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Abstract

Background: Natural selection can shape specific cognitive abilities and the extent to which a given species relies on
various cues when learning associations between stimuli and rewards. Because the flower bat Glossophaga soricina feeds
primarily on nectar, and the locations of nectar-producing flowers remain constant, G. soricina might be predisposed to
learn to associate food with locations. Indeed, G. soricina has been observed to rely far more heavily on spatial cues than on
shape cues when relocating food, and to learn poorly when shape alone provides a reliable cue to the presence of food.

Methodology/Principal Findings: Here we determined whether G. soricina would learn to use scent cues as indicators of the
presence of food when such cues were also available. Nectar-producing plants fed upon by G. soricina often produce distinct,
intense odors. We therefore expected G. soricina to relocate food sources using scent cues, particularly the flower-produced
compound, dimethyl disulfide, which is attractive even to G. soricina with no previous experience of it. We also compared the
learning of associations between cues and food sources by G. soricina with that of a related fruit-eating bat, Carollia perspicillata.
We found that (1) G. soricina did not learn to associate scent cues, including dimethyl disulfide, with feeding sites when the
previously rewarded spatial cues were also available, and (2) both the fruit-eating C. perspicillata and the flower-feeding G.
soricina were significantly more reliant on spatial cues than associated sensory cues for relocating food.

Conclusions/Significance: These findings, taken together with past results, provide evidence of a powerful, experience-
independent predilection of both species to rely on spatial cues when attempting to relocate food.
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Introduction

Differences in foraging behavior might lead to predictable

differences in how animals learn about where food is to be found.

In particular, animal species can differ in the relative importance that

individuals place on spatial versus sensory cues [e.g. 1–6]. For

example, there is evidence that seed-caching birds are more likely

than non-caching birds to use spatial cues rather than sensory cues,

such as color or pattern, to relocate food [7–9]. An enhanced reliance

on spatial cues for relocating food items might be expected not only in

seed-caching species [e.g. 5–6], but also in species that exploit

stationary concentrations of food such as flowers. For instance,

excellent spatial learning is demonstrated by many nectar-feeding

animals (e.g. bumblebees [10] and hummingbirds [11]).

The neotropical bat, Glossophaga soricina (Chiroptera: Phyllosto-

midae) feeds largely on floral nectar, and individuals will revisit the

same flower as many as 30 times in a single night [12]. G. soricina

has an excellent spatial memory, relies heavily on spatial cues and

tends to ignore shape cues when relocating sources of nectar

[13–15]. Even when spatial cues to the location of food become

unreliable, G. soricina has great difficulty in learning to associate

shape cues with food [14,15]. In Stich and Winter’s study [15], an

automated, two-arm feeding apparatus alternated the side of an

enclosure on which food was available while differences in the

shape of the two feeders consistently indicated where food was to

be found. Experimentally naı̈ve, captive G. soricina required more

than 5000 trials before reaching a criterion of 85 percent correct

responses to the rewarded shape.

Many neotropical flowers that are pollinated by bats have

distinctive scents that are attractive to their pollinators. Many of

these scents are sulfur compounds, particularly dimethyl disulfide,

which is significantly more attractive to G. soricina and its congener G.

commissarisi than are other floral scent compounds [16]. Because over

evolutionary time, floral scents in general, and dimethyl disulfide in

particular, have signaled the presence of food to nectar-feeding bats,

we suspected that these bats might more readily associate scents than

shapes with food and use such scent cues to relocate food sources.

In Experiment 1, we examined the reliance of G. soricina on

scents, predicting that, unlike shape cues, scent cues would be used

to relocate foods. However, a finding that nectar-feeding bats
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would fail to form associations between scents and food rewards

might result from our having used very salient shape cues and

relatively weak scent cues. Therefore, in Experiment 2, we

repeated Experiment 1 but used weaker shape cues and more

salient scent cues.

The scent cue that we used as the rewarded stimulus in

Experiment 2, dimethyl disulfide, is a major component of many

floral scents, and is strongly attractive to G. soricina the first time

that they encounter it. Captive-bred, exposure naı̈ve G. soricina are

significantly more likely to approach test tubes filled with a dilute

solution of dimethyl disulfide than test tubes containing other

compounds extracted from bat-pollinated flowers [16]. We

therefore anticipated that subjects in the present experiment

would be even more likely to use the scent of dimethyl disulfide to

relocate food rewards than subjects in Experiment 1 that might not

use the scent of oregano for that purpose.

Stich and Winter [15] have proposed that when relocating a

food source nectar-feeding bats might be more reliant on spatial

memory than related fruit-eating bats. They suggest that, although

fruiting plants provide resources for some time, a single fruit is

collected only once, and thus spatial cues should play a smaller

role in relocation of food in fruit-eating than in nectar-feeding

bats, such as G. soricina, that return many times to feed in precisely

the same location.

In Experiment 3, we therefore examined the hypothesis that

fruit-eating bats might be less disposed than nectar-feeding bats to

rely on spatial cues when seeking to return to a previously

profitable food source. Stich and Winter [15] have proposed a

continuum among species of neotropical leaf-nosed bats (Phyllos-

tomidae) in reliance on spatial cues when seeking food. Nectar-

feeding species that exploit stationary food sources were predicted

to be most dependent on spatial cues, insectivorous species to be

least dependent on spatial cues, and fruit-eating bats to occupy an

intermediate position. Here, we examined reliance on spatial cues

when rediscovering food in a fruit-eating phyllostomid, the short-

tailed fruit bat C. perspicillata. This species is sympatric with G.

soricina and often roosts with G. soricina in the wild; both species

forage at ground level in rainforest and share much of their

foraging space [17]. One notable difference between the two

species is that G. soricina has obvious morphological adaptations to

nectar feeding [18–19], while C. perspicillata is primarily a fruit-

eating generalist with a considerably broader diet than G. soricina

[17,20], feeds on nectar only opportunistically, and lacks dramatic

morphological adaptations for exploiting nectar [18]. Consistent

with Stich and Winter’s hypothesis [15], we expected C. perspicillata

to show less reliance on spatial cues and more reliance on shape

and scent when relocating food than the nectar-feeding G. soricina

that participated in Experiment 1.

Methods

Ethics statement
All experimental procedures in this paper were approved by the

Biodome and McMaster University’s Animal Care Committee

and were carried out in accord with the guidelines of the Canadian

Council for Animal Care.

Experiment 1
Subjects. Sixty captive, male Glossophaga soricina served as

subjects and were housed in the Biodôme de Montréal and

maintained on a 12/12 h dark/light schedule in three adjacent

rooms (a ‘‘test room,’’ a ‘‘waiting room’’ and a ‘‘colony room’’)

each roughly 3 m262.5 m high, with a temperature of 25–28uC
and 80–100 percent relative humidity. Subjects were maintained

on a diet of Nektar-Plus hummingbird food (Nekton Produkte,

Pforzheim, Germany), cantaloupe, and a mixture of chopped

banana, apple, fig, papaya, and marmoset chow, and had ad libitum

access to water.

Apparatus. We tested all bats in the ‘‘test room’’ (Figure 1) that

contained an array of feeders (Figure 2). We held extra bats prior to

testing in the ‘‘waiting room’’, which contained a replica of the array

of feeders in the test room. The ‘‘colony room’’ housed bats after we

had tested them. Food was presented to subjects in feeders

(Figure 2A), each consisting of a metal dish, with a tapered

terracotta flower pot suspended above it in a unique orientation

(shape cue), with the mouth of the pot facing either downwards,

outwards/towards the subject, inwards/hidden from subject, or

upwards, and a small aluminum-foil dish holding one tablespoon of

an herb or spice (scent cue), either rosemary, oregano, cumin, or

ginger suspended in front of the food dish and covered by a flap of

plastic mesh (Figure 2A). To access the food dish, bats had to fly over

the scent cue and in front of the shape cue.

Procedure. Following Brodbeck [8] and Thiele and Winter

[14], we first trained subjects to visit a food-rewarded feeder in the

presence of three other unrewarded feeders. Each of the four

feeders had a distinct combination of location, shape cue, and

scent cue. Individual bats were then tested with the same four

feeders, with one of the three cues (location, scent, shape) removed

and the two remaining cues providing conflicting information as to

the whereabouts of food. For example, during testing, we

presented subjects with one feeder in the previously rewarded

location, another with the previously rewarded shape cue, and two

control feeders with previously unrewarded shape cues at

previously unrewarded locations.

Training. Over 10 days, we trained all bats in the test room

to feed from only one of four feeders with a distinctive and

consistent location, scent (oregano), and shape (outward facing

pot). We chose feeder locations by randomly selecting coordinates

on the wire grid of the cage. To avoid possible bias towards feeders

on the outside of the array (that might have been more accessible

to a bat in flight than more centrally located feeders), we flipped a

coin to determine which of the two more centrally located feeders

would be rewarded. The rewarded feeder contained a mixture of

chopped banana, apple, fig, papaya, and marmoset chow. The

other three feeders contained the same ingredients as the rewarded

feeder mixed with 0.1% w/w quinine, an odorless substance that

G. soricina finds highly aversive (unpublished observations). This

rendered those three feeders non-rewarding whilst controlling for

any olfactory or visual cues associated with the food itself.

Figure 1. Test Room. Schematic shows A) experimental feeders, B)
first video camcorder, C) second video camcorder, and D) bat roost box.
doi:10.1371/journal.pone.0010808.g001

Spatial Learning in Two Bats
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Training tests. Immediately after training, we removed bats

to the waiting room so that we could test each subject individually

to determine if they were properly conditioned to the reward

feeder. During a training test, we presented a subject with the

same four feeders in the test room as during training, except that

each of the four feeders now contained a piece of banana. Since all

feeders contained equal rewards and subjects were tested alone,

subjects could not possibly choose feeders based on the presence of

quinine, differences in the amount of food in feeders, or the

presence or actions of other bats. An experimenter in the adjacent

colony room observed the subject’s behavior through a Plexiglas

window using an infrared sensitive video camera (Nightshot, Sony

Corp., NY, USA) and two sources of infrared illumination (HVL-

IRM, Sony Corp., NY, USA and IRLamp6, Bat Conservation

and Management Inc., Carlisle, PA, USA).

We counted the number of times a subject either landed on a

dish or hovered within 15 cm of a dish, facing it, for .3 video

frames (0.1 s). If a subject did not choose the reward feeder six

times in succession within 20 min, or if it made four incorrect

choices in a row, we returned it to the waiting room and tested a

new subject. Once a subject had made six consecutive choices of

the rewarded feeder, and thus demonstrated that it had learned to

go there directly, we immediately gave it a cue test.

Cue tests. During a cue test, all feeders were unrewarded,

containing only two pieces of cylindrical foam (2.5 cm long,

1.3 cm in diameter). We designed cue tests to investigate subjects’

responses to conflicting cues: (1) spatial versus shape cues, (2)

spatial versus scent cues, or (3) shape versus scent cues. Each cue

test lasted at least 5 min and each ended when the subject made

10 choices, or after 30 min without a subject making 10 choices,

whichever occurred first. We observed all cue tests using two

infrared-illuminated Sony Nightshot camcorders, one filming

straight on and the other at 90 degrees (Figure 1), to resolve any

ambiguous observations. We tested ten bats in each of the three

conditions described below.

Location vs. shape. In location versus shape cue tests, we removed

scent cues and, for each bat, switched the shape that had been

associated with the rewarded feeder during training with that

previously associated with an unrewarded feeder, alternating with

which shape we switched the previously awarded shape for each of

10 trials. Thus, each bat chose between a feeder in the previously

rewarded location but with a previously unrewarded shape, a

feeder associated with the previously rewarded shape but in a

previously unrewarded location, and two other feeders that served

as controls with previously unrewarded shapes in previously

unrewarded locations.

Location vs. scent. In location versus scent cue tests, we removed

shape cues and, for each bat, switched the scent that had been

associated during training with the feeder in the rewarded location

with a scent cue that, during training, had been associated with an

unrewarded feeder. Thus, bats chose between a feeder scented

with a previously unrewarded scent in the previously rewarded

location, another feeder with the previously rewarded scent in a

previously unrewarded location, and two control feeders in

previously unrewarded locations with previously unrewarded

scents.

Shape vs. scent. In shape versus scent cue tests, we: (1) completely

removed the feeder from the location that had been rewarded

during training, (2) switched the shapes previously associated with

the rewarded feeder with that of a second feeder in a location

unrewarded during training and (3) switched the scents previously

associated with the rewarded feeder with that of a third feeder in a

previously unrewarded location. Bats thus chose between three

feeders in previously unrewarded locations: one feeder with the

shape it had experienced during training in association with the

rewarded feeder, a second feeder with the scent it had experienced

during training in association with the rewarded feeder, and a

control feeder that had the same unrewarded scent and shape cues

that it had experienced during training.

Experiment 2
Subjects. Thirty additional male G. soricina, from the same

source as those that participated in Experiment 1, participated in

the Experiment 2.

Apparatus. The apparatus was that used in Experiment 1.

However, we chose new feeder locations using the same method as

Experiment 1 and used weak echo-acoustic shapes (relatively flat

patterns made from pipe cleaners pressed against the cage wall)

and four strong scent cues: (1) 1 mL of almond food flavoring

(Loblaw Companies, Ltd, Brampton, ON, Canada), (2) 200 mL

dimethyl disulfide (VWR International, LLC, West Chester, PA,

USA) in 800 mL of water, (3) 1 mL black pepper essential oil

(Lotus Brands, Inc, Twin Lakes, WI, USA), and (4) 1 mL of

orange food flavoring (Loblaw Companies, Ltd, Brampton, ON,

Canada). We placed these liquids in test tubes with their openings

covered with fine nylon mesh (Figure 2B). In a pilot experiment,

we found that naı̈ve bats from our captive colony, like those tested

by von Helversen and others [16], showed a strong preference for

test tubes scented with dimethyl disulfide at the concentration that

we used in the experiment.

Procedure. The procedure was identical to that used in

Experiment 1.

Experiment 3
Subjects. Thirty adult C. perspicillata, maintained in the

Biodôme de Montréal under the same conditions as the G.

soricina that participated in Experiments 1 and 2, participated in

Experiment 3.

Apparatus. The experimental situation was the same as that

used in Experiment 1 except new feeder locations were chosen.

Procedure. The procedure was the same as that used in

Experiment 1.

Data Analysis. We used Wilcoxon signed rank tests to

determine whether the mean percentage of choices towards the

two previously rewarded cues were significantly different between

Experiments 1 and 3. To maintain an overall alpha of 0.05, we

used an alpha of 0.008 for each of the three comparisons of choice

distribution that we carried out [24].

Figure 2. Experimental Feeders. Schematic of feeders used in A)
Experiments 1 and 3, and B) Experiment 2, show C) weak scent cue:
mesh-covered dish holding herbs or spice, D) metal food dish, E) strong
shape cue: flower pot, F) strong scent cue: mesh-covered test tube
holding strong liquid scent, G) weak shape cue: flat pattern of pipe
cleaners on cage wall.
doi:10.1371/journal.pone.0010808.g002
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Results

Experiment 1
Training tests. Most subjects rapidly reached the criterion of

six correct responses in succession (20/30), while five of the

remaining subjects required only a single retest to reach criterion,

and all had done so by the fourth retest.

Cue tests. Subjects relied heavily on spatial cues when

attempting to relocate food. When choosing between location and

shape, or location and scent, 19 of 20 bats chose the feeder in the

previously rewarded location first. Subjects in these two cue-test

conditions returned to that location on approximately 70% of their

subsequent choices (Figures 3 and 4), significantly more frequently

than they returned to shape (Wilcoxon sign-rank test: n = 10,

z = 21.5, p,0.008) or scent (n = 10, z = 22.5, p,0.004). Further,

during scent versus shape cue tests, when we had removed the

feeder from the previously rewarded position and offered subjects

a choice between the previously rewarded scent and shape, they

often oriented towards the spot on the cage wall where the

rewarded feeder had been located during training. Subjects also

chose the feeder nearer the location where the rewarded feeder

had been placed at about the same frequency as they visited

previously rewarded shapes or scents. During choices between

scent and shape, the percentage of their choices did not differ

significantly between shape and scent cues (Figure 5).

Experiment 2
During cue testing in Experiment 2, as in Experiment 1, subjects

chose the location rewarded during training far more frequently than

they chose either the scent (Wilcoxon sign-rank test: n = 10, z = 27.5,

p,0.002) or shape (n = 10, z = 27.5, p,0.002) previously associated

with food (Figures 3 and 4). Most surprising, subjects in Experiment 2,

when choosing between scent and location, showed no greater

tendency to attend to scent cues than had subjects in Experiment 1.

Again, as in Experiment 1, in the scent versus shape cue test, subjects

in Experiment 2 seemed to remain interested in location, choosing

the location closest to that where they had experienced reward during

training on more than 60 percent of trials, and attending little to

either scent or shape (Figure 5).

Figure 3. Location versus Shape Tests. Mean percentage of
choices (+/2 S. E.) of 10 bats are shown for Experiments 1 (flower bats
and strong shapes), 2 (flower bats and strong scents), and 3 (fruit bats
and strong shapes). Percents do not add up to 100 because previously
rewarded shapes or controls can also be nearest locations.
doi:10.1371/journal.pone.0010808.g003

Figure 4. Location versus Scent Tests. Mean percentage of choices
(+/2 S. E.) of 10 bats are shown for Experiments 1 (flower bats and
strong shapes), 2 (flower bats and strong scents), and 3 (fruit bats and
strong shapes). Percents do not add up to 100 because previously
rewarded scents or controls can also be nearest locations.
doi:10.1371/journal.pone.0010808.g004

Figure 5. Shape versus Scent Tests. Mean percentage of choices
(+/2 S. E.) of 10 bats are shown for Experiments 1 (flower bats and
strong shapes), 2 (flower bats and strong scents), and 3 (fruit bats and
strong shapes). Percents do not add up to 100 because previously
rewarded shapes, scents, or controls can also be nearest locations.
doi:10.1371/journal.pone.0010808.g005

Spatial Learning in Two Bats
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Experiment 3
Like Glossophaga soricina, during cue tests of scent versus location

and shape versus location, the first choices of Carollia perspicillata

were highly biased towards location with nine of 10 subjects tested

in each condition choosing the previously rewarded location first.

The choices of C. perspicillata in Experiment 3 did not differ

significantly from the choices of G. soricina in Experiment 1 during

location versus shape cue tests (n = 10, location: z = 0.72, p = 0.47;

shape: z = 0.55, p = 0.58), location versus scent cue tests (n = 10,

location: z = 0.49, p = 0.62; scent: z = 0.46, p = 0.65), or shape

versus scent cue tests (n = 10, shape: z = 0, p = 1; scent: z = 1.29,

p = 0.2).

Discussion

Glossophaga soricina relied heavily on spatial cues when attempt-

ing to relocate foods and essentially ignored the associations

between a rewarding feeding site and a shape or scent cue in

Experiment 1. Our results in Experiment 2 clearly show that

relatively low salience of the scent cues used as stimuli in

Experiment 1 was not responsible for the lack of reliance of

subjects on scent cues when relocating food. Taken together, the

results of Experiments 1 and 2 indicate that G. soricina is strongly

predisposed to rely on cues of location and to ignore both scent

and shape cues when attempting to relocate a source of food in

situations such as those that we and others [14,15] have examined.

Possibly, sensory cues such as scents are used primarily at scales

larger or smaller than could be studied in our experimental setting.

For example, G. soricina may use spatial memory to reach known

flower locations, then use shape and scent to find flower openings.

Similarly, female Mexican free-tailed bats (Tadarida brasiliensis,

Molossidae) seem to use a step-wise strategy when relocating their

own pups amongst what can be millions of others. Spatial memory

appears to be used first to locate the general area where a pup was

left and olfactory and vocal cues are then used to identify an

individual pup in the relevant area [21–23].

In all three shape versus scent tests, bats attended to nearest

locations as much or more than rewarded sensory cues (Figure 5).

It is thus likely that bats were still choosing feeders based on

proximity to original location rather than scent or shape. Since

both species relied primarily on spatial cues to relocate food, our

results were unable to find any difference in use of sensory cues

between the flower-feeding G. soricina and fruit-eating C.

perspicillata. Further tests with additional species might determine

the extent to which niche-specific strategies for associating

particular cues with food rewards exist in bats. For example,

Siemers [25] reported evidence that the insectivorous bat Myotis

nattereri (Chiroptera: Vespertilionidae) can easily learn to ignore

location and associate shapes with food.

Theories of associative learning generally share the assumption

that stimuli compete for control of behavior [e.g. 26]. Overshad-

owing [27] is one example of such competition. If two or more

stimuli are simultaneously paired with a rewarding event, as

occurred in the present experiments, it is often found that response

to any one of them will be less than if that stimulus had been the

only one paired with reward. Additional evidence of competition

between stimuli for control of behavior can be found in studies of

blocking [e.g. 28,29] in which the effects of overshadowing are

enhanced by training with one stimulus before it is used as an

element in a compound stimulus paired with reward. Such effects

have been demonstrated in a wide range of both situations and

species- fish [30], birds [31], as well as mammals [28,29], and

there is every reason to expect to see them in bats.

The results of the present series of experiment, in which we

presented bats with compound stimuli and spatial cues appeared

to overshadow both scent and shape cues, are understandable in

terms of this fundamental learning mechanism. Because we did

not train bats on scent cues alone, and could not therefore

compare the control of behavior of scent alone with that of scent as

part of a compound stimulus, the evidence of overshadowing of

scent by location is not conclusive in our results. Still, the present

findings are consistent with the notion that an overshadowing of

scent and shape cues by spatial cues is a phylogenetically

conserved trait in phyllostomid bats.

The divergence of the phyllostomid bats into a wide variety of

ecological niches suggests that they may provide an excellent model

system for studies of the evolution of specializations in cognition

[32–35]. It would be of interest to determine whether: (1) as Stich and

Winter [15] suggest in phyllostomid bats, overshadowing of scent and

shape cues by spatial cues might be less pronounced in insectivorous

than in frugivorous or nectarivorous species of phyllostomids, and (2)

prior training with scent or shape cues as signals for the presence of

food would reduce reliance on spatial cues in nectar-feeding and fruit-

eating phyllostomid bats when they attempt to relocate food. Page

and Ryan [32] indirectly demonstrate that this is likely the case for the

animal-eating phyllostomid, Trachops cirrhosus, when localizing frogs

using their mating calls.

In making predictions about the outcome of such experiments, it is

important to keep in mind that foraging in rain forest understory, as

do many phyllostomid bats, might provide strong general selection for

attention to location rather than primary sensory cues while

navigating through the environment. We found that both nectar-

feeding and fruit-eating bats, born (or living at least 18 years) in

captivity, exhibit strong reliance on spatial cues when foraging a

relatively few times in a simple, small-scale setting. Taken together

with Winter and Stich’s demonstration of a similar reliance on spatial

cues by nectar-feeding bats feeding many thousands of times in a

more complex environment [13], these findings provide compelling

evidence of a powerful, experience-independent predilection of the

phyllostomid bats studied to date to rely on spatial cues when

attempting to relocate food.
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