Consequently, in addition
to the linear alkyl groups, fused and cyclic alkyl groups have also been investigated as
hydrophobic monomers in the polymer mimics of HDPs. In fact, in some examples, the
bacteriocidal activities of polymers bearing cyclic hydrophobic subunits were enhanced
when compared to polymers bearing acyclic hydrophobic subunits [85–87].
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2.2.3. Hydrophobic/Hydrophilic Balance and Beyond

There is substantial evidence that there should be some balance between the hy-
drophobic and the cationic monomers in the polymer structure to optimize the antimicro-
bial activity and decrease toxicity [52]. For example, excessive hydrophobicity increases
hemolysis, i.e., toxicity, and produces poorly soluble polymers while generating highly
potent antimicrobial polymers. In contrast, with excessive levels of cationic monomers,
synthetic polymers are less but weaker antimicrobials in addition to increasing the ten-
dency of polycations to lead to hemagglutination (aggregation of red blood cells (RBCs)).
Consequently, the amphiphilic balance during polymeric design is critical to minimize the
above limitations (see Figure 3 for illustration). Excellent discussion on the amphiphilic
balance in HDP-mimicking polymers was reported in work by Ragogna P et al. [88], where
they discuss the heterogeneous sources of amphiphilic balance in antimicrobial polymers.
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Beyond amphiphilic balance, several studies have revealed exciting results that could
help re-formulate the way antimicrobial polymers are designed to improve activity. For
example, a study by Gellman et al. found that changes in the polymer subunit stereochem-
istry alter the activity of nylon-3 copolymers [89]; in particular, stereoisomeric monomers
bearing either a cis-aminomethyl side chain or a trans-aminomethyl side chain were created
and tested for biological activity. The two stereochemical derivatives had an insignificant
influence on the antimicrobial activity but demonstrated significant differences in hemoly-
sis (Figure 4a) [89]. McBride et al. [90] also described a series of cationic homopolymers
comprising only cationic subunits with strong efficacy against vegetative and spore forms
of C. difficile. Interestingly, despite lacking the hydrophobic substituents of amphiphilic
polymers, the compounds, especially P34 (Figure 4b), showed excellent efficacy against
C. difficile, with low hemolytic activity and toxicity against intestinal epithelial cells [90].
Aside from this amphiphilic balance phenomenon, the effect of the polymeric block order
on antimicrobial activity was also investigated [91–94]. A study by Boyer C et al. [91]
concluded that by varying the combinations and order of polymeric blocks, the activity of
HDP-mimicking polymers could be made tunable analogous to what has been shown for
antimicrobial HDPs [91]. Thus, understanding the composition and particular arrangement
of polymer synthetic blocks is essential for developing promising antimicrobial candidates
with potent activities. Further discussions on the amphiphilic balance in HDP-mimicking
polymers have been published [52,88,95].

2.2.4. Introduction of Hydrophilic Functional Groups

Introducing hydrophilic subunits into the polymer to create an atypical structure has
been shown to impact the amphiphilicity and the overall biological activity of antimicrobial
polymers [96]. For example, when the molecular structure of poly-norbornene copolymer
was incorporated with either zwitterionic, sugar, or polyethene glycol (PEG) moieties at
various ratios, minor increases in the MICs were observed, whilst the hemolysis decreased
significantly [97] (e.g., Figure 5a). Similarly, introducing a small proportion of polar
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or uncharged units to the nylon-3 copolymers alongside the cationic and hydrophobic
subunits reduced hemolysis with minimal impact on antibacterial activity [98] (Figure 5b).
In another study, a complete exchange of the hydrophobic groups with hydrophilic groups
in a methacrylate-based polymer led to the maintenance of excellent antibacterial activity
but significant reduction of their lytic effect against RBCs when compared to the original
hydrophobic groups containing polymer [99] (Figure 5c). When introducing hydrogen
bond donors or acceptors, the activity can change dramatically, as evidenced by increases in
the activity of an N-alkyl maleimide-based amphiphilic antimicrobial polymer bearing an
amide bond in the side chain when compared to a counterpart bearing an ester bond [100].
A similar study also demonstrated that the polymer bearing amide moieties requires fewer
hydrophobic groups to create potent antimicrobials than the equivalent polymer containing
subunits with an ester group [101].
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uncharged units to the nylon-3 copolymers [98], (c) replacement of hydrophobic group with a hydrophilic group in a
methacrylate-based polymer [99] and (d) introduction of a polar group as a spacer between the cationic and hydrophobic
subunit of a methacrylate-based antimicrobial polymer [102].
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Furthermore, a recent study by Kuroda et al. introduced a polar subunit (hydroxyl
group) as a spacer between the cationic and hydrophobic subunit of a methacrylate-based
antimicrobial polymer (Figure 5d), which decreased the hemolytic activity of the polymers
significantly when compared to counterpart polymers with hydrophobic side chains [102].
Indeed, several studies have confirmed similar results in various polymeric backbones,
suggesting that a ternary approach in polymeric design might be a promising strategy to
optimize the activity and toxicity of the polymer mimics of HDPs [103–106].

2.2.5. Molecular Weight

The polymer molecular weight is also considered an important parameter in designing
highly active polymer mimetics of HDPs. Many studies have investigated the influence
of the molecular weight on the activity of polymers; the majority concluded that the DP
(degree of polymerization, which is the number of monomeric units in the polymer) or the
molecular weight should be low for optimal bioactivity [53,54,107–110]. In some examples,
however, polymers with longer chains have maintained or increased their antibacterial
activities but concomitantly lead to increased hemolysis [53,111]. Hence, an appropriate
molecular weight based on the type of the polymer is needed to achieve maximum activity
with optimal biocompatibility.

Other features that influence the polymers’ overall biological activity may include the
cationic charge density of the polymer, structural topology (distribution of components),
terminal substituents, stereochemistry, and others [95]. Overall, extensive studies on the
structure–activity relationships and factors influencing antimicrobial activity and toxicity
of the polymers have been conducted and have contributed significantly to advancing the
field of cationic antimicrobial polymers [56,112].

2.3. New Polymer Mimics of HDPs—Highlights

Searching for better polymer mimics of HDPs, Kim et al. [113] examined PEG and
peptides, i.e., PEG-based peptides, as a novel mimic of HDPs (Figure 6a). Their study
mimicked “key” amino acid residues found in HDPs, such as lysine, leucine, and serine,
on a backbone of PEG chains and developed a series of PEG-based molecules that they
termed PEGtides. Interestingly, several of these PEGtides possessed excellent activity
against gram-negative and gram-positive bacteria while showing low hemolysis of human
RBCs [113]. In another study using poly(2-oxazoline), Liu et al. [114] developed a glycine-
like backbone substituent poly-2-oxazoline (Figure 6b) as a new synthetic mimic of HDPs.
The compound exhibited potent in-vitro and in-vivo activity against methicillin-resistant
Staphylococcus aureus (MRSA) and showed excellent activity in killing persister cells [114].
In another study, Qiao G et al. [115] described a new class of antimicrobial nanomaterials
referred to as structurally nanoengineered antimicrobial peptide polymers (SNAPPs),
which are star-shaped polymer nanoparticles consisting of lysine and valine residues
(Figure 6c). Unlike conventional polymeric nanoparticles, the SNAPPs were considered
stable unimolecular architectures and demonstrated sub-µM antibacterial activity against a
wide range of clinically isolated gram-negative strains, including the ESKAPE (Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter species) and colistin-resistant pathogens. In addition to high
therapeutic indices, the SNAPPs displayed low toxicity towards mammalian cells [115].

A recent study by Silei Bai et al. [116] has also shown a short, amidine-rich antimi-
crobial polymer with dual-selective mechanisms of action against harmful “Superbugs”,
including disrupting bacterial membranes and binding to bacterial DNA. This so-called
oligoamidine showed high therapeutic indices against many bacterial types, including the
ESKAPE pathogens and clinical isolates resistant to multiple drugs, with no observable
resistance generation. Overall, such new strategies for designing polymer mimics of HDPs
could be beneficial and could, indeed, open a new path towards developing innovative
antimicrobial therapies.
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2.4. Antibiofilm

Biofilms are formed when bacterial colonies (from single or multiple species) ad-
here to an abiotic or biological surface and embed in self-produced complex structures
of extracellular matrixes [117,118]. Generally, biofilms are considered the typical form of
bacterial growth in nature [117,118], are involved in 65% of all human infections, and are
an alarming concern in the environment and industrial settings [119]. Biofilm infections are
exceptionally challenging to treat relative to their planktonic (freely-swimming) counter-
parts since they are more highly resistant (by 10- to 1000-fold) to essentially all antibiotics
and biocides and are refractory to host immune responses [119]. Unfortunately, to date,
no drug has been approved that specifically treats biofilms, and usually, combinations of
antibiotics are used. Several strategies, however, are under development, including the use
of HDPs and their mimics, nucleotides, aptamers, bacteriophages, enzymes, engineered
metal ions, and others [120–122].

To contribute to the current fight against biofilm infections, researchers on cationic
polymers have also investigated the feasibility of using these macromolecules to eradicate
biofilms. For instance, we have recently shown that an amphiphilic poly-β-peptide poly-
mer (20:80 Bu:DM, Figure 7a) has potent activity against biofilms of both gram-positive
and gram-negative bacteria in addition to an interesting ability to modulate the innate
immune response by stimulating chemokine and monocyte chemoattractant protein-1
(MCP-1) and suppressing the endotoxin-stimulated release of interleukin 1 Beta (IL-1β)
from peripheral blood mononuclear cells [123]. In earlier studies, the polymer also showed
potent antibacterial activity in vitro and in vivo [124] and was proven to effectively kill
clinical isolates of gram-positive and gram-negative bacteria at concentrations that had
very low toxicity towards mammalian cells [125].

Kuroda K et al. [126] reported the ability of methacrylate-based antimicrobial polymers
to inhibit bacterial biofilms. The designed polymers showed potent activity against plank-
tonic bacteria and inhibited biofilm development by cariogenic Streptococcus mutans [126].
The study was consistent with the study by Li et al. who showed inhibition of biofilms of
S. mutans using cationic monomer methacrylate-based amphiphilic polymers. In a recent
report, a pseudo-zwitterionic copolymer synthesized from mixed-charge subunits was also
reported with excellent antibiofilm efficacy against MRSA and Pseudomonas aeruginosa [127].
Li J et al. [128] reported using dextran-block methacrylate-based nanoparticle copolymers
with antibiofilm activity against MRSA, vancomycin-resistant Enterococci (VRE V583), and
Enterococcus faecalis. Interestingly, their block copolymer (Figure 7b) diffuses into biofilms
and attaches to bacteria but does not kill them; instead, it stimulates the gradual dispersal
of biofilm bacteria [128]. An α/β chimeric polypeptide molecular brush (α/β CPMB) was
also reported with excellent activity against biofilms of MRSA (inhibition and eradication).
The polymer had further shown excellent killing of metabolically inactive persister cells,
which are usually antibiotic insensitive [129]. There are quite a few other examples of
antimicrobial polymeric materials targeting bacterial biofilms [130–132]; however, to our
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knowledge, the mechanisms by which these polymers exert their antibiofilm activities are
not yet clearly understood.
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Figure 7. Examples of antibiofilm cationic HDP-mimicking polymers. (a) Cationic antimicrobial β-peptide polymer (20:80
Bu:DM) [123,124], and (b) a dextran-block methacrylate-based nanoparticle copolymer [128].

2.5. Biodegradable Cationic Polymers

The majority of designed HDP-mimicking polymers tend to have non-degradable
backbones, which may make them undesirable products in advanced preclinical and
clinical studies. Undegradable molecules tend to accumulate in the body and cause
long-term toxicity. In an effort to solve this drawback, some researchers have focused
on designing biodegradable cationic antimicrobial polymers. For example, Yang Y et al.
reported a biodegradable antimicrobial polymeric nanostructure based on functional cyclic
polycarbonates exhibiting excellent selective antimicrobial activity towards the bacterium
MRSA and fungi (Figure 8) [133].
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In another study, Yang Y et al. [134] reported biodegradable antimicrobial polymers of
guanidinium-functionalized polycarbonates with potent bactericidal activity and a distinct
mechanism that does not allow the induction of drug resistance. In addition, the designed
polymer was nontoxic and exhibited broad-spectrum, in-vivo antimicrobial activity. Several
other examples of biodegradable cationic polymers have also been reported, and all have
shown excellent activity with good biocompatibility [135–138]. Indeed, these degradable
cationic antimicrobial polymers, which lead to nontoxic degradation by-products in vivo,
offer promising, safe polymeric antibacterial macromolecules.

2.6. Advantages: HDPs and HDP-Mimicking Polymers

HDPs have attracted considerable attention in the last decades as potentially new
antimicrobial drugs due to their benefits. (1) Peptides exhibit a low propensity to develop
bacterial resistance, and their physicochemical properties and chemical structures are con-
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sidered evolutionarily optimized to selectively target bacteria [139]. The mechanism by
which HDPs act can involve multiple targets, including bacterial cell membranes, leading
to complete damage of the membranes and cell death in addition to cell wall synthesis, cell
division, and/or a range of intracellular targets, including compromising macromolecular
synthesis (DNA/RNA/proteins) [21]. It is very challenging for the bacteria to adapt a
resistance strategy towards these multifaceted mechanisms, although some resistance mech-
anisms to HDPs influencing, for example, uptake or stability have been reported [23,139].
(2) Peptides are generally biodegradable molecules and do not persist in the body or the
environment. Biodegradability is both a compromising issue (if the molecule is removed
too rapidly) and essential for drug design since it can decrease toxicities by helping to
prevent long-term accumulation of medications in the body. In addition, it is important
to the environment to reduce exposure of the peptides to environmental microorganisms
for an extended period, especially at low concentrations that can lead to an emerging pool
of resistant bacteria [139]. (3) Unlike antibiotics, where the antimicrobial activity can be
relatively selective, peptides often have a broad spectrum of activity, targeting a large
number of strains from both gram-positive and gram-negative pathogens. This makes
them excellent candidates for clinically accepted therapies. (4) The ability of some HDPs to
act against recalcitrant bacterial biofilms is perhaps one of the most significant advantages
of such HDPs over conventional antibiotics, which work poorly against biofilms even when
applied in combinations. (5) The ability of HDPs to modulate the immune system, a re-
cently appreciated functionality of HDPs, make these small molecules attractive candidates
as anti-infective agents with an ability to selectively stimulate protective immunity while
suppressing inflammation [13].

HDP-mimicking polymers have elicited substantial interest in combating drug-resistant
bacteria since they possess some or all of these advantages of HDPs in addition to having
certain additional benefits of biocidal disinfectants. Thus, (1) like HDPs, antimicrobial
polymers can have broad-spectrum activity against gram-positive and gram-negative bac-
teria, including the hard-to-treat ESCAPE pathogens. In addition, some have demonstrated
excellent activities against other microorganisms, including fungi. (2) Low susceptibility to
develop bacterial resistance was observed with many polymer mimics of HDPs. (3) Poly-
mers are generally stable against metabolic enzymes and provide stable macromolecules
in long-term usage and storage. (4) Unlike peptides, where large-scale production can be
difficult and expensive, polymer chemistry can provide easy and cost-efficient methods for
large-scale polymer production [140–142].

2.7. Limitations: HDPs and HDP-Mimicking Polymers

HDPs are excellent small molecules to be developed as drug therapies to reinforce
the anti-infective arsenal. Nevertheless, and despite the abovementioned benefits, the
transition of these molecules into clinical use is impeded by a number of constraints.
(1) Peptide production by either chemical synthesis, peptide expression/isolation from
recombinant microbes, or biological display technologies are costly and time consuming,
and the latter two technologies are not developed for large quantities. (2) Peptides generally
have poor stability to proteases and peptidases, leading to loss of activity. (3) Some HDPs
are quite toxic to mammalian cells, especially in vivo; one type of toxicity is driven by
the tendency of amphipathic cations, like peptides, to aggregate [143]. Further studies, in
fact, are needed to address this issue and understand in depth the mechanism(s) by which
toxicity occurs.

By analogy, while cationic polymers were designed to mimic the physicochemical
features of HD and overcome some of their limitations, they can also present certain
weaknesses that need to be addressed before transitioning them into clinical antibiotics.
For example, (1) as observed for HDPs, polymers often possess significant toxicity to
eukaryotic cells, which may be related to their physicochemical properties and somewhat
non-selective mechanism of action. While most investigations have attempted to address
this issue and have succeeded to some extent in many cases, most were at the cost of
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losing or reducing antimicrobial activity. Therefore, there is a persistent need to develop
antimicrobial polymeric compounds with broad-spectrum activities against microbial cells
that exhibit limited or no toxicity towards eukaryotic cells. (2) Polymers often have high
molecular weights; thus, they may demonstrate poor aqueous solubility, leading to low
antimicrobial activity. The molecular weight can indeed affect both solubility and the activ-
ities of the polymers as it influences the size, net charge, and hydrophobicity [53,144,145].
In addition, large macromolecules may not act as rapidly as small molecules, such as
oligomers or peptides, against microorganisms. (3) Several cationic polymers designed to
mimic HDPs are to date neither biocompatible nor biodegradable, and their use would
likely be restricted to use on surfaces through integration with appropriate materials either
by self-assembly or grafting to produce formulations with adequate performance and low
systemic or in-vivo toxicity. Nonetheless, it is worth stating that the progress in the area has
led to the discovery of some polymers with better biocompatibilities [86,114,134,138,146],
and alternative approaches that could solve this issue, such as the design of biodegradable
polymers and large polymeric macromolecules [115,147,148]. (4) While numerous antimi-
crobial HDPs have been reported in the literature, only small numbers have proceeded
into clinical trials [33,149], and none have made it to the marketplace (although cationic
amphipathic peptides, like gramicidin S, polymyxin B, and nisin, have been successfully
commercialized in the past). Similarly, to date, no polymer mimics of HDP have reached
this benchmark, and to our knowledge, extensive studies are needed before these polymers
can be introduced to clinical use.

2.8. Potential Success of HDP-Mimicking Polymers

Microbial infections, including bacteria, threaten human health and economic stability,
and without doubt, new medications and alternatives to failed/failing antibiotics are
needed. HDPs have a significant promise to supplement antibiotics in tackling infectious
diseases and reinforcing the anti-infective arsenal. Likewise, HDP-mimicking antimicrobial
polymers have an enormous potential to supplement antibiotics. The potential success of
these macromolecules arises from their advantageous properties, including their broad-
spectrum activities, low susceptibility to bacterial resistance, chemical stability, and the
ease of large-scale production at modest costs. Nevertheless, further studies are needed
before initiating clinical development leading to approved therapeutics.

First, while a wide diversity of chemical structural studies has been explored, precise
knowledge of polymer chemistry and the structural features that regulate anti-infective
activity is still lacking. A complete understanding of the underlying mechanisms respon-
sible for bioactivity and toxicity is crucial for designing polymeric compounds that can
recognize prokaryotes from eukaryotes. Hence, we favour the idea of revisiting the funda-
mental design principle of cationic polymers, and we see it as a challenging but promising
approach towards taking full advantage of HDPs and their analogs. The current structural
design of cationic polymers relies on incorporating two main components, cationic and
hydrophobic subunits, at different ratios and then optimizing the length, charge density,
amphiphilicity, etc., to achieve a preferable model with minimal toxicity and maximal
activity. Contrarily, HDPs encompass various amino acids (in addition to the cationic
and hydrophobic residues) and cover a significant to a vast area of chemical space that
significantly influences each peptide’s activities [23]. This suggests that cationic antimi-
crobial polymers, due to their innate simplicity, have not yet taken full advantage of the
physiochemical properties available for HDPs.

Second, many HDPs have recently been shown to synergize with conventional antibi-
otics; this provides another path for their practical use in addressing bacterial resistance
mechanisms [150–152]. For example, peptides can increase the intracellular concentra-
tion of antibiotics by increasing their cellular uptake based on several studies performed
against planktonic bacteria [153–155]. Furthermore, this synergistic or additive effect has
also been demonstrated to enhance the antibiofilm activity of HDP/antibiotic combina-
tions [156–158]. Indeed, the synergy enables the targeting biofilms of difficult to treat
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pathogens (e.g., ESKAPE pathogens) in in-vivo models [159,160]. Similarly, in addition
to monotherapy, cationic antimicrobial polymers might be used alternatively as adjuvant
therapies in combination with antibiotics. While there are limited data on this approach,
a few studies have reported exciting results. Thus, Zangeneh R et al. showed a synergis-
tic/additive effect of a combination of a synthetic HDP-mimicking polymer (oligoethylene
glycol, hydrophobic ethyl hexyl, and cationic primary amine groups) and two antibiotics,
doxycycline and colistin, against Pseudomonas aeruginosa and E. coli [161]. In another study,
a vitamin E-functionalized cationic polycarbonates polymer co-delivery with doxycycline
showed an excellent synergistic effect towards Pseudomonas aeruginosa [162]. Synergistic
activity between a cationic antimicrobial polycation (polyacrylamide) and daptomycin was
also reported against Staphylococcus aureus biofilm [163]. Several combination strategies
involving synthetic antimicrobial polymers were discussed previously [164], emphasizing
combinations with nitric oxide, antibiotics, essential oils, and metals. These synergistic data
reportedly showed the potential of coadministration of antimicrobial polymers with antibi-
otics. Thus, such synergistic interactions will improve treatment effectiveness and provide
a practical approach to extending the lifetime of antibiotics by restoring the susceptibility
of the multidrug-resistant bacteria to antibiotics.

Third, while extensive studies have been performed on amphiphilic antimicrobial
polymers to optimize their activity, limit toxicity, and address structure-activity relation-
ships [54], very minimal but encouraging studies have tested the efficacy of the cationic
polymers in animal models. Some of these studies include, for example, testing cationic
methacrylate-based polymers in vivo against Staphylococcus aureus nasal colonization,
where the polymer demonstrated a significant reduction in the number of viable Staphylo-
coccus aureus in the nasal environment of cotton rats relative to controls [108]. Other topical
uses of the polymers demonstrated activity in burned skin [101], wound healing [165],
abscess infections [123], and the cornea [166]. When given by injection, cationic polymers
in a few other studies also demonstrated good compatibility and high efficacy in treating
multiple multidrug-resistant infections [115,134,167,168]. These referenced in-vivo experi-
ments and perhaps others are certainly adding significant additional information regarding
the potential therapeutic applications of HDP-mimicking polymers.

Last but not least, toxicity, pharmacokinetics, and dynamic studies must be carried
out for HDPs, and their polymer mimics in ex-vivo, human tissue models as well as in
animal models to determine their systemic acceptability and compatibility and identify
potentially serious side effects, to guide future drug design and development.

3. Polymer Brushes

Infection of medical devices and biomaterials is a major healthcare burden, which
often leads to increased hospitalization, duration of stay at the intensive care units, cost of
treatment, and high morbidity and mortality rates [169]. In recent years, polymer brushes-
nanofilms of polymeric materials grafted onto inert surfaces have attracted considerable
attention as a novel strategy to fight infections, including preventing the formation of
biofilms associated with various medical devices, such as catheters, heart stents, dental
implants, orthopaedic implants, contact lenses, etc. Grafting or, in other words, “coating”
these devices with polymer brushes can provide antifouling activity by preventing bacterial
adherence onto the surfaces and mediating antimicrobial activity. They provide ideal
surfaces that can improve the long-term performance and stability of devices/implants.
Various polymeric brushes have been designed on multiple substrates during the last
decades [170–173], and here, we feature some examples of the supramolecular assemblies
of polymer brushes with HDPs.

3.1. General Approaches for Surface Coating

Surface coatings can be classified into three different types based on the strategy used
to protect against bacterial infections, including (1) antifouling-based coatings representing
an antiadhesive approach. In this category, hydrophilic biomaterials (or polymers) are
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anchored onto the surfaces to discourage or reduce the capacity of bacterial adhesion
onto the substrates. While the approach prevents surface contamination, it does not kill
bacteria or inhibit their growth in solutions. Examples of such biomaterials are PEG and
polymers with a zwitterionic nature, such as poly-(phosphorylcholine), poly(sulfobetaine),
and poly-(carboxybetaine) [174,175]. (2) The second method is biocidal release-based
coatings, in which the surface-coated biomaterials release biocidal compounds over time
into the surrounding environment, killing adhered and nearby bacteria adjacent to the
device. Various biocidal and antimicrobial agents have been used, such as antibiotics,
nanoparticles, metals, bacteriophages, etc. [176–178]. (3) The third method is contact
killing-based coatings. In this strategy, an antimicrobial agent is attached to the surfaces
that act as an antimicrobial and hopefully an antibiofilm agent. Using this approach,
the bacteria are often killed upon contact although this strategy’s limitation is that the
device can become coated with dead bacteria, providing a surface that does not mediate
contact killing. Various biomaterials have been anchored on multiple substrates, including
conventional antibiotics, HDPs, HDP mimetics, and others [179,180].

3.2. Surface Engineered Polymeric-Brush-Tethered HDPs

Anti-adhesive agents in surface modifications (i.e., hydrophilic polymer brushes)
provide coated surfaces that prevent initial bacterial adhesion; however, such architectures
do not kill or inhibit biofilm growth, and the few adhered bacteria can over time still form
a mature biofilm [181,182]. Therefore, to overcome this shortcoming and improve surface
coatings, surface-anchored polymer brushes have been functionalized with antimicrobial
agents to kill bacteria and inhibit biofilm development [32,182–185].

Among these antimicrobial agents, HDPs exhibit appealing features for designing
antibiofilm surfaces (Figure 9). Indeed, integrating HDPs onto polymer brushes can pro-
vide several substantial benefits to the coating materials (or polymers), such as (1) creating
highly hydrated (amphiphilic) surfaces with antifouling and antimicrobial properties,
(2) providing broad-spectrum activity against a wide range of bacterial species, (3) inhibit-
ing biofilm development, and (4) generating highly biocompatible materials in vivo. In
addition to these positives, HDPs are also considered viable alternatives to antibiotics due
to their low susceptibility to develop resistance, and relative to biocides, HDPs tend to
have lower toxicity towards mammalian cells with negligible immunogenicity.
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The implications of integrating HDPs to polymer brushes have certainly enhanced the
coated surfaces’ antimicrobial and antibiofilm performance. Numerous reported studies
by our research group and others suggested that the conjugation strategy of HDPs onto
polymer brushes is highly effective in preventing bacterial adhesion and biofilm devel-
opment on various surfaces in vitro [183,186–191]. Indeed, the approach has also been
proven to be efficient in in-vivo models. For example, in a recent study, polymer brushes
integrated with HDPs on polyurethane, a common material used for catheter manufacture,
prevented bacterial adhesion by 99.9% (for both gram-positive and gram-negative strains)
and inhibited planktonic growth by 70% in vitro. When tested in a mouse urinary catheter
infection model, the HDP-conjugated polymer brush catheters demonstrated reduced
the bacteria adhesion onto the catheter surface by more than 4 logs when compared to
the uncoated catheter surfaces [192]. In another study by Fang Z et al., polymer brushes
with mono- and dual-peptide functionalized Ti rods implanted in a rabbit femur (bone)
defect model exhibited excellent biocompatibility and antimicrobial activity [193]. Several
other studies have reported in-vivo experiments [194–198] reinforcing the promise of us-
ing polymer-brush HDP-conjugate design to prepare functional biomaterial surfaces. In
addition to their conjugation with standard polymer brushes, peptides with antimicrobial
activity have also been integrated into or with other films/surfaces, such as protein-based
films (i.e., self-assembled protein nanostructures) [199–206], silk surgical sutures [207,208],
metal nanoparticles [209,210] and other solid interfaces, in order to provide biomaterials
that can prevent and minimize the risks of bacterial infections.

It is worth noting that aside from intriguing contributions to surface science, inte-
grating polymer brushes into HDPs in solution represents a novel advanced approach
that provides significant advantages to HDPs, such as enhancing therapeutic performance,
decreasing toxicity towards mammalian cells, and protecting peptides from degradation
by digestive enzymes, as discussed in several representative reviews [211–215] of the
therapeutic potential of HDP–polymer conjugates.

3.3. Challenges and Future of Polymeric-Brush-Tethered HDPs

Despite the advantages offered by the polymeric-brushes HDP-conjugation strategy
in coating surfaces of medical devices and implants, there are a number of challenges
and constraints that need to be fully addressed. For example, (1) retaining sufficient
activity of the immobilized peptides is not an easy task, and there is no formal relationship
between the activity of HDPs when bound and free [216]. In fact, the activity of the bound
peptides is influenced by many intra- and interlinked factors, such as the structure of
the peptide itself, sequence length, type of surface coated, the density of the peptide on
the surface [216], spacer length [217], composition, molecular weight, and many others.
Moreover, (2) other factors, such as the nature of the surrounding environment pH and
ionic strength (i.e., salt concentration), which vary based on body location, can significantly
impact the performance of the coated layers on the device or implant. Investigating these
influential factors case by case must be considered when studying the activity of bound
HDPs; nevertheless, the process can be very tedious, time consuming, and unfeasible for
high-throughput screening. (3) Theoretically, the stability of HDPs might be a limitation
in the described strategy since peptide degradation or denaturation might lead to a loss
in antimicrobial surface activity. Alternatively, for unstable peptides, synthetic analogs or
HDP mimetics can be used to circumvent this limitation. (4) Accumulation of dead bacteria
on the antimicrobial coated surface can also be a challenging problem that needs to be
solved. Immobilized antimicrobials catch bacteria and kill them, but those dead bacterial
cells plus debris remain on the surface and act as a second layer (a breeding ground) for
other bacteria to grow, rendering the coated surface ineffective [218]. While tethered HDPs
on polymer brushes minimize the issue to some extent, they do not prevent accumulation.
One strategy to overcome this is to use layers with self-cleaning properties or combine
antifouling and antimicrobial properties into the polymer brush strategy to repel bacteria
and those killed by the surface-exposed HDPs [219,220]. However, we must be concerned
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whether the antifouling properties of the coated surfaces come at the expense of reducing
antimicrobial activity. Further studies are needed in these directions.

Despite the limitations mentioned above, the available data on polymer brushes is
encouraging, and we believe that integrating HDPs into the polymers is a significant step
toward addressing a clinically important problem. Indeed, the strategy is one of the most
promising approaches to avoid or minimize bacterial colonization on surfaces of medical
devices and implants.

4. General Conclusions

This review discusses polymeric biomaterials, including HDP-mimicking polymers
and polymeric brushes tethered to HDPs, as two advanced strategies to tackle infectious
diseases. Cationic antimicrobial polymers are certainly one of the best possible candidates
for surmounting certain constraints of HDPs, including lack of stability and cost of syn-
thesis. The ease of synthesis and access to a wide variety of synthetic materials provide
substantial incentive to continue to develop such polymers. In addition, the increase in the
development of degradable polymeric biomaterials makes it increasingly possible to create
products that can avoid toxicity and persistence in the environment. Similarly, polymer
brushes integrated with HDPs offer a consistent and highly effective approach to fighting
infections associated with indwelling medical devices and implants. While systematic
analysis and in-depth understanding of the peptide-coating structure: activity relationships
are required to establish robust strategies to produce efficient antimicrobial surfaces, the
success of this approach will make a significant contribution to addressing challenging
issues associated with nosocomial infections and biofilms.
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