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Abstract: Several adult omics studies have been conducted to understand the pathophysiology of
nonalcoholic fatty liver disease (NAFLD). However, the histological features of children are different
from those of adults, and the onset and progression of pediatric NAFLD are not fully understood. In
this study, we aimed to evaluate the metabolome profile and metabolic pathway changes associated
with pediatric NAFLD to elucidate its pathophysiology and to develop machine learning-based
NAFLD diagnostic models. We analyzed the metabolic profiles of healthy control, lean NAFLD,
overweight control, and overweight NAFLD groups of children and adolescent participants (N = 165)
by assessing plasma samples. Additionally, we constructed diagnostic models by applying three
machine learning methods (ElasticNet, random forest, and XGBoost) and multiple logistic regression
by using NAFLD-specific metabolic features, genetic variants, and clinical data. We identified
18 NAFLD-specific metabolic features and metabolic changes in lipid, glutathione-related amino
acid, and branched-chain amino acid metabolism by comparing the control and NAFLD groups in
the overweight pediatric population. Additionally, we successfully developed and cross-validated
diagnostic models that showed excellent diagnostic performance (ElasticNet and random forest
model: area under the receiver operating characteristic curve, 0.95). Metabolome changes in the
plasma of pediatric patients with NAFLD are associated with the pathophysiology of the disease and
can be utilized as a less-invasive approach to diagnosing the disease.

Keywords: nonalcoholic fatty liver disease; hepatic steatosis; pediatric obesity; plasma metabolomics;
machine learning

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent hepatic disorders
in both adults and children [1,2]. Despite the increasing prevalence of NAFLD worldwide
over the last few decades, no licensed drugs have been approved for its treatment. The
difficulties in developing a single effective drug for NAFLD may be attributable to the
complex pathophysiology of this disease. The risk factors for NAFLD include dietary,
environmental, and genetic factors which show complex interactions resulting in insulin re-
sistance and obesity [3]. These factors cause hepatic triglyceride accumulation, lipotoxicity
due to the high levels of free fatty acids, and oxidative stress, which are involved in hepatic
inflammation.
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Contrary to adults, pediatric NAFLD presents unique histologic features, including
moderate-to-severe steatosis and portal and periportal inflammation and fibrosis [4]. In
addition, the early presentation of pediatric NAFLD suggests that it has a different etiology
and pathophysiology than adult NAFLD. Specifically, pediatric NAFLD shows greater
vulnerability to genetic and environmental factors [5,6]. For this reason, a thorough under-
standing of the distinctive characteristics of pediatric NAFLD is required to establish an
appropriate treatment strategy in comparison with adult NAFLD. However, many aspects
of pediatric NAFLD have not been elucidated, especially those related to the onset of
NAFLD and liver damage during the disease’s progression in the pediatric population.

Recently, omics studies have been actively conducted to investigate and predict
NAFLD and its severity by identifying the metabolic signatures that reflect the patho-
logical status of the disease (i.e., the significant effect of genetic variants and metabolic
changes) [7–9]. Some metabolomic studies have also reported metabolic signatures based
on elements such as branched-chain amino acids (BCAAs), aromatic amino acids, and other
lipidomic profiles known to be associated with NAFLD; however, most of these studies
were conducted on adults and obese populations [10–12]. Furthermore, to the best of our
knowledge, there have been no attempts to establish a diagnostic model that combines
genetics, metabolomics, and clinical profiles in the pediatric population.

Based on our previous results that suggested the genetic effects of phospholipase-
containing domain 3 (PNPLA3) rs738409, transmembrane 6 superfamily member 2 (TM6SF2)
rs58542926, and the sorting and assembly machinery component 50 homolog (SAMM50)
rs2073080 and rs3761472 on the development and severity of pediatric NAFLD were greater
in the overweight group than the normal-weight group [13], we sought to find metabolic
signatures associated with pediatric NAFLD in a subpopulation of the genetics study.
In this study, we aimed to identify NAFLD-specific metabolic features and associated
pathways by investigating the plasma metabolome signatures in pediatric patients with
overweight NAFLD and comparing the signatures with a normal-weight population. In
addition, by combining these metabolic features, genetic variations, and clinical data, we
attempted to develop a novel diagnostic model of pediatric NAFLD.

2. Materials and Methods
2.1. Study Population

This study was approved by the Institutional Review Board (IRB) of each hospital
(IRB No. 2018-10-015 by the Hallym University Sacred Heart Hospital and 1811-149-98
by Seoul National University Children’s Hospital) and conducted in accordance with the
Declaration of Helsinki. We recruited children and adolescent participants who visited
the pediatric departments of the Hallym University Sacred Heart Hospital and Seoul
National University Children’s Hospital from January 2019 to May 2020, after obtaining
informed consent from the children and their parents. We evaluated the presence and
grade of fatty liver by ultrasonography. The grade of steatosis was evaluated as follows
by comparing hepatic echogenicity to kidney parenchyma: normal, 0; mild, 1; moderate,
2; and severe, 3 [14,15]. The participants were categorized into four groups according to
the steatosis grade determined by abdominal ultrasonography and body mass index (BMI)
z-score based on the 2017 Korean National Growth Chart for children and adolescents [16]:
healthy control (HC), steatosis grade = 0 and BMI z-score ≤ 1; lean NAFLD (LN), steatosis
grade ≥ 1 and BMI z-score ≤ 1; overweight control (OC), steatosis grade = 0 and BMI
z-score > 1; and overweight NAFLD (ON), steatosis grade ≥ 1 and BMI z-score > 1. We
excluded participants who were taking alcohol or medications known to affect the results
of liver function tests. Participants with viral hepatitis, such as hepatitis A, B, or C, or
with Epstein–Barr virus, Wilson’s disease, autoimmune hepatitis, or muscular disease
were also excluded. Thus, 165 subjects were included in this study. Figure 1 summarizes
the schematic study design and analysis workflow to identify NAFLD-specific metabolic
features. Note that we screened metabolite marker candidates in the overweight group and
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then verified them in the normal-weight group, considering obesity as a major risk factor
for NAFLD and a confounding factor of plasma metabolome, as described in Figure S1.
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2.2. Demographic and Laboratory Assessments

Anthropometric characteristics such as height, weight, and BMI z-score were evaluated.
After overnight fasting, 4-mL peripheral blood samples were collected to assess the levels of
insulin, hemoglobin A1c, and platelet count. In addition, serum samples were also collected
by clotting blood for 30 min, followed by centrifugation at 4 ◦C. Laboratory assessments,
including the measurement of the serum levels for fasting glucose, triglycerides, and
cholesterol, were performed, and liver function tests, including measurements of serum
aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase
(GGT), and alkaline phosphatase (ALP) activities, were also performed. The homeostatic
model assessment for insulin resistance (HOMA-IR) was calculated as fasting glucose
(mg/dL) multiplied by fasting insulin (mU/L) and then divided by 405. For clinical
variables with missing data, such as GGT, fasting glucose, insulin, HbA1c, and HOMA-IR,
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appropriate statistical methods were chosen according to the number of data points for
each variable following the exclusion of missing values.

2.3. Targeted Metabolomics in Plasma

For metabolomic analysis, 4 mL of blood was collected from each participant after
overnight fasting and centrifuged at 4 ◦C. Separated plasma samples were collected and
stored until use at −80 ◦C. Plasma metabolites, including 21 amino acids, 21 biogenic
amines, 55 acylcarnitines (ACs), 18 diglycerides (DGs), 42 triglycerides (TGs), 172 phos-
phatidylcholines (PCs), 24 lysophosphatidylcholines (LPCs), 31 sphingomyelins (SMs),
9 ceramides (Cers), and 14 cholesteryl esters (CEs) and hexoses were analyzed using the
AbsoluteIDQTM p400 HR kit (Biocrates Life Sciences AG, Innsbruck, Austria). Samples and
reagents were prepared according to the manufacturer’s instructions. Additionally, we
added three pooled plasma samples per plate for quality control and prepared them in the
same way as the analytical samples to normalize the batch-to-batch effect. Briefly, frozen
plasma samples were thawed on ice and vortexed, followed by centrifugation at 2750× g,
4 ◦C for 5 min before the samples were loaded onto a 96-well plate with a filter. After the
addition of 10 µL of analytical and pooled plasma samples and calibration standards to
each well, the plates were dried with a nitrogen evaporator and derivatized with phenyl
isothiocyanate. Then, dried samples were extracted with an ammonium acetate solution
in methanol and aliquoted into two deep-well plates for liquid chromatography mode
and flow injection analysis (FIA) mode (described in the manual), followed by dilution
with water and an FIA solvent, respectively. Both deep-well plates were placed in an
autosampler of Ultimate 3000 ultra-performance liquid chromatography coupled with a
Q Exactive Plus hybrid quadrupole-orbitrap mass spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) and analyzed using the validated method.

Raw data were processed using the Xcalibur Software (Thermo Fisher Scientific,
Waltham, MA, USA) and MetIDQ Oxygen (Biocrates Life Sciences AG, Innsbruck, Austria)
to calculate the metabolite concentrations in each sample. The final quantitative results
were exported micromolar values with pooled quality control normalization by the median.
Subsequently, values under the lower limit of detection were imputed by one-fifth of the
minimum positive values of their corresponding variables. These data were used for
further analysis.

2.4. Statistical Analyses and Data Visualization

Comparison of the anthropometric and laboratory data between study groups was
performed by a Kruskal–Wallis test, followed by a post-hoc Dunn’s multiple comparisons
test with Prism 7 (GraphPad Software, San Diego, CA, USA). NAFLD-specific metabolic
features (significant metabolites between OC and ON) were illustrated by a volcano plot.
Significance was defined as a false discovery rate (FDR)-adjusted p-value < 0.05 and a fold
change > 1.1, and calculated with MetaboAnalyst 5.0 [17]. Concentrations of significant
metabolites between OC and ON were standardized by the autoscaling of features, followed
by hierarchical metabolite clustering using the Ward method and Euclidean distance. The
significance of NAFLD-specific metabolic features in the four groups was calculated by the
Kruskal–Wallis test, followed by the two-stage step-up method proposed by Benjamini,
Krieger, and Yekutieli to correct multiple comparisons by controlling FDR [18], in which
the number of multiple comparisons per metabolites was four (HC vs. OC, HC vs. LN, OC
vs. ON, and LN vs. ON). Correlation coefficients and two-tailed p-values of the NAFLD-
specific metabolic features and HOMA-IR were determined by Spearman correlation
analyses. Enriched metabolite sets between the OC and ON groups were identified by
querying significant metabolites in an SMPDB-based database provided by MetaboAnalyst
5.0. Significant metabolites without a Human Metabolite Database (HMDB) ID or PubChem
CID were excluded in this analysis. Chemical and biochemical relationships of significant
metabolites were conceived by mapping onto MetaMapp [19] and by visualization with
Cytoscape 3.8.2 [20].
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2.5. Development of Diagnostic Models for NAFLD

Diagnostic models for NAFLD were developed and validated using machine learning
techniques. The total dataset was split into training/validation and test datasets at a
ratio of 4:1 and repeated 100 times (nested cross-validation). Additionally, each step
was repeated three times for recurrent cross-validation. Variables were separated into
NAFLD-specific metabolic features and clinical and genetic variables including age, sex,
BMI z-score, AST, ALT, GGT, ALP, and three significant genetic variants (PNPLA3 rs738409,
SAMM50 rs2073080, and rs3761472) (Supplemental Method S1). The diagnostic models
using NAFLD-specific metabolic features were not adjusted for clinical factors during their
development, as we wanted to create models that do not require the input of any clinical
factors and can be compared with models using clinical and genetic variables. The following
four machine learning models, which were previously used in the diagnosis of NAFLD,
were evaluated [21]: logistic regression, the generalized linear model with an elastic net
penalty (ElasticNet) [22], random forest [23], and extreme gradient boosting (XGBoost) [24].
The model hyperparameters, except the logistic regression model, were tuned using grid
searching. The model performance for each repeated test set was evaluated by measuring
the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity,
specificity, and F1 score on the test. For the logistic regression model with a median
AUROC, the regression coefficient, standard error, and z- and p-values of the selected
variables were obtained. For ElasticNet, random forest, and XGBoost models which had a
median AUROC, the variable importance scores of 18 NAFLD-specific metabolic features
were calculated. Model building and validation were conducted using R version 4.1.0 [25]
and R package caret [26].

3. Results
3.1. Clinical Characteristics of the Study Population

We performed plasma metabolomics on a pediatric cohort with NAFLD to understand
the characteristics of pediatric NAFLD. In this study, 165 Korean children and adolescent
participants aged 6 to 19 years were selected from the cohort. Their demographic features,
including age, sex, BMI z-score, steatosis grade, liver function test results, and insulin
resistance-related parameters, are summarized in Table 1 and Figure S2. As described in
the methods section, steatosis grade and BMI z-score were used to classify the participants
into four groups. The AST, ALT, and GGT levels were abnormally elevated in the NAFLD
group, whereas those in the control group were in the normal range [27]. In contrast,
the between-group difference in the ALP level was not significant. While insulin and
HOMA-IR levels were significantly increased in the ON group compared to the OC group,
no differences in HbA1c levels were observed between the HC, LN, OC, and ON groups.
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Table 1. Clinical characteristics of the study population according to the occurrence of obesity
and NAFLD.

Healthy
Control (HC)

Lean
NAFLD (LN)

Overweight
Control (OC)

Overweight
NAFLD (ON) Significance *

The number of
subjects 39 9 22 95 -

Age (year) 14.3
(8.7–18.6)

10.6
(9.6–17.4)

14.3
(6.6–17.6)

12.5
(6.4–18.9) 0.3546

Sex (male/female) 27/12 9/0 12/10 74/21 -

BMI z-score −0.45
(−2.37–0.96)

0.88
(0.74–1.00)

1.63
(1.11–3.04)

2.42
(1.08–5.94) <0.0001

Steatosis grade
by ultrasonography 0 (0) 2 (1.5–2.5) 0 (0) 2 (1–3) -

AST (IU/L) 21 {17–25} 51 {30–57} 20 {16–25} 46 {29–76} <0.0001
ALT (IU/L) 12 {10–17} 73 {52–91} 18 {14–25} 84 {40–144} <0.0001
GGT (IU/L) 11 {9–13} 28 {19–42} 16 {13–19} 34 {22–57} † <0.0001
ALP (IU/L) 202 {141–290} 267 {227–370} 137 {90–305} 256 {128–371} 0.0500

Fasting glucose
(mg/dL) 97 {91–102} 96 {94–105} 101 {99–104} 100 {95–108} ‡ 0.0175

Insulin (mU/L) § 7.3 {4.5–16} 10.9 {8.1–48} 9.0 {6.3–12} 17.5 {12–23} 0.0012
HOMA-IR § 1.74 {1.16–4.89} 2.48 {1.96–12.2} 2.35 {1.55–2.89} 4.27 {3.01–5.66} 0.0028
HbA1c (%) ¶ 5.3 {4.8–5.9} 5.3 {5.0–5.8} 5.2 {5.0–5.4} 5.4 {5.1–5.7} 0.2264

* Significance by the Kruskal–Wallis test; † n = 93; ‡ n = 94; § HC (n = 4), LN (n = 5), OC (n = 12), ¶ ON (n = 67); HC
(n = 4), LN (n = 3), OC (n = 15), and ON (n = 77). Continuous variables are given as the median (min-max) or
median {25th–75th percentile}. Abbreviations: NAFLD, nonalcoholic fatty liver disease; BMI, body mass index;
AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transferase; and ALP,
alkaline phosphatase.

3.2. Plasma Metabolic Profiles and Significant Metabolites between the Control and NAFLD Group
in the Overweight Population

We investigated the endogenous metabolic differences between the study groups by
evaluating plasma samples with a targeted quantitation method. With targeted quanti-
tation, we monitored a total of 408 metabolites and reliably detected 342 metabolites in
the plasma. The metabolic distribution of the study population showed that the NAFLD
groups (LN and ON) had relatively high intra-group variability compared to the control
groups (HC and OC) (Figure S3). In total, 18 metabolites were significantly different (FDR-
adjusted p-value < 0.05, fold change > 1.1, 14 up and 4 down) between the OC and ON
groups (Figure 2A). In detail, the levels of multiple amino acids, including BCAAs (valine,
leucine, and isoleucine), lysine, tyrosine, and glutamic acid, were significantly higher in
the ON group than in the OC group, whereas the glycine level was lower in the ON group
(Figure 2B). The levels of glycerolipids, phospholipids, and sphingolipids including TG
(50:1), TG (54:3), DG (34:1), PC (46:2), PC (44:1), SM (36:0), and SM (38:3) were also elevated
in the ON group, while TG (52:7), LPC (18:2), and PC-O (30:0) were reduced. Additionally,
the valerylcarnitine (AC (5:0)) level was higher in the ON than in the OC group. In total,
11 of these 18 metabolites showed statistically significant differences, with the same direc-
tion of change as observed in the overweight population (Figure 2C, metabolites marked
with an asterisk). The other 7 metabolites (Figure 2C, metabolites without an asterisk) also
showed the same direction of change, although changes were not significant between the
HC and LN groups due to the small number of participants. In addition, we performed
regression analyses for each of the 18 metabolites, with the BMI z-score as a confounding
factor, to investigate the effect of BMI and found that 16 of the metabolites, excluding AC
(5:0) and glutamate, were significantly different between the OC and ON groups, even after
controlling for the false-discovery rate (Benjamini–Hochberg method) (Table S1).
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Figure 2. Metabolic features of overweight NAFLD (ON) compared to those of overweight control
(OC). (A) A volcano plot and (B) a heat map of significant plasma metabolites (NAFLD-specific
metabolic features, FDR adjusted p-value < 0.05 by Wilcoxon rank-sum test, fold change > 1.1)
between OC and ON groups. In the volcano plot, significant metabolites are labeled with coral red.
In the heat map, concentrations of each metabolite were standardized by the autoscaling of features,
followed by metabolite clustering using the Ward method with Euclidean distance. (C) Concentrations
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of NAFLD-specific metabolic features in four groups. The box-and-whiskers plots show the median
with the whiskers of the 10th and 90th percentile, while the X-axis represents the study groups.
Significance (q-value) was calculated by the Kruskal–Wallis test followed by the two-stage step-up
method of Benjamini, Krieger, and Yekutieli to correct for multiple comparisons by controlling
FDR. The number of multiple comparisons per metabolite was four (HC vs. OC, HC vs. LN,
OC vs. ON, and LN vs. ON). q-values < 0.05 were denoted in the panels. Metabolites were
ordered according to their structural classes: BCAAs (Val, xLeu, and Ile), other amino acids (Lys, Tyr,
Glu, and Gly), acylcarnitines and glycerolipids (AC (5:0), DG (34:1), TG (50:1), TG (52:7), and TG
(54:3)), phosphatidylcholines (LPC (18:2), PC (44:1), PC (46:2), and PC-O (30:0)), and sphingomyelins
(SM (36:0) and SM (38:3)). Metabolites marked with an asterisk (*) showed statistically significant
differences in HC vs. LN, with the same direction of change as observed in the overweight population.
Abbreviations: NAFLD, nonalcoholic fatty liver disease; FDR, false discovery rate; HC, healthy
control; and LN, lean NAFLD.

3.3. Correlation of Metabolic Features and Insulin Resistance

To demonstrate whether these significant metabolites are specifically correlated to
NAFLD, we compared the metabolic features to clinical characteristics. We found that 13 of
the 18 significant metabolites showed weak correlations with insulin resistance (Figure S4,
Spearman r > 0.35, p < 0.05). However, no difference in HOMA-IR level was observed
between the HC and the LN groups in the normal-weight population, whereas a higher
HOMA-IR level was observed in the ON group than in the OC group (p = 0.0035 by post-
hoc Dunn’s multiple comparison test following the Kruskal–Wallis test). Therefore, we
regarded these 18 metabolites as “NAFLD-specific” metabolic features.

3.4. Relevance of NAFLD-Specific Metabolic Features in Metabolic Pathways

Metabolite set enrichment analysis based on SMPDB was performed with the metabolic
features to identify the metabolic pathways dysregulated by NAFLD. Several metabolite
sets, including valine, leucine, and isoleucine degradation, alanine metabolism, glutathione
metabolism, and carnitine synthesis were altered (enrichment ratio > 4, raw p < 0.05) in the
ON group in comparison with the OC group (Figure 3A and Table S2). Next, we mapped
NAFLD-specific metabolic features and other selected metabolites based on MetaMapp
and visualized the network to explore the biochemical and chemical relationships of the
features (Figure 3B). In this network, nodes with gradient color by FDR-adjusted p-value are
NAFLD-specific metabolic features. Gray nodes indicate other selected metabolites with a
raw p-value < 0.05 but no significance after FDR adjustment. We observed that the network
can be divided into three main clusters: (1) lipids, (2) glutathione metabolism-related, and
(3) BCAA-related metabolites. Most of the metabolic lipid biomarkers, including phos-
phatidylcholines, sphingomyelins, triglycerides, and diglycerides, were upregulated in
the plasma of ON patients. Interestingly, upregulation of glutamic acid and tyrosine and
downregulation of glycine, which are key metabolites in glutathione metabolism, were
observed in ON patients. Moreover, plasma BCAAs, which are reported to be altered in
adult NAFLD, were also upregulated in pediatric NAFLD.
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Figure 3. Relevance of NAFLD-specific metabolic features in metabolic pathways. (A) Enriched
metabolite sets of NAFLD-specific metabolic features and (B) biochemical and chemical networks
of the selected significant metabolites indicated the pertinent metabolic pathways in NAFLD status,
such as branched-chain amino acid (BCAA), glutathione (GSH)-related, and lipid metabolism. In the
network, the gray nodes indicate metabolites with raw p-values < 0.05 that were not significant after
FDR adjustment. Abbreviations: NAFLD, nonalcoholic fatty liver disease; and FDR, false discovery rate.
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3.5. Application of the Metabolic Features to Develop Diagnostic Models for Overweight NAFLD

To suggest a pathophysiology-based complementary method for biopsy-proven diag-
nosis, we established diagnostic models based on machine learning approaches using the
18 NAFLD-specific metabolic features found in this study. (Table S3). Based on coefficients
of the logistic regression model and variable importance scores in other models, the fol-
lowing metabolites were identified as significant features: valine, tyrosine, glutamic acid,
glycine, and SM (38:3) (Tables S4 and S5). All four diagnostic models using NAFLD-specific
metabolic features demonstrated excellent predictive performances, with median AUROC
values of 0.95 (ElasticNet and random forest) and 0.94 (logistic regression and XGBoost)
without significant differences between the models (Figure 4, colored line).
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We also developed a logistic regression model using clinical and genetic variables.
As the number of risk alleles of rs738409 (PNPLA3), rs2073080 (SAMM50), and rs3761472
(SAMM50) was positively associated with the presence of NAFLD (Table S6, p = 0.0029,
0.0011, 0.0004 for Cochran–Armitage, 0.0019, 0.0030, 0.0005 for Chi-squared test), and the
proportions of homozygous risk alleles were significantly higher in the NAFLD group
than in the control group, these three variants were selected as the genetic variables. The
model also showed comparable performance (Figure 4, black dashed line) to the metabolic
feature-based models, with the BMI z-score and ALT levels having a critical influence
on the model. Among the diagnostic models using NAFLD-specific metabolic features,
the ElasticNet model outperformed the other models with the highest median AUROC,
yielding a sensitivity of 0.75 and specificity of 0.95.

4. Discussion

In this study, plasma metabolomic data revealed that in the diseased state, circulating
metabolite levels related to glutathione-related amino acid metabolism, lipid metabolism,
and BCAA metabolism were remarkably altered. On the basis of these results, we propose
the potential effects of altered metabolisms on NAFLD in pediatric patients in Figure 5.
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pediatric patients. Red: increased level or activity in NAFLD group; Blue: decreased level or activity in
NAFLD group. Created with BioRender.com. Abbreviations: NAFLD, nonalcoholic fatty liver disease;
BCAAs, branched-chain amino acids; Leu, leucine; Ile, isoleucine; Val, valine; FA, fatty acid; TG,
triglyceride; DG, diglyceride; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ROS,
reactive oxygen species; Glu, glutamic acid; GSH, glutathione; GGT, gamma-glutamyl transferase;
Gly, glycine; Tyr, tyrosine; Cys, cysteine; SM, sphingomyelin; PC, phosphatidylcholine; and LPC,
lysophosphatidylcholine.

Glutathione metabolism-related metabolite levels, including those of glutamate and
glycine, were significantly changed in the blood and may be important therapeutic targets,
as excessive ROS-induced oxidative stress affects the progression of NAFLD. Increased
circulating glutamic acid and decreased glycine levels in NALFD have been consistently
reported in both pediatric [28] and adult populations [10,29–31] in addition to our results;
however, the causes for their changes remain unclear. Interestingly, Oren et al. suggested
that impaired glycine metabolism might play a causative role in NAFLD [32]. Several clini-
cal studies have been conducted to evaluate the effect of glycine supplementation [33–35],
as glycine is a limiting substrate of the de novo synthesis of endogenous glutathione [31],
which may have therapeutic potential. Moreover, White et al. observed that the impairment
of BCAA metabolism in obesity can also affect the decreased level of circulating glycine [36].

The elevated blood levels of DG and TG in patients with NAFLD shown in this study
may also be associated with increased oxidative stress and lipid peroxidation in hepatocytes.
Once circulating DGs and TGs are transferred by hepatic uptake, they can accumulate as
lipid droplets or convert into free fatty acids in the liver. The induction of oxidative stress
and lipid peroxidation by the mitochondrial oxidation of excessive hepatic free fatty acids
resulted in hepatocellular apoptosis [37,38], which was reflected in the markedly increased
serum AST and ALT levels of the NAFLD groups in this study. Similarly, modifications
in sphingolipid and phospholipid metabolism are also associated with metabolic disease
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and NAFLD [39–42]. In young adults with obesity, serum SMs with saturated acyl chains
have been reported to be associated with obesity, insulin resistance, and decreased liver
function [43]. Some lipidomic studies have suggested that the plasma PC/PE ratio is
associated with obesity [44]. However, the mechanisms linking SMs, PCs, and LPCs with
liver steatosis and NAFLD are still unclear [40] and there is a lack of consistency in the
level and pattern of the reported sphingolipids and phospholipids in both pediatric and
adult NAFLD patients which cannot be explained by the currently available information in
the literature.

The concentration of systemic BCAAs is altered in various metabolic diseases such
as diabetes, insulin resistance, and obesity, which are well-known etiologic factors in
NAFLD [45–47]. We observed elevated circulating BCAAs levels in the pediatric population
with overweight NAFLD, which has been reported by several in vitro and in vivo studies
in pediatric [12] and adult populations [48–51]. In addition to serving as substrates for
protein synthesis and energy production, BCAAs also stimulate protein synthesis, inhibit
proteolysis, and affect glucose metabolism and oxidative stress [47,52], indicating that
the homeostatic regulation of BCAA levels is crucial to maintain physiological status.
Excessive systemic levels of BCAAs can increase abnormal adipocyte lipolysis and suppress
hepatic lipogenesis, resulting in hyperlipidemia and hepatic lipotoxicity [51], which is also
supported by increased blood DGs and TGs in the overweight NAFLD group in this
study. In accordance with the present results, BCAA-based metabolic signatures have
been suggested to predict liver steatosis and NAFLD in children and adolescents with
obesity [12,53].

Taken together, the findings of the present study have some major clinical implications.
First, we investigated the metabolomic distributions of the HC, LN, OC, and ON groups
and found that both the LN and ON groups showed metabolic heterogeneity, which may
be closely related to the complex pathophysiology of NAFLD. We also identified metabolic
changes to elucidate the characteristics and mechanisms of pediatric NAFLD and NAFLD-
specific metabolic features by comparing the metabolomic signatures of the overweight
and normal-weight groups. Additionally, we revealed that these metabolic changes, which
can be observed in the adult population, emerged during the adolescent period. As most
of the significant metabolites between the OC and ON groups, including BCAAs, are
known to be related to insulin resistance and obesity, it is difficult to evaluate whether
the significant metabolites are NAFLD-specific. Despite there being partially missing
data, such as fasting insulin and HOMA-IR, we showed that these metabolic features
are NAFLD-specific, regardless of insulin resistance and obesity. Additionally, using the
NAFLD-specific metabolic features, we successfully suggested cross-validated diagnostic
models based on pathophysiology that might be easily applied in clinical practice and
showed better performance than other diagnostic models based on metabolomics [7,54,55].
These encouraging results demonstrate that the diagnosis of NAFLD with only a small
volume of plasma may ameliorate the limitations of a liver biopsy and allow for the high-
throughput screening of pediatric NAFLD, even in school. We also found that clinical
features, such as the BMI z-score and liver function test results, as well as the metabolic
features, were also directly associated with the development of NAFLD in pediatric patients,
which is well reflected in the outstanding performance of the machine learning models
using clinical and genetic variables. The fact that the increased level of liver function tests
in adults resulted from complex interactions between the disease pathophysiology and
external factors, such as smoking, alcohol, and stress, whereas those in children mainly
resulted from hepatic inflammation itself, can be one of the explanations why the models
using clinical and genetic variables developed in this pediatric population study show
excellent performance, comparing with other diagnostic models that were previously
reported in the adult population [8,54,56].

This study had some limitations, however. Although liver biopsies are deemed the
gold standard for diagnosing liver steatosis and fibrosis, one of the most challenging issues
in this study was obtaining liver biopsies from the study cohort. Due to the invasiveness
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and effectiveness of biopsies, and the ethical considerations related to performing biopsies
in pediatric patients, we examined steatosis grades by using hepatic ultrasonography
instead of liver biopsies. The targeted metabolomics used in this study effectively excluded
exogenous compounds and unwanted analytical noise, however, this may only have
allowed for a partial explanation of the issue in comparison with untargeted approaches,
which implies there is a possibility of unrevealed metabolic signatures. In addition, the
diagnostic models based on machine learning approaches in this study showed excellent
performance; however, further evaluation of the models using external validation cohorts
is required. Although the changes in the levels of circulating plasma metabolites directly
reflect metabolic changes in the liver, the lack of observation of metabolic changes in
the hepatocytes may have influenced the interpretation of the results. For example, the
antioxidant effects of significant metabolic markers, or free fatty acid accumulation in
the liver, could not be confirmed in this study. Lastly, a fact that should also be carefully
considered before interpreting the results is that NAFLD had already occurred, making it
difficult to assess whether the differences in the metabolite levels were a reflection of their
etiologic roles, or if these were a consequence of the disease, as this causality problem is a
common limitation of observational studies. Although the associations between NAFLD
and plasma metabolites were observable in this study, further research efforts, such as
in vitro/in vivo studies using cell lines or model organisms, are required to confirm the
disease mechanism-related functions of selected metabolites and the direction of causality.

In summary, to answer questions regarding the characteristics of pediatric NAFLD,
we explored metabolic profiles and found several significant alterations. This study demon-
strated that dysregulated glutathione, lipid, and BCAA metabolism were linked to the
pathophysiological conditions underlying NAFLD. Despite the restricted sample acces-
sibility, these findings provide additional evidence for the pathophysiology of pediatric
NAFLD that might be useful as potential therapeutic targets for new drug development
and as ancillary diagnostic biomarkers to establish early strategies to alleviate NAFLD in
pediatric patients.
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model using four machine learning methods; Table S4. Multiple logistic regression model using
NAFLD-specific metabolic features and clinical and genetic variables; Table S5. Variable importance
of three diagnostic models using NAFLD-specific metabolic features; Table S6. Genotype frequencies
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component analysis showing metabolomic distribution in the study population (HC, LN, OC, and
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