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Abstract: Pulmonary arterial hypertension (PAH) is a rare disease with high mortality despite recent
therapeutic advances. The disease is caused by both genetic and environmental factors and likely
gene–environment interactions. While PAH can manifest across the lifespan, pediatric-onset disease
is particularly challenging because it is frequently associated with a more severe clinical course
and comorbidities including lung/heart developmental anomalies. In light of these differences, it is
perhaps not surprising that emerging data from genetic studies of pediatric-onset PAH indicate that
the genetic basis is different than that of adults. There is a greater genetic burden in children, with rare
genetic factors contributing to ~42% of pediatric-onset PAH compared to ~12.5% of adult-onset PAH.
De novo variants are frequently associated with PAH in children and contribute to at least 15% of all
pediatric cases. The standard of medical care for pediatric PAH patients is based on extrapolations
from adult data. However, increased etiologic heterogeneity, poorer prognosis, and increased genetic
burden for pediatric-onset PAH calls for a dedicated pediatric research agenda to improve molecular
diagnosis and clinical management. A genomics-first approach will improve the understanding of
pediatric PAH and how it is related to other rare pediatric genetic disorders.
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1. Introduction

Pulmonary arterial hypertension (PAH) is a rare disease with an estimated prevalence of
4.8–8.1 cases/million for pediatric-onset [1] and 15–50 cases/million for adult-onset disease [2].
Pathogenic changes in the pulmonary vasculature—including endothelial dysfunction, aberrant
cell proliferation, and vasoconstriction—give rise to the clinical consequences of increased pulmonary
vascular pressures, increased vascular resistance, heart failure, and premature death [3]. The disease is
caused by genetic, epigenetic, and environmental factors, as well as gene–environment interactions
wherein genetic contributions to disease risk are modified by environmental exposures. Causal genetic
factors for PAH are typically autosomal dominantly inherited for genes such as BMPR2, the major
gene causing familial forms of PAH (FPAH) [4,5]. Environmental risk factors include hypoxia and
exposure to drugs and toxins [4]. Epigenetic factors include active histone mark H3K27ac [6]. Most
of our understanding of PAH etiology and treatment is based upon studies in adults [7,8]. However,
emerging clinical and genetic data indicate that there are fundamental differences between pediatric-
and adult-onset disease.

Pediatric PAH differs from the adult-onset disease in several important aspects, including sex
bias, clinical presentation, etiology, and response to therapy [7–9]. The frequency of PAH is ~3–4-fold
higher in females relative to males for adult-onset disease. However, data from the National Biological
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Sample and Data Repository for PAH (aka PAH Biobank, Table 1) [10,11] and other studies [12,13]
indicate that the frequency of pediatric-onset PAH is similar for females and males, suggesting less
dependence on sex-specific factors in children. Children present with increased severity of disease, e.g.,
elevated mean pulmonary artery pressure (mPAP), decreased cardiac output, and increased pulmonary
vascular resistance, compared to adults at diagnosis (Table 1) [10,11]. The clinical manifestations likely
reflect the complex etiology of disease in children. While prenatal and early postnatal influences
on lung growth and development can contribute to the development of PAH across the lifespan,
early developmental influences play a particularly prominent role in pediatric-onset PAH in which
patients frequently have complex comorbidities such as congenital heart disease (APAH-CHD), Down
syndrome, congenital diaphragmatic hernia (CDH), and other developmental lung diseases, including
persistent pulmonary hypertension of the newborn (PPHN) [7,14,15]. Histopathological studies have
identified abnormal lung development and lung hypoplasia as common features of PAH, CHD, CDH,
and Down syndrome [14,16]. While the mechanisms for impaired lung development are not known,
altered expression of angiogenic and anti-angiogenic genes likely contribute [17–20]. Decreased lung
vascular and alveolar growth predispose one to vascular injury during susceptible periods of growth
and adaptation. The presentation of pediatric PAH with developmental comorbidities contributes
to poor outcomes in these children [7,15]. Few pharmaceutical therapies are approved for use in
children due to the lack of safety and efficacy data [8]. However, a retrospective study of pediatric PAH
patients suggested that PAH patients with Down syndrome may be less responsive to PAH treatments
than non-Down syndrome patients [21]. Clearly, pediatric-focused studies are needed to increase
our understanding about the natural history, the pathogenic mechanisms, and the treatment of PAH
in children.
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Table 1. Clinical characteristics and hemodynamic parameters of child- vs. adult-onset pulmonary arterial hypertension (PAH) cases at diagnosis. Data are from
the PAH Biobank (n = 2572). Child-onset, <18 years of age at diagnosis. Mean ± SD.

Group (n) Age at dx (y) F:M Ratio mPAP (mm Hg) mPCWP (mm Hg) CO Fisk (L/min) PVR (Woods
Units) Common Comorbidities

Child (226) 7.7 ± 5.4 1.65:1 55.1 ± 18.6 9.0 ± 3.0 3.2 ± 1.6 18.1 ± 11.7 CHD, CDH, DS, lung
growth/development

Adult (2345) 51.6 ± 14.7 4.02:1 49.6 ± 13.9 10.2 ± 4.2 4.6 ± 1.7 10.0 ± 5.9
HTN, hypothyroidism,

other pulmonary &
metabolic diseases

p-value <0.0001 * <0.0001 ** <0.0001 * <0.0001 * <0.0001 * <0.0001 *

Abbreviations: dx, diagnosis; F:M, female:male; mPAP, mean pulmonary artery pressure; mCWP, mean pulmonary capillary wedge pressure; CO, cardiac output; PVR, pulmonary vascular
resistance; CHD, congenital heart disease; CDH, congenital diaphragmatic hernia; DS, Down syndrome; HTN, systemic hypertension. * Student’s t-test, 2-tailed. ** Fisher exact test.
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2. Genetics of Pediatric PAH—Current Knowledge

Emerging data from genetic studies of pediatric-onset PAH indicate that the genetic basis in
children is different from that of adults [10,11,13]. There is a greater genetic burden in children, with
rare genetic factors contributing to ~42% of pediatric-onset PAH compared to ~12.5% of adult-onset
PAH (Figure 1). De novo variants are frequent in children, likely contributing to ~15% of pediatric
PAH [10,13]. Among rare inherited variants, variants in BMPR2 are causal in ~6.5–7% of both pediatric-
and adult-onset PAH; most of the cases are FPAH or idiopathic PAH (IPAH), rarely PAH associated with
other diseases (APAH) [11,22], and no occurrences in PPHN have been reported to date [23]. Notably,
two of the other known causal genes with the highest frequencies of rare deleterious variants among
pediatric cases—TBX4 and SOX17—are highly expressed in embryonic tissues and have prominent
roles in lung and vasculature development [24–26]. The mean age of PAH onset by risk gene is shown
for twelve of the genes in Figure 2.Genes 2020, 11, x FOR PEER REVIEW 3 of 15 
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disease onset (i.e., age at diagnostic right heart catheterization). The number of cases carrying variants 
for each gene is given above each box plot. Genes represented by less than four cases are not shown. 
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specific Tbx4/Tbx5 deficient mice exhibit impaired lung branching and hypoplasia during gestation 
as well as early postnatal death due to severe respiratory disease [24]. TBX4 is also expressed in the 
developing atrium of the heart and the limb buds [27]. In humans, rare but recurrent microdeletions 
of chromosome 17q23, including TBX4, have been observed in children with complex phenotypes 
including PAH, heart and skeletal defects, and neurodevelopmental delay [28–30]. More recently, 
TBX4-specific likely gene-disrupting (LGD) and damaging missense variants have been associated 
with PAH with or without small patella syndrome (OMIM #147891), most frequently in pediatric 
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significant enrichment among pediatric- compared to adult-onset IPAH cases (Columbia University 
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In the PAH Biobank, ten additional TBX4 variants were identified for other PAH subtypes, including 
three APAH-CHD cases with heart defects. In a cohort of 256 APAH-CHD cases (144 pediatric- and 
112 adult-onset), we identified TBX4 variants in seven cases with age-of-onset from newborn to 11 
years, one associated with alveolar hypoplasia [22]. Together, the data suggest that rare TBX4 
variants contribute to 7.7% of pediatric IPAH and 4.9% of pediatric APAH-CHD cases. Notably, TBX4 
variants have not been observed in CHD alone [33]. 

Skeletal and other developmental defects are not routinely assessed as part of a PAH diagnosis 
and, as such, some dual diagnoses may have been missed for PAH cases. To this end, Galambos et 
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Figure 1. Relative contributions of de novo mutations and 18 PAH risk genes in a cohort of 443 pediatric
and 2628 adult cases from CUIMC and the PAH Biobank. Risk genes include BMPR2, ABCC8, ACVRL1,
ATP13A3, BMPR1B, CAV1, EIF2AK4, ENG, GDF2, KCNA5, KCNK3, KDR, NOTCH1, SMAD1, SMAD4,
SMAD9, and TBX4. PAH cases include IPAH, APAH, FPAH and other rarer cases.
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Figure 2. Age-of-disease onset for all PAH Biobank cases with rare deleterious variants in known PAH
risk genes. Box plots showing median, interquartile range and min/max values for age-of-disease onset
(i.e., age at diagnostic right heart catheterization). The number of cases carrying variants for each gene
is given above each box plot. Genes represented by less than four cases are not shown.

2.1. TBX4

Unlike BMPR2 and other known causal PAH genes, TBX4 is not expressed in pulmonary arterial
endothelial cells or smooth muscle cells. TBX4 is a transcription factor in the T-box gene family that is
co-expressed with TBX5 throughout the mesenchyme of developing lung and trachea [24]. Lung-specific
Tbx4/Tbx5 deficient mice exhibit impaired lung branching and hypoplasia during gestation as well as
early postnatal death due to severe respiratory disease [24]. TBX4 is also expressed in the developing
atrium of the heart and the limb buds [27]. In humans, rare but recurrent microdeletions of chromosome
17q23, including TBX4, have been observed in children with complex phenotypes including PAH,
heart and skeletal defects, and neurodevelopmental delay [28–30]. More recently, TBX4-specific likely
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gene-disrupting (LGD) and damaging missense variants have been associated with PAH with or
without small patella syndrome (OMIM #147891), most frequently in pediatric cases [11,13,22,31,32].
In two independent cohorts [11,13], rare deleterious variants in TBX4 showed significant enrichment
among pediatric- compared to adult-onset IPAH cases (Columbia University Irving Medical Center,
CUIMC, cohort: 10/130 vs. 0/178; PAH Biobank: 12/155 vs. 1/257, respectively). In the PAH Biobank,
ten additional TBX4 variants were identified for other PAH subtypes, including three APAH-CHD
cases with heart defects. In a cohort of 256 APAH-CHD cases (144 pediatric- and 112 adult-onset), we
identified TBX4 variants in seven cases with age-of-onset from newborn to 11 years, one associated
with alveolar hypoplasia [22]. Together, the data suggest that rare TBX4 variants contribute to 7.7%
of pediatric IPAH and 4.9% of pediatric APAH-CHD cases. Notably, TBX4 variants have not been
observed in CHD alone [33].

Skeletal and other developmental defects are not routinely assessed as part of a PAH diagnosis and,
as such, some dual diagnoses may have been missed for PAH cases. To this end, Galambos et al. [34]
carried out detailed clinical and histopathologic characterization of 19 pediatric PAH cases with TBX4
variants: 6 microdeletions, 12 LGD, and 1 missense. Seven infants had evidence of abnormal distal
lung development, and there was a high frequency of heart and skeletal developmental anomalies;
neurodevelopmental delay was also observed among those patients with microdeletions, likely due to
haploinsufficiency of other adjacent genes. Ten newborns presented with PPHN which resolved but
recurred later in infancy or childhood [34]. A report from the National French Registry [35] concurred
these findings of skeletal, heart, and lung developmental anomalies in PAH cases. Why some patients
present with PAH alone, small patella syndrome alone, PAH with small patella syndrome, or PAH
with other developmental defects is not understood at this time but may depend on the variant type or
the protein location of gene variants, other genetic or epigenetic factors, or other environmental factors
affecting the specific transcriptional pathways regulated by TBX4. It is clear that genetic diagnosis of
a rare deleterious TBX4 variant or TBX4-containing microdeletion in pediatric PAH predicts a more
complex developmental phenotype (TBX4 syndrome [36]). Chest imaging for severe and diffuse
features of pulmonary growth arrest, assessment for congenital heart defects, physical examination of
hands and feet, and radiological assessment of pelvic areas are recommended. In addition, a TBX4
diagnosis predicts potential recurrence of PAH following neonatal PPHN suggesting that annual
screening by echocardiography may be useful.

2.2. SOX17

SOX17 is a member of the conserved family of SRY-related HMG box transcription factors,
originally identified as key regulators of male sex determination but now recognized to have critical
roles in embryogenesis [25,26]. SOX17 is specifically required for endoderm formation and vascular
morphogenesis [25,37,38], and germline deletion of Sox17 results in embryonic lethality by E10.5 [25].
In the developing murine lung, Sox17 is expressed in mesenchymal progenitor cells and is then
restricted to endothelial cells of the pulmonary vasculature [39]. Conditional deletion of Sox17 in
mesenchymal progenitor cells causes abnormal pulmonary vascular morphogenesis, resulting in
postnatal cardiopulmonary dysfunction and juvenile death [39]. Endothelial-specific inactivation
of Sox17 in mice leads to impaired arterial specification and embryonic death or, with conditional
postnatal inactivation, arterial-venous malformations [37]. Transcriptional activation of Sox17 via
hypoxia-induced factor 1α leads to upregulation of cyclin-E1 and endothelial regeneration in response
to lung injury [40]. We identified SOX17 as a candidate risk gene for PAH using exome sequencing
data in a cohort of 256 APAH-CHD patients [22]. Thirteen cases with rare predicted deleterious
SOX17 variants were identified, seven LGD and six missense variants located primarily within
the conserved HMG box domain (Figure 2). Fifty-six percent of the overall cohort were pediatric cases,
but nine of thirteen cases with rare deleterious variants in SOX17 were pediatric cases with mean
age-of-onset of 14 years. A recurrent frameshift variant, p.(Leu167Trpfs*213), was identified in three
APAH-CHD cases with age-of-onset ranging from 7 months to 5 years. We [11,22] and others [41,42]
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have identified SOX17 variants in IPAH cases but with lower frequency in adults. Combined data
from five cohorts ([11,13,22,41,42] indicate that SOX17 variants contribute to 7% of all pediatric-onset
PAH cases compared to 0.4% of adult-onset cases (Figure 3). Protein modeling indicates that at least
three of the APAH-CHD case missense variants localize to the transcription factor DNA binding
pocket [22], and missense variants in this region have been shown to impair both direct DNA binding
and SOX17/β-catenin nucleoprotein complexes at target gene promoters [43,44]. These data suggest
that haploinsufficiency with complete or partial loss of function alleles is the likely mechanism of
SOX17 risk in PAH.
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Figure 3. Locations of SOX17 likely gene disrupting (LGD) and rare predicted deleterious missense
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Some variants in SOX17 downstream target genes may be predicted to mimic the consequences of
SOX17 LGD variants or haploinsufficiency. We identified 163 rare predicted deleterious variants in 149
putative SOX17 target genes, most with prominent expression in pulmonary artery endothelial cells
and/or developing heart [22]. For the 32 LGD and the 131 missense variants, we observed a moderate
but significant enrichment of rare missense variants in cases compared to controls. Approximately
one-third of these genes had top quartile gene expression in both pulmonary artery endothelial cells
and developing heart. Pathway analysis indicated that the genes have likely roles in developmental
biology, small molecule transport/homeostasis, and extracellular matrix interactions (Table 2). While
these results are intriguing, they require confirmation in larger cohorts to determine which specific
SOX17-regulated genes/pathways contribute to PAH risk.

Table 2. Biological pathway analysis of SOX17 target genes harboring PAH-CHD patient rare deleterious
variants. Data obtained using Reactome 2016. Pathways with false discovery rate (FDR)-adjusted
p-value ≤ 0.05 are listed.

Term Reactome
ID

# Genes in
Overlap p-Value Adjusted

p-Value Genes

Developmental
biology

R-HAS-
1266738 16/786 6.8 × 10−5 0.03

KLB, ROBO2, LAMA1,
EGF, ANK3, LAMC,

SLC2A4, MED6, SPRED2,
MEIS1, NRFA2, PCMC4,

NF1, EP300, TCF4,
EPHB4

Transmembrane
transport of small

molecules

R-HAS-
382561 13/594 1.7 ×10−4 0.03

RYR2, ABCC4, ABCC1,
SLC1A3, SL#3A4,

SLC8A1, CLCN5, SLCA9,
ATPB7, ASPH, WNK1,

NUP35, EMB
Non-integrin

membrane
extracellular matrix

interactions

R-HAS-
3000171 4/42 1.7 × 10−4 0.03 LAMA1, LAMA4,

LAMC1, THBS1

Ion homeostasis R-HAS-
5578775 4/51 1.7 × 10−4 0.03 RYR2, ASPH, TPR3,

SLC8A1
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2.3. The Relative Contribution of Other Known PAH Risk Genes

Among the combined CUIMC and PAH Biobank pediatric cohort of 443 non-overlapping cases,
rare deleterious variants in other known PAH risk genes altogether account for ~12% of cases (27 IPAH,
26 APAH-CHD, 2 APAH-HHT). Variants in NOTCH1 account for 2.7% of pediatric PAH cases (2 IPAH,
10 APAH-CHD). NOTCH1 encodes a transmembrane receptor that facilitates intercellular interactions
and signaling with known roles in development and is a known CHD risk gene. Variants in ABCC8
and SMAD9 account for 2% and 1% of cases, respectively, including both IPAH and APAH-CHD.
Variants in ACVRL1/ENG account for 1% of cases, including two APAH-HHT cases. BMPR1B, CAV1,
GDF2, KCNK3 and KDR/BMP9 were identified in one to four cases each, accounting for <1% for each
gene. In addition to autosomal dominant inheritance, recessively inherited EIF2AK4 variants have
been identified in 1–3% of children in European and Chinese cohorts [31,45,46]. In addition, a rare
occurrence of recessively inherited GDF2 variants has been reported for a 3-year-old boy with right
heart failure [47]. Autosomal recessive inheritance of other risk variants may cause very early-onset
severe PAH, and additional pediatric studies are necessary to evaluate rare recessive genetic etiologies.

2.4. De Novo Variants

De novo variants have emerged as an important class of genetic factors underlying rare diseases,
especially early-onset severe conditions [15,33,48–50], due to strong negative selection decreasing
reproductive fitness [51]. We recently assessed the role of rare deleterious de novo variants in pediatric
PAH using a cohort of 124 parent-child trios (56% IPAH, 38% APAH-CHD, 6% other PAH) [10]. We
observed a 2.5-fold enrichment of de novo variants among all PAH cases compared to the expected
rate, almost entirely due to genes that are highly expressed in developing lung or heart (Table 3).
Among the PAH cases identified with de novo variants, 54% were IPAH, 32% were APAH-CHD,
and 14% other PAH; at least 20% of the de novo variant carriers had additional diagnoses of other
congenital anomalies. De novo variants were identified in three known PAH risk genes (four variants
in TBX4, two in BMPR2, one in ACVRL1) and 23 additional genes with high expression in developing
lung and/or heart but little to no previous association with PAH. Based on the enrichment rate, we
estimate that ~18 of the identified variants are likely to be implicated in pediatric PAH. The identified
genes fit a general pattern for developmental disorders—genes intolerant to LGD variants (pLI >0.5
for 40% of the PAH genes) and with known functions important for coordinated organogenesis,
including transcription factors, RNA binding proteins, protein kinases, and chromatin modification.
Three of the genes are known CHD risk genes (NOTCH1, PTPN11, and RAF1). NOTCH1 is the most
commonly associated gene for the congenital heart defect of tetralogy of Fallot, [52] and the NOTCH1
de novo variant carrier had a diagnosis of APAH-CHD with tetralogy of Fallot. Rare variants in
PTPN11 and RAF1 are causal for Noonan syndrome, which has a high frequency of congenital
heart defects. The de novo variants identified in both of these genes are known causal Noonan
syndrome variants [53], and three cases of fatal pediatric PAH with Noonan syndrome have been
previously reported [54,55]. We previously reported rare inherited variants in NOTCH1 (n = 5),
PTPN11 (n = 1), and RAF1 (n = 2) carried by APAH-CHD cases [22]. Aside from known PAH
and CHD genes, at least eight of the other genes with identified de novo variants have known or
plausible roles in lung/vascular development (Table 4). For example, AMOT (angiomotin) encodes
an angiostatin-binding protein involved in embryonic endothelial cell migration and tube formation
as well as endothelial cell tight junctions and angiogenesis [56–58]. HSPA4 (heat shock protein A4)
encodes a chaperone that, together with HSPA4L, functions in embryonic lung maturation and dual
deletion of Hspa4/Hspa4l, which results in intrauterine pulmonary hypoplasia and early neonatal
death [59]. KEAP1 (Kelch-like ECH associated protein 1) regulates oxidative stress and apoptosis
through interactions with NRF2 in murine vascular cells [60], and endothelial-specific deletion of NRF2
reduces endothelial sprouting in vivo [61] and increases susceptibility to bronchopulmonary dysplasia
and other respiratory diseases [62]. An NRF2 activator is currently being investigated in a phase 2
clinical trial for PAH (ichgcp.net/clinical-trials-registry/NCT02036970). Finally, one third of all of the de
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novo variants identified in the trio analysis are in causal genes for developmental syndromes, consistent
with the enrichment of developmental phenotypes among the variant carriers [10]. The genes identified
in this study require replication in a larger pediatric cohort. In addition, genes with rare variants
can be entered into GeneMatcher to identify other cases with rare variants in the same gene and
compare genotypes and phenotypes. Due to the low background rate of rare deleterious de novo
variants [63], the statistical evidence for a candidate risk gene is effectively equivalent to multiplicity.
That is, genes with ≥2 rare deleterious de novo variants are unlikely to be mutated by chance and
should be considered candidate risk genes. The genes and the variants identified in the pediatric trio
analysis have not been observed in adult-onset cases and likely will be specific to pediatric PAH. Thus,
it is imperative that larger pediatric-focused PAH cohorts are studied to advance our knowledge of
the causal genes specific to pediatric-onset PAH.

Table 3. Burden of de novo variants in 5756 genes highly expressed in developing lung (murine E16.5
lung stromal cells) and/or developing heart (murine E14.5 heart) in pediatric-onset PAH (n = 124
child/parent trios).

Variant Type * Observed in
Trios (n = 124)

Expected by
Chance Enrichment p-Value Estimated # of

True Risk Variants

SYN 18 14.0 1.3 0.28 —
LGD 11 4.7 2.4 0.06 —
MIS 40 31.7 1.3 0.15 —

D-MIS 19 7.2 2.6 2.0 × 10−4 12
LGD + D-MIS 30 11.8 2.5 7.0 × 10−6 18

* SYN, synonymous; LGD, likely gene disrupting; MIS, missense; D-MIS, predicted deleterious missense based on
REVEL score > 0.5.

Table 4. Novel genes with rare deleterious de novo variants in pediatric-onset PAH (n = 124 trios).

Gene
Symbol

Variant
Type Protein Change REVEL

Score
CADD
Score

Allele
Frequency
(gnomAD)

E16.5 Lung
Expression

Rank

E14.5
Heart

Expression
Rank

Variant
Carrier

PAH
Subtype

AMOT LGD p.(Leu320Cysfs*55) . 31 . 68 95 IPAH
CSNK2A2 D-MIS p.(His184Leu) 0.50 25 . 55 77 IPAH

HNRNPF LGD p.(Tyr210Leufs*14) . 29 . 85 98 PPHN,
PAH

HSPA4 D-MIS p.(pro684Arg) 0.62 30 4.1 × 10−6 43 96 PAH-CHD
KDM3B D-MIS p.(Pro1100Ser) 0.66 29 . 89 87 IPAH

KEAP1 LGD p.(Tyr584*) . 35 . 79 82
IPAH

with dev
delay

MECOM D-MIS p.(Phe762Ser) 0.76 32 . 82 60 IPAH

ZMYM2 LGD p.(Arg540*) . 36 . 93 77

IPAH
with

skeletal
anomalies

AMOT, angiomotin; CSKN2A2, casein kinase II, α 2; HNRNPF, heterogeneous nuclear ribonucleoprotein F; HSPA4,
heat shock protein A (HSP70), member 4; KDM3B, lysine demethylase 3B; KEAP1, Kelch-like ECH-associated
protein 1; MECOM, MDS1 and EVI1 complex locus; ZMYM2, zinc finger protein 620. LGD, likely gene disrupting;
MIS, missense; D-MIS, predicted deleterious missense based on REVEL score > 0.5. Allele frequency “.” absent
from gnomAD.

2.5. Genetic Ancestry

Most of the large genetic studies conducted to date have utilized cohorts of predominantly
European ancestry. However, the role of specific genes in PAH may be heterogeneous across genetic
ancestries, and the results of these studies may not be generalizable to all other populations. For example,
the frequency of ACVRL1 and ENG variants combined is ~1% among pediatric IPAH cases of European
ancestry [11,13], but the frequency of ACVRL1 alone may be closer to 13% among Asian children [64].
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GDF2/BMP9 was recently identified as a novel PAH risk gene with genome-wide significance in both
European [41] and Asian [65] cohorts with replication in the PAH Biobank cohort [11]. Similar to other
PAH risk genes, the mode of inheritance was autosomal dominant. The frequency of GDF2/BMP9
variants among children was 2.1% (2/94 cases) in the PAH Biobank and 5.2% (3/57 cases) in the Asian
cohort, suggesting that GDF2/BMP9 variants might be a more frequent cause of PAH among Asian
children. Further study is required to determine whether this difference is a true genetic ancestry effect
or random variation due to relatively small sample size or differences in bioinformatic pipelines. A
PAH case study of a five-year-old boy of Hispanic ancestry identified a homozygous GDF2/BMP9
LGD variant, NM_016204.1:c.76C > T; p.(Gln26Ter) [47]. The unaffected parents were heterozygous for
the variant. Interestingly, the gnomAD population database (gnomADv2.1.1, n = 141,456 samples) [66]
contains only two heterozygous counts of this allele, both of Latino ancestry, suggesting that this might
be an ancestry-specific allele. Clearly, larger studies of children with greater diversity are needed to
define population-specific risk gene allele frequencies as well as ancestral-specific genetic factors.

2.6. The Role of Other “Omics” in PAH

In addition to DNA sequencing to identify genetic etiologies of PAH, other “omics”, including
RNA sequencing, metabolomics, and proteomics, can provide valuable predictions of who is at risk
for disease, define endophenotypes, and guide effective therapies [67,68]. For example, West and
colleagues performed RNA sequencing of blood lymphocytes derived from BMPR2 variant carriers
with and without PAH to identify transcriptional patterns relevant to disease penetrance [69]. More
recently, FHIT was identified as a potentially clinically relevant BMPR2 modifier gene through an siRNA
screen of BMPR2 signaling regulatory genes combined with publicly available PAH RNA expression
data. Subsequently, the authors showed that pharmaceutical upregulation of FHIT prevented and
reversed experimental pulmonary hypertension in a rat model [70]. Rhodes and colleagues utilized
metabolomics to identify circulating metabolites that distinguish PAH cases from healthy controls, to
predict outcomes among PAH cases, and to monitor metabolite levels over time to determine whether
correction could affect outcomes [71]. Stearman et al. combined gene expression data with pathway
analyses to identify a transcriptional framework for PAH-affected lungs [72]. Similarly, Hemnes
and colleagues used transcriptomics to identify RNA expression patterns predictive of vasodilator
responsiveness among PAH patients [73]. These studies highlight the promise of other omics in
predictions of PAH risk, diagnosis, classification, drug responsiveness, and prognosis. However, such
studies have not been conducted in children. Detailed omic phenotyping requires biologic sampling,
which can be difficult in pediatric patients, especially for the very young or those with complex medical
conditions. We propose a pilot genomics-first approach followed by detailed phenotyping of patients
grouped by genetic diagnosis to enrich the biologic sampling and assess utility before performing
larger studies across all pediatric PAH patients.

3. A Genomics First Approach towards Better Understanding of Pediatric PAH

Identification of molecular subtypes of PAH has been proposed as a means to improve risk
stratification, treatment, and outcomes. Obtaining a genetic diagnosis in children requires more
extensive genetic testing than in adults (Figure 4). If testing for a panel of genes known to be
associated with PAH is not diagnostic, children should be evaluated genome-wide for rare de novo
and inherited variants with trio (parental and child) exome sequencing/chromosome microarray or
genome sequencing. With knowledge of the causal gene, natural history, penetrance, and response to
treatment can be refined for that specific genetic subtype of PAH to allow for more precise care for
each genetically defined group. Individuals across genes in the same biological pathway can then be
compared to assess similarities and differences.
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Figure 4. Genomic approach to improve understanding of pediatric PAH.

Collaboration across national and international clinical PH sites will be necessary to yield
sufficient sample sizes due to the extremely small number of pediatric PAH patients at single PH
sites, heterogeneity of risk genes for PAH, and need for ancestral diversity. PPHNet is an example
of a pediatric-specific PAH consortium with ongoing recruitment across 13 North American clinical
sites [74–78]. PVDomics [79], a US multicenter study launched in 2014, and PAH-ICON (pahicon.com),
a new international effort, represent additional large-scale PAH cohorts. PAH was defined as mPAP
≥25 mmHg but was recently updated to include mPAP 20–25 mmHg in both children and adults [8].
Due to variability in pulmonary hemodynamics during the post-natal transition period, pediatric PAH
is defined by elevated mPAP after 3 months of age in combination with pulmonary vascular resistance
as indexed to body surface area, PVRI ≥3 Woods units/m2 [8]. Clinical classification of PAH subtypes
aims to improve clinical management and enhance research efforts and is typically based on the World
Symposium on Pulmonary Hypertension (WSPH) system, updated during the 2018 Nice session [80].
In children, use of a pediatric-specific classification system developed in Panama by the Pulmonary
Vascular Research Institute (PVRI) Pediatric Task Force [81] provides more definitive classification of
developmental and complex phenotypes.

Biological trios composed of two unaffected parents and an affected child are preferred over
singleton cases for pediatric studies of PAH in order to identify both inherited and de novo variants
causal for disease. However, as the number of ethnically matched genomic data in public databases
increases, the need for trios will decrease. DNA can be reliably obtained from small samples of blood
or saliva. We have developed methods in a large national autism study to collect saliva from pediatric
patients and their parents in their homes, with instructional videos to support clinical sites with remote
biospecimen collection [82,83]. Biological samples can be shipped to a central biorepository for DNA
extraction and then processed and sequenced using a single genetic platform. Since annotation tools
for predicting relative pathogenicity of noncoding variants are still under development, and because
the incremental yield of structural variants identified from genome sequencing is low, there is currently
little added value in analysis of genome sequencing compared to exome sequencing data. Following
extensive quality control, filtering, and annotation, sequencing data are screened for rare deleterious
variants in known candidate genes or undergo trio analysis for de novo variants or association analysis
for inherited variants [10,11]. Candidate genes identified by these methods are further assessed by
mapping the locations of variants to protein structures, assessing expression in PAH-relevant tissues
and cell types, assessing variant function in vitro, and assessing the impact of pathogenic variants
in vivo in model organisms. Human mutations can be introduced into cells and PAH-sensitized mice
using CRISPR technology. Phenotypic “rescue” by exogenous delivery of normal proteins can add
evidence to support causation.
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Once genetic subtypes are defined, demographic data, clinical phenotypes, and imaging data
(pulmonary vascular angiography, chest X-ray or CT scans, chest/cardiac MRI, and lung biopsies) can
be compared among cases with variants in the same gene/pathway. Relevant cases can be recalled or
remotely interviewed for targeted clinical assessments to determine if there are similarities among
cases with rare variants in the same gene/pathway.

To increase rigor and assess the full phenotypic spectrum of the new genetic subtypes, additional
cases can be identified using GeneMatcher, clinical diagnostic laboratories, and large sequencing centers.
Longitudinal phenotypes of the genetic subtypes can be assessed retrospectively and prospectively,
including death/transplant, response to medication, other medical diagnoses, and changes in lung
function. For inherited variants, cascade genetic testing of family members with clinical evaluation
of “unaffected” individuals who carry the relevant genetic variant can inform penetrance by age
and sex. To support families with genetic diagnoses, “virtual” family meetings can be organized
to update families on new findings related to their conditions and build communities for each of
the rare endophenotypes.

The value of a genetic diagnosis to families is three-fold: (1) identification of other associated
features, (2) identification of family members at risk for developing PAH, and (3) clarification of
reproductive risks and provide family planning options. Biallelic mutations in EIF2AK4 are diagnostic
for pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis [84], which can be
difficult to diagnose clinically without a lung biopsy, and patients can be listed for transplant earlier in
the course of disease, which may improve outcomes. As mentioned, TBX4 variant carriers should
be assessed for associated developmental (lung, heart) and orthopedic (hips, knees, feet) issues.
ENG/ACVRL1 variant carriers are prone to arteriovenous malformations in brain, intestine, lung, and
liver [85]; these patients require periodic MRI surveillance. After making a genetic diagnosis in a PAH
patient, additional family members can be screened for the family variant to identify those at risk who
may benefit from annual surveillance and early diagnosis/treatment. Furthermore, diagnosed young
adults can make informed decisions regarding family planning.

4. Conclusions

Pediatric PAH differs from adult-onset PAH in many important aspects, including clinical
presentation, etiology, genetic burden, and specific genes involved. In many young children,
PAH is a developmental disease with a complex phenotype. TBX4 and SOX17 are examples of
developmental genes in which rare deleterious variants occur much more frequently in pediatric-
compared to adult-onset PAH. De novo variants likely contribute to at least 15% of pediatric-onset
PAH, but the specific genes require confirmation in larger pediatric cohorts. Many genes with de
novo variants likely contribute to developmental phenotypes and complex medical conditions. A
genomics-first approach to pediatric PAH starts with a genetic diagnosis followed by phenotypic
characterization of cases with variants in the same genes/pathways. Large, diverse pediatric populations
are needed to confirm the candidate genes identified thus far, identify new genes, characterize each
rare endophenotype and natural history, and assess the efficacy of therapies to inform more precise
clinical management. In addition, questions related to which children are at risk for developing
PAH—especially children with CHD, CDH, bronchopulmonary dysplasia, and Down syndrome—may
be answered. The yield of genetic diagnoses in pediatric-onset PAH cohorts is significantly greater
than the yield in adult-onset cohorts. However, identification of genes, pathways, and networks in
children could provide novel targets for therapy not only for children but for all patients with and at
high risk for PAH.
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